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Summary 1 

Background & aims: Epidemiological evidence on ultra-processed food (UPF) and 2 

cause-specific mortality remains limited and mixed. Molecular mechanisms underlying 3 

UPF intake and mortality remain unexplored. This study aimed to evaluate the 4 

associations between UPF consumption, metabolic signatures, and all-cause, premature, 5 

and cause-specific mortality. 6 

Methods: This study included 27670 participants (mean age 58.1 years) from the 7 

Malmö Diet and Cancer (MDC) cohort study. Consumption of UPF was assessed using 8 

a food frequency questionnaire and a 7-day food diary. In a subset of the MDC (n=879), 9 

the associations of UPF with 991 plasma metabolites were investigated. An elastic net 10 

regression model was used to establish the metabolic signature of UPF. Cox 11 

proportional hazards regression model was used to determine the association between 12 

UPF intake, metabolic signature, and mortality risk.  13 

Results: During a median follow-up of 23.3 years, a total of 11333 participants died. 14 

UPF intake showed a nonlinear positive association with all-cause mortality, with more 15 

pronounced associations found in females (Pinteraction= 0.044); in females, UPF was 16 

linked to a higher mortality risk in a linear manner, while the association was J-shaped 17 

in males. Each standard deviation (SD) increment in UPF intake was associated with 18 

an increased risk of premature mortality (HR, 1.06; 95% CI, 1.03–1.09), cardiovascular 19 

disease (CVD) mortality (HR, 1.05; 95% CI, 1.01–1.08) or respiratory disease mortality 20 

(HR, 1.08; 95% CI, 1.01-1.15), but not cancer mortality. The metabolic signature for 21 
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UPF consumption (with 93 metabolites) was positively associated with all-cause 22 

mortality risk (HR per 1 SD, 1.23; 95% CI, 1.06-1.42).  23 

Conclusions: Our results suggest that higher UPF intake is associated with increased 24 

risk of all-cause, premature, CVD, and respiratory disease mortality, with the 25 

association varying across sex for all-cause mortality. The plasma metabolic signature 26 

of UPF showed a positive association with all-cause mortality. 27 

Keywords: Ultra-processed food; mortality; prospective cohort; NOVA classification; 28 

Metabolites  29 

 30 

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; FFQ, food 31 

frequency questionnaire; HR, hazard ratio; CI, confidence interval; MDC, Malmö 32 

Diet and Cancer; MET, metabolic equivalent task; PCI, processed culinary 33 

ingredients; SD, standard deviation; UPF, ultra-processed food.   34 
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1. Introduction 35 

Ultra-processed foods (UPF), according to the NOVA food classification system, are 36 

food products made by a series of industrialized processes and contain multiple 37 

ingredients and additives, with little or no whole foods[1]. These food products are 38 

usually palatable, ready to consume, inexpensive, and highly marketed. The varieties 39 

and amounts of UPF have expanded substantially in the global food system in recent 40 

decades[2, 3]. UPF contributes a large proportion of Western diets, accounting for 41 

almost 60% of energy intake in the United States[4]. In European countries, the energy 42 

proportion from UPF intake ranges from 14% to 44%[5]. High consumption of UPF is 43 

associated with poor diet quality[6]. Additionally, chemicals from UPF manufacturing 44 

and packaging have been linked to oxidative stress, inflammation, and changes in gut 45 

microbiota in experimental studies [7-9]. 46 

Since 2019, emerging cohort studies[10-21], but not all[22, 23], have shown 47 

positive associations between UPF intake and all-cause mortality. However, evidence 48 

on UPF and cause-specific mortality remains limited and mixed, and the association 49 

with premature mortality has not been studied. Furthermore, evidence from the Swedish 50 

population remains limited to date. UPF covers a broad range of foods that vary widely 51 

in composition and nutritional quality[24]. Analyzing the risks associated with UPF 52 

subgroups can help tailor and prioritize policy guidance around UPF consumption[25]. 53 

However, the associations of specific UPF subgroups with mortality risk have only been 54 

examined in two previous studies[14, 21].  55 
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Traditional dietary instruments like food frequency questionnaires (FFQs) and 56 

dietary recalls are subjective and prone to measurement and recall bias. The metabolic 57 

signature of dietary intake has emerged as a valuable tool in nutritional research for its 58 

objective nature, reflecting metabolic responses to diet, and enhancing understanding 59 

of biological mechanisms[26, 27]. The metabolite profiles for diet patterns (e.g., 60 

Mediterranean diet) or specific foods (e.g., legumes) have been identified[28, 29]. 61 

However, the only study on the metabolic signature of UPF consumption covered 232 62 

candidate metabolites and was conducted among British children[30]. The molecular 63 

mechanisms underlying UPF intake and mortality remain unexplored.  64 

Therefore, we aimed to investigate the association of UPF intake and seven UPF 65 

subgroups with all-cause mortality, premature mortality, mortality from cancer, CVD, 66 

and respiratory disease in the Malmö Diet and Cancer (MDC) cohort, a large 67 

prospective cohort with 23.3 years of follow-up. The metabolic signature of UPF 68 

consumption was identified, and its association with mortality risk was assessed.  69 

2. Methods 70 

2.1 Study population 71 

The MDC is a prospective cohort study initiated in 1991 in Malmö, Sweden. Until 72 

1996 the recruitment was completed, and of the 74318 invited participants, 30446 73 

individuals aged 45 to 73 years took part in the baseline examination. Participants 74 

visited the study center twice at baseline. During the first visit, a self-administered 75 

questionnaire regarding lifestyle and socioeconomic factors, a food diary, and a FFQ 76 
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were explained and distributed to participants, and anthropometric measurements were 77 

performed by trained personnel. Approximately two weeks later, the returned 78 

questionnaires were reviewed and a diet history interview was conducted. Details of 79 

this cohort have been described elsewhere[31, 32]. The study was approved by the 80 

Ethical Committee at the Medical Faculty at Lund University (approval number: LU 81 

51/90) and all participants provided written informed consent. 82 

We include participants with complete dietary information (n = 28098). Those with 83 

missing data on seven covariates were excluded (n=428), leaving 27670 participants 84 

for the analysis of UPF intake and mortality risk. A random subset of participants from 85 

the MDC was invited to join the Malmö Diet and Cancer Cardiovascular Cohort (MDC-86 

CC) between 1991 and 1994. This sub-cohort consisted of 6103 participants, of whom 87 

5543 provided blood samples after standardized overnight fasting. Data on blood lipids 88 

and lipoprotein subfractions was available for 4059 participants. For the analysis of 89 

plasma metabolites, the study sample was restricted to 879 participants with available 90 

metabolomics data. Details are shown in the flowchart (Supplementary Figure 1).  91 

2.2 Dietary assessment of UPF intake 92 

The food intake was assessed using a modified diet history method, consisting of 93 

a 7-day food diary, a 168-item semiquantitative FFQ, and a 45-60 minutes dietary 94 

interview. This method was validated using an 18-day weighted food record, with 95 

energy-adjusted Pearson correlation coefficients for most foods ranging from 0.50 to 96 

0.80[33, 34]. In the food diary, participants were asked to record their daily meals 97 
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(usually cooked lunch and dinner), cold beverages, and dietary supplements for 7 98 

consecutive days. FFQ was used to assess the regularly consumed foods over the 99 

previous year, mainly breakfast and snacks. A dietary interview was conducted to 100 

quantify the food amount in the food diary, check for the food overlap between FFQ 101 

and food diary, and collect the details about how foods and dishes in the food diary 102 

were prepared. We adopted 48 (FFQ), 180 (food dairy, old method), and 75 (food dairy, 103 

new method) sets of food photographs to accurately assess the quantity of food. Food 104 

information from the food diary and FFQ was summarized into the average daily intake 105 

for each food item (g/day). Food intake was further converted into energy and nutrient 106 

intake with the use of computer software and the Swedish Food Database PC KOST2-107 

93 of the Swedish National Food Administration.  108 

The UPF intake was assessed by the NOVA classification that groups each food 109 

item into one of the four food groups based on the levels and purpose of industrial 110 

processing[1]: 1) unprocessed or minimally processed foods, e.g., fruits, vegetables, 111 

eggs, milk, and unprocessed meat; 2) processed culinary ingredients (PCI), e.g., oils, 112 

butter, and sugar; 3) processed foods, e.g., canned fish, cheese, high-fiber bread and 113 

cereals; and 4) UPF, e.g., savory snacks, reconstituted meat products, pastries, cakes, 114 

cookies, and soft drinks. In this study, we focused on the fourth category UPF. The 115 

examples of the food items in each category are listed in Supplementary Table 1. We 116 

further categorized the UPF into 7 mutually exclusive subgroups, including starchy 117 
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foods and breakfast cereals, beverages (i.e., soft drinks), sugary products, fats and 118 

sauces, meat and fish, dairy products, and salty snacks. 119 

Four items (i.e., “crispbread, 10-20% fiber”, “crispbread, > 20% fiber”, “bread, ≥ 120 

6.0% fiber”, “marmalade, honey, jam, puree”) with inconsistencies among researchers 121 

in the classification were assigned to the most likely group. To assess the impact of this 122 

inconsistency, we adopted an alternative categorization of the UPF in sensitivity 123 

analysis. Specifically, "marmalade, honey, jam, puree" was reclassified from the UPF 124 

group to the processed culinary ingredients group, while the three bread food items 125 

were reclassified from processed foods to the UPF group.  126 

2.3 Measurement of metabolites 127 

Overnight fasting blood samples were collected at baseline, and separated plasma 128 

was stored at -80°C until analysis. A total of 1372 biochemicals were measured by a 129 

well-validated untargeted liquid chromatography coupled to tandem mass spectrometry 130 

(LC-MS/MS) on the Metabolon Platform (Morrisville, NC, USA). These biochemicals 131 

included 835 named metabolites, 268 unnamed metabolites, and 269 xenobiotics. 132 

Metabolites with more than 75% missing values were excluded, while xenobiotics with 133 

missing values were imputed with 0. All metabolites were log-transformed, and values 134 

beyond ±5 standard deviations (SD) from the mean were set at the 5 SD threshold. After 135 

exclusions, 991 metabolites remained for metabolomic analysis.  136 

2.4 Measurement of blood lipids and lipoprotein subfractions 137 
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Total cholesterol (TC), triglycerides (TG), and high-density lipoprotein cholesterol 138 

(HDL-C) concentrations were determined using a DAX 48 automatic analyzer (Bayer 139 

AB, Göteborg, Sweden) with reagents and calibrators provided by the instrument 140 

supplier. Low-density lipoprotein cholesterol (LDL-C) was derived from the 141 

Friedewald formula. Lipoprotein subfractions were analyzed via ion mobility analysis. 142 

Intra- and interassay coefficients of variation for LDL particles were less than 1.0%. 143 

More details on the assessment of biomarkers and quality control have been described 144 

previously[35]. 145 

2.5 Outcome ascertainment  146 

The outcomes were all-cause mortality, premature mortality, and cause-specific 147 

mortality from cancer, CVD, and respiratory disease. Deaths and emigrations were 148 

identified through the Swedish National Tax Agency, Statistics in Sweden, and the 149 

National Board of Health and Welfare. Cause-specific mortality was based on the 150 

Swedish Cause of Death Register. Cancer, CVD, and respiratory disease death were 151 

defined according to the following codes from the ninth and tenth revisions of the 152 

International Classification of Diseases (ICD): 140–239 (ICD-9) and C, D00-D48 153 

(ICD-10) for cancer death, 390–459 (ICD-9) and I (ICD-10) for CVD death, and 460–154 

519 (ICD-9) and J (ICD-10) for respiratory disease death. Premature death was defined 155 

as deaths that occurred before the age of 75 years[36]. We followed up all participants 156 

from the date of completing the baseline survey until the death, emigration, or 157 
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December 31, 2018, whichever occurred first. The rate of loss to follow-up due to 158 

emigration was 0.8% (n = 212). 159 

2.6 Assessment of covariates and other variables  160 

Information on age and sex was collected from the Swedish registry using a 161 

personal identification number. The recruitment of the participants took more than five 162 

years and the follow-up ended at a fixed date, so the year of participant recruitment 163 

(quartiles) was considered as a covariate in this study. Weight and height were measured 164 

by trained personnel at baseline examination. Body mass index (BMI) was constructed 165 

by weight and height and further divided into four groups (<18.5, 18.5-24.9, 25–29.9, 166 

and ≥30 kg/m2). A self-administered questionnaire at baseline was used to collect data 167 

on marital status (married or others), smoking habits (current, former, or never), 168 

educational level (elementary, primary and secondary, upper secondary, further 169 

education without a degree, and university degree), whether lived alone (yes or no). 170 

Alcohol consumption was divided into six categories (zero intake in both food diary 171 

and FFQ, and sex-specific quintiles for those who reported drinking). Metabolic 172 

equivalent task (MET) hours per week, derived from the duration of 17 different leisure-173 

time physical activities, was categorized into five groups (< 7.5, 7.5–15, 15–25, 25–50, 174 

and > 50 MET-hour/week). The heredity score of cancer or CVD was generated based 175 

on the self-reported family history of the disease. If one of the participant's relatives 176 

(father, mother, and siblings) has the disease, one point is assigned to the heredity score. 177 

The diet quality index, based on the Swedish dietary guidelines, was calculated as the 178 
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sum of five dietary factors: fiber (> 2.4 g/MJ), fruit and vegetables (> 400 g/day), fish 179 

(> 300 g/week), added sugar (< 10% energy), and red and processed meat (< 500 180 

g/week)[37]. For each dietary factor, a score of 1 is assigned if the above criterion is 181 

met, and otherwise, the score is 0, resulting in an overall score ranging from 0 to 5. We 182 

divided the intake of coffee (quartiles) and tea (zero consumers, < 225g/day, and ≥225 183 

g/day) into categorical variables based on their distribution. The variable dietary 184 

assessment method (old and new) was created because the dietary interview was 185 

shortened from 60 min to 45 min in September 1994. The dates of dietary data 186 

collection were categorized into seasons (spring, summer, autumn, and winter). Blood 187 

pressure was measured by nurses using a mercury sphygmomanometer. Hypertension 188 

was defined as systolic blood pressure ≥ 140mmHg and/or diastolic blood pressure ≥ 189 

90mmHg, or antihypertensive medication usage. Diabetes was identified through self-190 

reported diagnosis, medication usage, or registry records. The use of lipid-lowering 191 

medication was self-reported. 192 

Participants were defined as potential energy misreporters when the ratio of their 193 

energy intake to basal metabolic rate was outside the 95% CI of the physical activity 194 

level, which was estimated from activities at work, leisure time, and household work, 195 

as well as time for sleep, self-care, and passive activities[38]. Participants were 196 

considered diet changers if they reported “yes” to the question in the baseline 197 

questionnaire: “Have you substantially changed your eating habits because of illness or 198 

some other reasons?”. In the follow-up survey conducted five years after the baseline 199 
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(1997-2001), we obtained the status of diet change by the question: “Have you 200 

substantially changed your dietary habits since you participated in the MDC study for 201 

the first time?”. 202 

2.7 Statistical analyses 203 

The baseline characteristics were presented by quintiles of energy-adjusted UPF 204 

intake using mean and standard deviation (SD) for continuous variables and percentage 205 

for categorical variables. 206 

Analysis 1 (UPF intake and mortality risk) 207 

 Intake of UPF and UPF subgroups were adjusted for total energy intake using the 208 

residuals method. We used Cox proportional hazards regression models to investigate 209 

the associations of UPF intake and mortality risk, with the first quintile used as a 210 

reference. Hazard ratios (HR) and 95% confidence intervals (CI) per one SD increment 211 

of UPF intake were also estimated. Covariates were progressively entered into 4 212 

adjusted models; we adjusted age, sex, dietary assessment method, season, total energy 213 

intake, and year of participant recruitment in model 1. Model 2 was adjusted for all 214 

variables in model 1 plus educational level, leisure time physical activity, smoking 215 

status, alcohol consumption, prevalent CVD, cancer or diabetes, heredity score of 216 

cancer (0 or >0) or CVD (0 or >0), marital status, whether lived alone, coffee and tea 217 

intake. As diet quality index and BMI are possible mediators linking UPF consumption 218 

and mortality risk, we further adjusted for all variables in model 2 and diet quality index 219 

(model 3), and for BMI in model 4 to observe the changes of association. Model 2 was 220 
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considered as the main model. We tested the proportional hazards assumption by 221 

Schoenfeld test and visual examination of the Schoenfeld residuals. No violation of the 222 

assumption was observed. We investigated potential non-linear associations between 223 

UPF intake and mortality risk by fitting models using restricted cubic splines for 224 

absolute UPF intake with 3 knots (placed at the 10th, 50th, and 90th percentiles). The 225 

P value for nonlinearity was estimated by the Wald test. All covariates were entered into 226 

the models in the forms previously described in the covariates assessment section unless 227 

otherwise specified. 228 

We evaluated the potential effect modification by repeating model 2 stratified by 229 

age, sex, smoking status, alcohol consumption, physical activity, tea intake, coffee 230 

intake, and whether lived alone. P for interaction was calculated using the Wald test for 231 

cross-product terms (UPF quintiles × stratification variables). We examined the 232 

association of UPF subgroups with mortality risk with 7 subgroups simultaneously 233 

included in the Cox model. To examine whether heterogeneous associations with 234 

mortality risk existed for 7 UPF subgroups, we used the likelihood ratio test to compare 235 

two models with one included total UPF intake and the other included total UPF intake 236 

plus 7 subgroups; the improved fit for the latter model indicates the existence of 237 

heterogeneity.  238 

We performed the following sensitivity analyses: (1) repeating the models after 239 

excluding participants with prevalent CVD, cancer, or diabetes (n=3518) at baseline, 240 

excluding deaths occurring within the first 10 years of follow-up (n=2279), excluding 241 
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energy misreporters (n=5110) or diet changers (n=6741); (2) further adjusted for other 242 

three NOVA-defined food groups instead of coffee and tea intake; (3) further adjusted 243 

for intake of folate, vitamin D, vitamin C, calcium, iron, potassium, magnesium, 244 

selenium, and zinc; (4) using the proportion of UPF weight in total food as exposure; 245 

(5) using an alternative categorization of the UPF as exposure; (6) further adjusted for 246 

BMI and diet quality index in spline analysis; (7) further adjusted for the EAT-Lancet 247 

diet index[39] (derived from 14 food components) instead of diet quality index.  248 

Analysis 2 (UPF intake, plasma biomarkers, and mortality risk) 249 

The metabolites of all four NOVA-defined food groups were analyzed to assess 250 

whether these food groups exhibited diverse metabolic signatures and whether these 251 

metabolic signatures mirrored the associations observed in food intakes. Given the high 252 

dimensionality and collinearity of the metabolomic data, an elastic net regression model 253 

was employed for metabolite selection. The hyperparameters were selected through 10-254 

fold cross-validation (R package: “caret”). Participants were randomly assigned into a 255 

training set (70%) and a testing set (30%). First, we fitted the elastic net regression 256 

models in the training set and then used the coefficients (weights) to construct the 257 

metabolic profile score—a weighted sum of the selected metabolites—in the testing set. 258 

In the training set, the metabolic profile score was constructed using an elastic net 259 

regression model combined with a leave-one-out approach to avoid overfitting. These 260 

methods have been used to identify the metabolic signature of dietary patterns and 261 

specific food items[28, 29]. Partial correlations of four food groups with biomarkers 262 
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were presented in the heatmaps, adjusting for covariates in model 3 (excluding method, 263 

coffee, and tea) plus hypertension, diabetes, and lipid-lowering medication. Tertiles 264 

were generated for each metabolic profile score, and Cox proportional hazards 265 

regression models were used to estimate their associations with all-cause mortality. 266 

We used R version 4.2.1 (R Foundation) in statistical analyses. All tests were 2-267 

sided and the significant level was 0.05. 268 

3. Results 269 

3.1 Baseline characteristics 270 

This study included 27670 participants (60.7% females), with a mean age of 58.1 271 

years (SD, 7.6 years). The mean proportion of UPF in total food is 13.4% (SD, 7.3%). 272 

Compared with those in the lowest quintile of UPF intake, participants in the highest 273 

quintile group were more likely to be older, female, and never smoker and to drink less 274 

alcohol. They also tended to have a higher BMI, and prevalence of cancer, CVD, and 275 

diabetes, but they were less likely to have a university degree. In addition, they had a 276 

lower diet quality index, and a lower intake of fiber, coffee, and tea (Table 1). The main 277 

subgroups contributing to the total UPF were starchy foods and breakfast cereals 278 

(percentage, 26.0%), beverages (23.3%), and sugary products (18.4%), fats and sauces 279 

(15.5%), and meat and fish (13.6%) (Supplementary Table 2).  280 

3.2 Dietary UPF intake and mortality risk 281 

During a median follow-up of 23.3 years (582853 person-years), a total of 11333 282 

participants died (of cancer, 3938; of CVD, 3709; of respiratory disease, 758), with 283 
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3672 dying before age 75 (Table 2). The intake of UPF was positively associated with 284 

all-cause mortality in a nonlinear manner (Pnonlinear=0.022), with increased mortality 285 

risk beginning to appear only when UPF intake exceeded the median (Fig. 1a). This 286 

association was modified by sex (Pinteraction= 0.04); in females, UPF was associated with 287 

a higher mortality risk in a linear manner; while in males, the associations were J-288 

shaped (Fig. 1b). Higher mortality risk with increased UPF intake was more 289 

pronounced in females. Relative to the lowest quintile of UPF intake, HR (95% CI) of 290 

all-cause mortality was 1.06 (1.00-1.12) for the fifth quintile (Table 2). This association 291 

was attenuated markedly with the progressive inclusions of potential mediators (diet 292 

quality index and BMI). In the main model, each SD increment in UPF intake was 293 

associated with an increased risk of premature mortality (HR, 1.06; 95% CI, 1.03–1.09), 294 

CVD mortality (HR, 1.05; 95% CI, 1.01–1.08) or respiratory disease mortality (HR, 295 

1.08; 95% CI, 1.01-1.15). UPF intake was not associated with cancer mortality.  296 

Sex modified the association between UPF and CVD mortality in a similar way as 297 

it did the association of UPF with all-cause mortality (Pinteraction= 0.037) (Supplementary 298 

Fig. 2). The positive association of UPF intake with premature mortality and respiratory 299 

disease mortality was not modified by sex (Pinteraction > 0.05). 300 

For the UPF subgroups, we observed heterogeneity in the associations with all-301 

cause, premature, and CVD mortality risk (Pheterogeneity < 0.001) (Supplementary Fig. 3). 302 

Intakes of beverages group and meat and fish group were positively associated with all-303 

cause mortality risk, whereas sugary products showed an inverse association. These 304 
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findings were similar in analyses of premature and CVD mortality. Other UPF 305 

subgroups were not associated with all-cause, premature, and CVD mortality risk.  306 

In analyses stratified by age, drinking status, coffee intake, tea intake, and whether 307 

lived alone, the associations between UPF intake with all-cause, premature, cause-308 

specific mortality risk were similar across strata (Pinteraction > 0.05; Supplementary Table 309 

3). The association with all-cause mortality was weaker in individuals with higher 310 

levels of physical activity compared to those who were less physically active 311 

(Pinteraction=0.014; data not shown). Increased respiratory disease mortality risk in 312 

relation to a higher intake of UPF seems more pronounced in never smokers 313 

(Pinteraction=0.027; data not shown). In sensitivity analyses, the elevated mortality risk 314 

above the median of UPF intake was robust, while less robust results were observed 315 

when UPF intake below the median (Supplementary Fig. 4).  316 

3.3 Plasma metabolites, lipid and lipoproteins, and mortality risk 317 

A total of 93, 49, 23, and 96 metabolites were selected as the metabolic signatures 318 

of UPF, unprocessed or minimally processed foods, processed foods, and PCI, 319 

respectively. The metabolic signatures were significantly correlated with the 320 

corresponding food groups (r = 0.21–0.32, P <0.001) (Supplementary Fig. 5). The 321 

metabolic signature of UPF was positively associated with all-cause mortality risk, with 322 

each SD increase in the metabolic profile score linked to a 23% higher mortality risk 323 

(HR=1.23; 95% CI, 1.06-1.42; P=0.005) (Table 3). Conversely, the processed foods 324 
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signature showed an inverse association with all-cause mortality risk (HR per 1 SD, 325 

0.87; 95%CI, 0.77-0.97; P=0.015).  326 

As shown in the Venn diagram, UPF shared 20 metabolites and 11 metabolites 327 

with PCI and unprocessed or minimally processed foods, respectively (Supplementary 328 

Fig. 6). Ergothioneine was the only metabolite selected by all four groups of food, 329 

which showed positive associations with unprocessed or minimally processed foods 330 

and processed foods but inverse associations with UPF and PCI. The 331 

perfluorooctanesulfonate (PFOS) showed positive associations with UPF and PCI but 332 

an inverse association with unprocessed or minimally processed foods (Supplementary 333 

Table 4).  334 

After adjusting for covariates, the top selected metabolites that showed significant 335 

negative association with UPF were N2,N5-diacetylornithine, ergothioneine, methyl 336 

glucopyranoside (alpha+beta), heneicosapentaenoate (21:5n3), and N-delta-337 

acetylornithine. In contrast, glutamine_degradant, 2-hydroxy-4-(methylthio) butanoic 338 

acid, X-18887, gamma-tocopherol/beta-tocopherol, and X-23276 showed a positive 339 

association. As compared to UPF, both unprocessed or minimally processed foods and 340 

processed foods tend to demonstrate opposite associations with 93 metabolites 341 

comprising the metabolic signature of UPF (Fig. 2).  342 

The higher intake of UPF was related to unfavorable lipid and lipoprotein profiles, 343 

indicated by lower levels of large HDL, HDL, and large IDL, but higher levels of large 344 

VLDL, small LDL, and TG (Supplementary Fig. 7). The four groups of food showed 345 
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distinct lipid and lipoprotein patterns, with unprocessed or minimally processed foods 346 

showing a reverse pattern compared to UPF.  347 

4. Discussion 348 

In this large population-based prospective cohort, we found nonlinear positive 349 

associations of UPF intake with all-cause and CVD mortality; sex modified these 350 

associations. High intake of UPF was positively associated with premature mortality 351 

and respiratory disease mortality whereas no association was found for cancer mortality. 352 

Specific UPF subgroups showed heterogeneous associations with all-cause, premature 353 

and CVD mortality. The metabolic signature of UPF was positively associated with all-354 

cause mortality risk. Higher UPF intake was related to unfavorable lipid and lipoprotein 355 

profiles.  356 

4.1 UPF intake and mortality risk 357 

Our observed positive association with all-cause mortality was supported by a 358 

recent meta-analysis[40] and four subsequent cohort studies[17-19, 21]. However, a 359 

large US cohort[23] reported a null association. Of note, this cohort mainly included 360 

low-income American adults with a mean BMI of 30.4 kg/m2, and 24.4% of them had 361 

prevalent diabetes; apparent differences in baseline characteristics compared to other 362 

studies may interpret this inconsistency. Five previous studies evaluated the dose-363 

response relationship between UPF intake and death risk from all causes or CVD [10, 364 

14, 15, 17, 20]. Of those, four studies[10, 15, 17, 20] did not find a significant nonlinear 365 

association, whereas a large US cohort (n= 91891)[14] exhibited a J-shaped association 366 
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between UPF intake and CVD mortality. The reported associations between UPF and 367 

CVD death are less consistent. Four studies[14, 18, 20, 22] showed a significant 368 

positive association, while three[10, 11, 17] did not reach statistical significance likely 369 

due to their small number of CVD deaths (n=71-649 cases).  370 

We found that positive associations with all-cause and CVD mortality appeared to 371 

be stronger in females. Five previous studies[10, 14, 18, 20, 22] performed stratified 372 

analysis by sex, with four reporting null interaction, while one, which had the largest 373 

number of mortality events, reported a more pronounced association with CVD 374 

mortality in females as in our study[14]. This finding is reasonable, given the reported 375 

stronger associations of processed meat and beverages with all-cause and CVD 376 

mortality in females compared to males[41, 42].  377 

Our observed null association of UPF intake with cancer mortality was consistent 378 

with five cohorts from Spain[10], Italy[20], and the US[16, 21, 23] but not with one 379 

from the UK biobank cohort[43] which found a 6% increase of cancer death risk for 380 

every 10% increment in UPF intake. This inconsistency may not be explained by 381 

statistical power, as the number of cancer deaths in our study (3938) and US cohorts 382 

(4267 and 13557) [21, 23] is similar to or larger than that in the UK biobank (4009) 383 

[43]. Nor can it be attributed to the amount of UPF intake since the mean proportion of 384 

UPF in total food in this UK biobank cohort (22.9%) falls within the range of previous 385 

studies (ranging from 10.8% to 41.0%). Our observation of a positive association 386 

between UPF intake and respiratory disease mortality is supported by two studies based 387 
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on US cohorts [16, 21]. This study is the first to examine the association between UPF 388 

intake and premature mortality.  389 

Our results on UPF subgroups were largely consistent with previous studies [14, 390 

21]. Our observed increased death risk related to high UPF intake largely contributed 391 

by subgroups of beverages and ultra-processed meat products considering their large 392 

proportion (36.9%) in total UPF. Sugar-sweetened beverages and processed meat have 393 

been shown to be associated with a higher risk of all-cause mortality[44, 45]. Inverse 394 

association of sugary products intake with CVD mortality was also supported by these 395 

two large US cohorts[14, 21]. There is limited epidemiological evidence regarding 396 

sugary products, and further study is required to confirm these findings. Besides, this 397 

result should be interpreted with caution considering UPF collected in our baseline may 398 

not be entirely equivalent to the current UPF as varieties and compositions of UPF have 399 

undergone significant changes over the past decades[2]. 400 

UPFs are often high in sodium, fat, added sugar, and energy, but low in fiber, 401 

vitamins, and micronutrients, which explains our findings. In addition, some commonly 402 

used food additives (e.g., emulsifiers and artificial sweeteners ) in UPF [8, 46], newly 403 

generated compounds during UPF manufacturing (e.g., acrylamide) [7, 47], and 404 

contaminants migrated from food packaging (e.g., bisphenol A) [48] may also 405 

contribute to the adverse health effects of UPFs. 406 

Notably, when UPF intake was below the median, higher UPF intake showed no 407 

association (in females) or an inverse association (in males) with all-cause mortality. 408 
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This may be due to poor health leading to less UPF intake or survival benefits from 409 

moderate sugary products consumption. Additionally, less robust association in 410 

sensitive analyses suggest that reverse causality, residual confounding, or measurement 411 

error might also explain this finding. 412 

4.2 Plasma metabolites, lipid and lipoproteins, and mortality risk 413 

Our analysis of plasma biomarkers provided some novel insights in understanding 414 

UPF-mortality association. The identified signatures tend to mirror the relationship 415 

between dietary intake and mortality risk, despite the analysis of metabolic signatures 416 

being based on the small subset of the MDC. Ergothioneine, a diet-derived amino acid 417 

that has strong antioxidant and cytoprotective properties, is found in higher 418 

concentrations in specific foods like specialty mushrooms, liver, kidney, beans, and oat 419 

bran, rather than in most commonly consumed foods[49]. N2,N5-Diacetylornithine and 420 

N-delta-acetylornithine, both amino acids involved in the urea cycle and arginine and 421 

proline metabolism, have been positively associated with the consumption of legumes 422 

and papaya[29, 50]. N2,N5-Diacetylornithine is also recognized as a plasma biomarker 423 

reflecting gut microbiome diversity[51]. Methyl glucopyranoside (alpha + beta) was 424 

previously correlated with apple intake and carotene diol (2) was correlated with 425 

cruciferous vegetable intake[50]. Overall, these metabolites showed negative 426 

associations with UPF intake but positive associations with the intake of plant foods. 427 

Some of these metabolites have shown potential health benefits[49], indicating that the 428 
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observed mortality risk with higher UPF consumption may be partly due to the 429 

accompanied lower intake of some plant foods. 430 

Our results confirmed previous findings of a positive association between UPF 431 

and vitamin E (gamma-tocopherol)[52]. This association is possibly due to tocopherols 432 

often being used as an additive to prevent the peroxidation of fats and lipids in foods[53]. 433 

PFOS, a compound widely found in commonly consumed foods, was correlated with 434 

UPF and PCI but negatively with unprocessed or minimally processed foods; this could 435 

be explained by the migration of PFOS from food packaging[54]. Some other top 436 

metabolites in the signature, such as glutamine degradant and 2-hydroxy-4-(methylthio) 437 

butanoic acid, were rarely linked to foods or health outcomes in previous studies. The 438 

only study concerning the metabolic profile of UPF covers 232 candidate metabolites 439 

that have minimal overlap with our metabolite panel and was conducted among 440 

children[30]. Therefore, most associations of metabolites with UPF and the other three 441 

groups of food were first identified in our study, and further replications were warranted. 442 

In MDC-CC, our results, covering more lipids and lipoproteins than most previous 443 

studies, supported the previous findings of unfavorable lipid and lipoprotein profiles 444 

related to higher intake of UPF[30, 55, 56]; this suggests that lipid metabolism may 445 

constitute one of the potential mechanisms underlying the detrimental effects of UPF. 446 

In addition, we observed an inverse association between the processed foods 447 

signature and mortality risk; this is plausible as a similar association between intake of 448 

processed foods and mortality risk was found in our study (data not shown). Some 449 
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major food items in processed foods, such as cheese, high-fiber bread, cereals, and 450 

crispbread, may contribute to this association. Some metabolites that showed a positive 451 

association with processed foods have been linked to food intake in previous studies. 452 

The aforementioned ergothioneine and N-delta-acetylornithine showed opposite 453 

associations with UPF and processed foods. Ectoine has been found in cheese and is 454 

associated with the fermentation process, while 2-aminophenol sulfate has been linked 455 

to the intake of wholegrain foods[50, 57]. Taken together, biomarkers seem to capture 456 

the information on the intake of several food items in processed foods. 457 

4.3 Strengths and limitations 458 

To our knowledge, this population-based cohort study is the first to integrate a 459 

large panel of metabolites (n=991), lipids, and lipoprotein subfractions in assessing the 460 

association between UPF intake and mortality risk. Several key strengths of this study 461 

include its prospective design, large sample size (27670 participants with 11333 deaths), 462 

long follow-up time (a median of 23.3 years), a low rate of loss to follow-up (0.8%), 463 

and the use of validated food assessing method combining FFQ and food diary. 464 

Several limitations of this study should be noted. First, residual confounding may 465 

still exist although a wide range of potential confounders were adjusted. Second, 466 

misclassification of UPF is possible since our FFQ and food diary were not specifically 467 

developed for assessing UPF intake. Third, the dietary assessment was conducted only 468 

once at baseline, which may not represent the long-term UPF intake. Nevertheless, in 469 

the five-year follow-up survey, only 16.8% (3740 out of 22262) of the participants 470 
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reported substantially altering their diet. Most of these changes were towards a healthier 471 

way, including more intake of vegetables (73.9%) and fruits (64.7%), and less meat 472 

(43.3%). The common reasons for the change were overweight (32.2%) and 473 

hypertension (19.3%). As a result, such a direction of change may lead to an 474 

underestimation of our findings. Fourth, our analyses concerning biomarkers were 475 

cross-sectional and not validated in external cohorts, so future replications are necessary. 476 

Finally, this cohort only recruited participants living in Sweden, which limits the 477 

generalizability of these findings to other populations. 478 

4.4 Conclusions 479 

Our findings suggest that UPF intake was positively associated with all-cause, 480 

premature, CVD, and respiratory disease mortality, but not with cancer mortality. The 481 

risk increase of all-cause and CVD mortality was more apparent in females. Findings 482 

from UPF subgroups suggested that special attention should be given to ultra-processed 483 

meats and beverages when considering restrictions on UPF intake. Our identified 484 

metabolic signature mirrored the association between UPF consumption and mortality 485 

risk. The identified metabolites provided insights into understanding UPF-related 486 

metabolic variations and underlying mechanisms linking UPF intake and mortality risk. 487 

Future validations of these findings are warranted. 488 
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