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Climate change is exacerbating wildfire conditions, but evidence is lacking
for global trends in extreme fire activity itself. Here we identify energetically
extreme wildfire events by calculating daily clusters of summed fire

radiative power using 21 years of satellite data, revealing that the frequency
of extreme events (=99.99th percentile) increased by 2.2-fold from 2003

t0 2023, with the last 7 years including the 6 most extreme. Although the
total areaburned on Earth may be declining, our study highlights that fire
behaviour is worsening in several regions—particularly the boreal and
temperate conifer biomes—with substantial implications for carbon storage
and human exposure to wildfire disasters.

Extreme wildfires are sporadic features of fire-prone landscapes
globally’, and they carry major ecological, economic and social con-
sequences. Australia’s ‘Black Summer Bushfires’ of 2019 and 2020, for
example, were unprecedented intheir scale and intensity (measured as
radiative power)>. These energetically extreme fires released extraordi-
nary quantities of carbon emissions and smoke**, killed an estimated
~2.8 billion vertebrates® and burned the entire geographic ranges of
116 plant species®. The 2015 wildfires in Indonesia likewise had major
socialand economic effects: densely populated cities of southeast Asia
were blanketed with smog, leading to an estimated 100,000 additional
deaths from smoke-related respiratory problems’ and causing an esti-
mated US$16 billion in direct and indirect economic losses®.

Most fires on Earth are small’, ignited by humans'®, and not remark-
ably damaging. Indeed, fire plays a crucial role in the health of most
fire-adapted ecosystems". It has been widely reported that the area
burnedglobally has decreased this century™ ™, but this trend is mostly
drivenby declinesinlow-intensity firesin African grasslands and savan-
nas™’°. Globally, average fire intensity has also been decreasing this
century (with some regionalincreases)”, but burn severity, an ecologi-
calmeasure of afire’simmediate effects (for example, biomassloss and
mortality), isincreasing in more regions thanit is decreasing'.

Incontrast to the majority of fires, energetically extreme wildfires
are associated with extreme ecological, social and economic conse-
quences', including emitting vast quantities of smoke and greenhouse
gases that threaten to further accelerate warming®*. Despite their
importance, there remains no systematic evidence of temporal trends
in extreme wildfires. In a study of energetically extreme wildfires’, no
temporal trend was revealed, potentially because of the relatively short
satelliterecord usedinthe study (12 years, 2002-2013). Likewise, global

trends have not yet been observed for pyrocumulonimbus events
(storms triggered by extremely intense wildfires)". A lack of trends is
unexpected because warming temperatures and increasing vapour
pressure deficit are drying fuels and worsening fire weather across
most of the Earth'®**, Climate change has already caused fire weather
to depart from its historical variability across ~20% of burnable land
areaglobally**, and recent extremely destructive wildfire seasons have
occurred in the Amazon?®, Australia®, Canada®, Chile”, Portugal®,
Indonesia®, Siberia and the western United States'”. While the notion
of increasingly dangerous wildfires pervades the media, such trends
have not been systematically shown®°.

Here we use 21 years of satellite observations of the radiative power
released by wildfires to evaluate whether energetically extreme wildfire
eventsareincreasinginfrequency and/or magnitude. We use a similar
approachtoref.1by calculating the daily summed fire radiative power
(FRP; megawatts) of clusters of active fire hotspots observed by the
Moderate Resolution Imaging Spectroradiometer (MODIS) and Aqua
satellites™. To do this, we summed the FRP (XFRP) of hotspotsina 0.2°
equal-arealattice across the Earth for each of the 7,639 days between
1January 2003 and 30 November 2023. As distinct from analysing the
FRP of individual hotspots, which measure the intensity of a fire at a
single time and location, our daily XFRP approach characterizes the
integrated radiant energy released by broader fire ‘events’ that may
burn concurrently at multiple nearby locations and at multiple time
points during the day, thus distinguishing energetically extreme fires
from energetically extreme hotspots. This process reduced 88.4 mil-
lion satellite observations to 30.7 million daily ZFRP events. We then
evaluated temporal trends and biogeographic associationsin the most
extreme of these events, defined here as those exceeding the 99.99th
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Fig.1|Distribution and trends of the most extreme wildfires on Earth.

The FRP sum (XFRP) was calculated by summing the FRP of MODIS hotspots on
a0.2° equal-area lattice for each day from 2003 t0 2023. a, The points show the
locations of the most extreme XFRP events, defined as those >99.99th percentile,
totalling 2,913 events, overlaid on biogeographical realms**. See Extended Data
Fig.1for annual distribution maps. b, Extreme wildfire events more than doubled
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infrequency over the 21 year period, including during both day and night. ¢, The
20 most extreme eventsin each year show a sustained increase in the average
intensity (MW, megawatts) of extreme wildfires. The lines in b and ¢ show the fit
(+x95% confidence interval (Cl)) of a generalized additive model. Note: values for
2023 donotinclude December because those data were not available at the time
of analysis.

percentile of daily XFRP. This process identified 2,913 extreme events
(of which13% were associated with fires burningin the same cell within
the subsequent 7 days).

The frequency of extreme wildfire events increased by a
model-estimated 2.2-fold over the 21-year study period (Fig. 1b;
Ppyeary = 0.00003, estimated degrees of freedom (edf) = 2, x* statistic
=18.4). Extreme events occurred on all continents except Antarc-
tica (Fig. 1a and Extended Data Fig. 1). The six most extreme years
with respect to the frequency of major events occurred from 2017
onwards (Fig. 1b). This increasing trend was apparent for XFRP cal-
culated using day and night hotspots separately (Fig. 1b), but there
was stronger statistical evidence of an increasing trend at night-time
(Pryeary = 0.00006, edf = 1.84, x* =16.65) than at daytime (Pp,c,,, = 0.003,
edf=1.68, x*=8.98). The stronger increasing trend at night is in line
with the observation that temperatures are warming faster at night
thanduring the day*’, and such warming is consequently reducing the
night-time barrier to wildfire®.

In addition to the increasing frequency of extreme wildfire
events, the magnitude of extreme wildfire events has also increased
significantly. For the 20 most extreme events in each year, the aver-
age XFRP has similarly increased by 2.3-fold over the study, and this
increase appears to be accelerating (Fig. 1¢; Pyye, = 0.00003, edf =1.96,
F statistic = 3.88). Like the frequency of extreme events, the 6 most
extreme years with respect to magnitude occurred within the last
7 years (Fig. 1c).

Relative to the area occupied by the Earth’s biogeographicrealms
and biomes, extreme events were disproportionately concentrated
in the Nearctic and Australasia/Oceania realms (ratios > 1; Fig. 2a)**

andinthe temperate conifer forest, Mediterranean forest/woodland,
and boreal forest biomes (Fig. 2b). Biome-specific generalized linear
models revealed that the global increase in extreme events was almost
entirely driven by strong increases in the temperate conifer forest
biome (P,.,, = 0.00002, z statistic = 4.28) and the boreal forests and
taigabiome (Fig. 2¢; Py, = 0.000003, z = 4.64). In the temperate coni-
fer forest biome, the annual number of extreme events estimated by
ageneralized linear modelincreased by 11.1-fold, from 6 in 2003 to 67
in 2023 (Fig. 2c). Similarly, extreme events in the boreal forest biome
increased by 7.3-fold, from a model-estimated 14.9 to 108.7, over the
21years of the study (Fig. 2¢). No significant trends were apparent in
other biomes (Fig. 2c). The increasing trends in the boreal forest and
temperate conifer forest biomes arein line with documented increases
inmean FRP in those regions®.

The frequency of extreme events has increased exponentially
in the temperate conifer forests of the American West and the boreal
forest of North Americaand Russia (Fig. 2c). Recent extreme fire years
inthe western United States have been characterized by extremely low
fuel moisture over very broad areas™. Such increasing fuel aridity has
beenlinked to an exponential increase in burned areabecause aridity
promotes fire growth, and the potential for rapid growth increases
as fires get larger®. Increasing fuel aridity caused by anthropogenic
climate change has driven more than half of the increase in the extent
of forest firein the western United States between 1979 and 2015%, and
simulations suggest that fuel limitations from fire-fuel feedbacks are
unlikely to significantly quell the trajectory”. Similar trends between
anomalous area burnt and fuel dryness have also been observed in
southeast Australia®”.
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Fig. 2| Patterns in extreme wildfire events among biogeographical realms
and biomes. a,b, Ratio of extreme events to the area of the biogeographical
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of extreme events occurring inarealm or biome by the proportional area
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rate of extreme events (coloured orange). Nindicates the number of extreme
events. Biogeographical realms are shown in Fig. 1a, and biomes are shown in
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Supplementary Fig. 2, as delineated by ref. 34. ¢, Trends in the frequency of
events among biomes with the most extreme events. The lines denote the fit
(+95% CI) of generalized linear models, with annotations showing the model
formula, Pvalue for ‘year’ and deviance explained (‘d.e.’). These regressions
indicate that the overall increase in extreme events is strongly driven by increases
inthe temperate conifer and boreal forest biomes. Note: a different y-axis is used
for the boreal forest and taiga biome.

Despite the importance of extreme wildfire events, research has
notyet, to our knowledge, revealed global trends in frequency or mag-
nitude'. This is probably due in part to the relatively short period
over which satellites have observed FRP. Short time series (9 years,
2013-2021) have similarlyimpeded the discovery of trends in extreme
fire-induced pyrocumulonimbus storms”, but a lack of evidence due
to data deficiencies does not imply an absence of trends.

The previous lack of documented trends in extreme wildfires also
probably stems from the dominant focus of the literature on burned
area. Many studies, for example, report that the global burned area
has decreased this century (for example, refs. 12-16), leading policy
commentators to question the reality of worsening wildfire disasters
(forexample, ref. 38). Yet, as most fires are humanignited and have rela-
tively smallimpacts, afocus on average intensities and global burned
area means that such analyses are swamped by relatively low-impact
fires, including fire used for habitat management, pastoralism, agricul-
tureandsilviculture®*°. Afocus on global averages disproportionately
weights Africa (67% of burned area) and conceals opposing trends in
different regions'®. Importantly, afocus on average intensities obscures
the extreme events—those that cause the most damage and release the
most emissions. By characterizing the daily integrated radiant energy
released by fires, we contend that the ZFRP approach used here pro-
vides avital measure of the way in which fire behaviour is responding
to climate change.

Our results show that events of extreme intensity have more than
doubled in frequency and magnitude, with increases largely concen-
trated inthe carbon-rich* boreal and temperate conifer forests of the

northern hemisphere. There were also several foci of extreme events
in the southern hemisphere (southern Africa, Australia and South
America). Thelast 7 years included the six most extreme years for ener-
getically extreme wildfires. The most recent year (2023) had both the
hottest global temperature on record**and the most extreme wildfire
intensities (Fig. 1c) since MODIS sensors began observing wildfires.
The increasing frequency and magnitude of extreme wildfire events
isin step with global heating, highlighting the urgency with which we
must adapt to a climate that is more conducive to extreme wildfires.

Methods

Identifying energetically extreme wildfire events

The MODIS sensors on NASA’s Terra and Aqua satellites identify active
wildfires based on thermal anomalies. The MCD14ML product* pro-
vides pointlocations of wildfire ‘hotspots’ataresolution of 1 km. These
locations represent the centre of a1km pixel that was identified by
the fire and thermal anomaly algorithm as containing at least one fire
somewhere within the pixel, thus detecting fires substantially smaller
than a pixel**. We excluded locations labelled as probably resulting
from non-fire sources, such as volcanoes, other static sources or off-
shore (for example, industrial). For additional robustness, we further
filtered out ‘low confidence’ fires (that is, confidence <30 (ref. 45)).
Eachfire observationisaccompanied by ameasure of FRP, measuring
the instantaneous fire energy (megawatts) emitted by a fire, which is
known to scale to smoke plume size*® and has been widely used as a
proxy of fire intensity'. The Terra satellite provides daily equatorial
overpasses at approximately 10:30 a.m. and 10:30 p.m., and the Aqua
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satelliteat1:30 a.m. and 1:30 p.m., allowing separate investigations of
trends in daytime and night-time fires.

Polar-orbiting satellites are biased at high latitudes because there
issome overlap in the swaths of adjacent satellite overpasses*, leading
to the possibility that the same pixel is double counted in subsequent
orbits. We corrected this problem by identifying and omitting likely
duplicate hotspots, similar to the approach of a previous study*®. For
the Terraand Aquasatellites, there should each be a maximum of one
hotspot foreach day and each nightin each pixel. Thus, to identify likely
duplicates, we identified pixels with multiple observations in a given
day or night at aresolution of 500 m. Such cases with multiple hotspots
indicate a likely duplicate, in which cases we retained one hotspot at
random, leaving acombined maximum of four hotspots per 24 h period
ineachlocation. Of atotal dataset of 88.4 million hotspots, this cleaning
process removed 176,181 (0.19%) likely duplicates.

The Terra satellite began collecting data in February 2000** but
suffered from hardware problems before November 2000%. The Aqua
satellite was launched later and began collecting data in June 2002*.
We chose to analyse the fullcombined Terraand Aqua datasets to pro-
vide the fullest characterization of fires over the course of aday. Thus,
because of the lower sampling effort before 2003, we based our primary
analysis on the years 2003-2023. However, see Supplementary Fig. 1
for acomparison of the trends shown by Terra (2001-2023) and Aqua
(2003-2023), revealing similar trends in both satellites.

To identify energetically extreme wildfire events, we calculated
the daily energy released by wildfires using an equal-area, equal-shape
global lattice with a 0.2° resolution, equating to cell sizes of approxi-
mately 22 x 22 km (-495 km?). We selected this scale as an ecologically
reasonable but computationally tractable scale for analysing large vol-
umes of daily satellite data at aglobal scale. For each cell, we summed
the FRP (ZFRP) of hotspots for each of the 7,639 days between 1January
2003 and 30 November 2023. At the time of writing, scientific-quality
observations were not yet available for December 2023, thus providing
apartial and conservative record of the number of extreme events in
2023. This process yielded 30.7 million daily ZFRP ‘events’ from 88.4
million hotspot observations. Becauseit hasbeen reported that global
warmingis leading towarmer and drier air at night, in turn weakening
thenight-time barrier to fire**, we repeated the XFRP aggregation pro-
cess for daytime and night-time fires separately to investigate whether
trends differed during day and night.

After calculating the XFRP events, we then selected the most
energetically extreme events for subsequent analysis, defined here
as events with ZFRP > 99.99th percentile (V =2,913 events). Although
this threshold itself is arbitrary, it unambiguously captures fires of
extreme integrated radiant power output, does soin asystematic and
unbiased fashion, and yields a reasonable sample size for subsequent
analyses. All analyses were conducted using R version 4.3.0 (ref. 49).

Temporal and biogeographic trends in extreme wildfires

To characterize the biogeographic patterns in extreme events, we
calculated the area-normalized ratio of extreme events among the bio-
geographical realms and biomes of the Earth. Biogeographical realms
and biomes are described in ref. 34. To calculate the ratio, we divided
the proportion of extreme events occurring in each realm and biome
by the proportion of the Earth’s land area occupied by those regions
(excluding Antarctica). If extreme events occurred randomly, we would
expect ratios of approximately one; values substantially larger than one
indicate extreme events are disproportionately common, and values
less than one indicate extreme events are disproportionately rare.

To evaluate temporal trends in the frequency and magnitude of
extreme events, we fit separate statistical models that investigate (1)
the frequency of extreme events globally, (2) the frequency of extreme
eventsamongbiomes and (3) the magnitude of extreme events globally.
In all models, we interpreted Pvalues as continuous rather than cate-
goricalmeasures of the strength of evidence, as previously advocated*’.

First, we fit a generalized additive model (GAM) of the annual
count of extreme events in response to a smooth (that is, nonlinear)
effect of year (continuous variable; 2003-2023)*'. GAMs allow fitting of
nonlinear effectsif supported by the data. We fit the model using auto-
matic termselection (‘select=TRUE’) available in the ‘mgcv’ package™,
whichimposes an additional penalty on smooth terms such that they
are penalized out of the model if there is little evidence for an effect.
We fit the model using the negative binomial distribution to account
for overdispersion®’. We followed the same process to model the trend
for day LFRP and night XFRP separately.

Second, we fit separate generalized linear models for each of
the six biomes with the largest number of events (providing a rea-
sonable sample to interrogate for trends). We fit these models with
the annual count of extreme events modelled in response to a fixed
effect of year, using the negative binomial distribution to account for
overdispersion®.

Third, toinvestigate trends in the magnitude of the most extreme
events, we selected the 20 most extreme events from each year, from
which we calculated the annual average of extreme XFRP. We then
modelled the annual average of extreme XFRP in response to a non-
linear effect of ‘year’ using a GAM with Gaussian distribution. Gen-
eralized linear models and GAMs were fit using the ‘mgcv’ package
(version1.8-42)%.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

MODIS active fire records used in the analysis were downloaded
from the University of Maryland ftp server (sftp://fuoco.geog.
umd.edu) and are available via figshare at https://doi.org/10.6084/
mo9.figshare.25132151 (ref. 53). Biomes of the world were downloaded
from https://ecoregions.appspot.com/.

Code availability
Codefortheanalysisisavailable viafigshare at https://doi.org/10.6084/
m9.figshare.25687113 (ref. 54).
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Extended Data Fig. 1| Global distribution of extreme wildfire events in each year from 2003 to 2023. Points show the locations of energetically extreme events in
eachyear (>99.99th percentile).
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Data collection  No specialized software were used by the authors for data collection.

Data analysis Code for the analysis is available at http://doi.org/10.6084/m9.figshare.25687113.

To identify energetically extreme wildfire events, we calculated the daily energy released by wildfires using an equal area, equal shape global
lattice with a 0.2° resolution, equating to cell sizes of approximately 22 x 22 km (~495km2). For each cell, we summed the FRP (2FRP) of
hotspots for each of the 7,639 days between 1 Jan 2003 and 30 Nov 2023. This process yielded 30.7-million daily 3FRP “events” from 88.4-
million satellite observations.

After calculating SFRP events, we then selected the most energetically extreme events for subsequent analysis, defined here as events with
JFRP > 99.99th percentile (N = 2,913 events).

To evaluate temporal trends in the frequency and magnitude of extreme events, we fitted separate statistical models that investigate (i) the
frequency of extreme events globally, (ii) the frequency of extreme events among biomes, and (iii) the magnitude of extreme events globally.
In all models, we interpreted p-values as continuous rather than categorical measures of the strength of evidence.

First, we fitted a generalised additive model (GAM) of the annual count of extreme events in response to a smooth (i.e., non-linear) effect of
year (continuous variable; 2003-2023). GAMs allow fitting of non-linear effects if supported by the data. We fitted the model using automatic
term selection (“select = TRUE”) available in the “mgcv” package, which imposes an additional penalty on smooth terms such that they are
penalised out of the model if there is little evidence for an effect. We fitted the model using the negative binomial distribution to account for
overdispersion. We followed the same process to model the trend for day $FRP and night ZFRP separately.
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Second, we fitted separate generalised linear models (GLM) for each of the 6 biomes with the largest number of events (providing a
reasonable sample to interrogate for trends). We fitted these models with the annual count of extreme events modelled in response to a
fixed effect of year, using the negative binomial distribution to account for overdispersion.

Third, to investigate trends in the magnitude of the most extreme events, we selected the 20 most extreme events from each year, from
which we calculated the annual average of extreme 3FRP. We then modelled the annual average of extreme IFRP in response to a non-linear
effect of “year” using a GAM with Gaussian distribution.

All analyses were conducted using R version 4.3.0. GAMs and GLMs were fit using the “mgcv” package (version 1.8-42).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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MODIS active fire records used in the analysis were downloaded from the University of Maryland ftp server (sftp://fuoco.geog.umd.edu) and archived at https://
figshare.com/s/1de93c198fa2e15150da. Biomes of the world were downloaded from https://ecoregions.appspot.com/
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
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Reporting on sex and gender N/A
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other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description The study analysed the intensity of the most extreme wildfires on Earth over 21 years.

Research sample We analysed a global, systematic sample of active wildfires observed by NASA's MODIS satellites. Our primary analysis used data
from the Terra and Aqua satellites between Jan 2003 and Nov 2023.

Sampling strategy We used all data available from the MODIS Terra and Aqua satellites between Jan 2003 and Nov 2023 (but see "Data exclusions").

Data collection The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on NASA’s Terra and Aqua satellites identify active wildfires
based on thermal anomalies. The MCD14ML product provides point locations of predicted wildfires at a resolution of 1 km. These
locations represent the centre of a 1 km pixel that was identified by the fire and thermal anomalies algorithm as containing at least
one fire somewhere within the pixel, thus detecting fires significantly smaller than a pixel. Each fire observation is accompanied by a
measure of fire radiative power (FRP), measuring the radiative energy (megawatts) emitted by a fire.
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Timing and spatial scale  Each of the MODIS satellites (Aqua and Terra) pass overhead approximately twice per day. We analysed the full dataset from the
Terra satellite from the start of Jan 2003 to the end of Oct 2023.

Data exclusions In the main analysis, we did not analyse data prior to the year 2003 because the 2003 was the first year both the Terra and Aqua
satellites were both operational for full years.

We excluded locations labelled as likely resulting from non-fire sources, such as volcanoes, other static sources, or offshore (e.g.,
industrial). For additional robustness, we further filtered out “low confidence” fires (i.e., confidence < 30).

We also excluded hotspots that were likely duplicated as a result of overlapping swaths of successive satellite overpasses. Polar
orbiting satellites are biased at high latitudes because there is some overlap in the swaths of adjacent satellite overpasses, leading to
the possibility that the same pixel is double counted in subsequent orbits. We attempted to correct this problem by identifying and
omitting likely duplicate hotspots. For the Terra and Aqua satellites, there should each be a maximum of one hotspot for each day
and each night in each pixel. Thus, to identify likely duplicates, we identified pixels with multiple observations in a given day or night
at a resolution of 500 m. Such cases with multiple hotspots indicate a likely duplicate, in which cases we retained one hotspot at
random, leaving a combined maximum of four hotspots per 24-h period in each location. Of a total dataset of 88.4 million hotspots,
this cleaning process removed 176,181 (0.19%) likely duplicates.

Reproducibility The analysis is fully reproducible. Data are from a standardized, permanent, public source. The computer code and data used for
analysis have been archived at a permanent repository.

Randomization N/A

Blinding N/A

Did the study involve field work? |:| Yes No
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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