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Increasing frequency and intensity of the 
most extreme wildfires on Earth

Calum X. Cunningham     , Grant J. Williamson     & David M. J. S. Bowman    

Climate change is exacerbating wildfire conditions, but evidence is lacking 
for global trends in extreme fire activity itself. Here we identify energetically 
extreme wildfire events by calculating daily clusters of summed fire 
radiative power using 21 years of satellite data, revealing that the frequency 
of extreme events (≥99.99th percentile) increased by 2.2-fold from 2003 
to 2023, with the last 7 years including the 6 most extreme. Although the 
total area burned on Earth may be declining, our study highlights that fire 
behaviour is worsening in several regions—particularly the boreal and 
temperate conifer biomes—with substantial implications for carbon storage 
and human exposure to wildfire disasters.

Extreme wildfires are sporadic features of fire-prone landscapes 
globally1, and they carry major ecological, economic and social con-
sequences. Australia’s ‘Black Summer Bushfires’ of 2019 and 2020, for 
example, were unprecedented in their scale and intensity (measured as 
radiative power)2. These energetically extreme fires released extraordi-
nary quantities of carbon emissions and smoke3,4, killed an estimated 
~2.8 billion vertebrates5 and burned the entire geographic ranges of 
116 plant species6. The 2015 wildfires in Indonesia likewise had major 
social and economic effects: densely populated cities of southeast Asia 
were blanketed with smog, leading to an estimated 100,000 additional 
deaths from smoke-related respiratory problems7 and causing an esti-
mated US$16 billion in direct and indirect economic losses8.

Most fires on Earth are small9, ignited by humans10, and not remark-
ably damaging. Indeed, fire plays a crucial role in the health of most 
fire-adapted ecosystems11. It has been widely reported that the area 
burned globally has decreased this century12–16, but this trend is mostly 
driven by declines in low-intensity fires in African grasslands and savan-
nas13,16. Globally, average fire intensity has also been decreasing this 
century (with some regional increases)15, but burn severity, an ecologi-
cal measure of a fire’s immediate effects (for example, biomass loss and 
mortality), is increasing in more regions than it is decreasing14.

In contrast to the majority of fires, energetically extreme wildfires 
are associated with extreme ecological, social and economic conse-
quences1, including emitting vast quantities of smoke and greenhouse 
gases that threaten to further accelerate warming3,4. Despite their 
importance, there remains no systematic evidence of temporal trends 
in extreme wildfires. In a study of energetically extreme wildfires1, no 
temporal trend was revealed, potentially because of the relatively short 
satellite record used in the study (12 years, 2002–2013). Likewise, global 

trends have not yet been observed for pyrocumulonimbus events 
(storms triggered by extremely intense wildfires)17. A lack of trends is 
unexpected because warming temperatures and increasing vapour 
pressure deficit are drying fuels and worsening fire weather across 
most of the Earth18–23. Climate change has already caused fire weather 
to depart from its historical variability across ~20% of burnable land 
area globally24, and recent extremely destructive wildfire seasons have 
occurred in the Amazon25, Australia2, Canada26, Chile27, Portugal28, 
Indonesia8, Siberia and the western United States19,29. While the notion 
of increasingly dangerous wildfires pervades the media, such trends 
have not been systematically shown30.

Here we use 21 years of satellite observations of the radiative power 
released by wildfires to evaluate whether energetically extreme wildfire 
events are increasing in frequency and/or magnitude. We use a similar 
approach to ref. 1 by calculating the daily summed fire radiative power 
(FRP; megawatts) of clusters of active fire hotspots observed by the 
Moderate Resolution Imaging Spectroradiometer (MODIS) and Aqua 
satellites31. To do this, we summed the FRP (ΣFRP) of hotspots in a 0.2° 
equal-area lattice across the Earth for each of the 7,639 days between 
1 January 2003 and 30 November 2023. As distinct from analysing the 
FRP of individual hotspots, which measure the intensity of a fire at a 
single time and location, our daily ΣFRP approach characterizes the 
integrated radiant energy released by broader fire ‘events’ that may 
burn concurrently at multiple nearby locations and at multiple time 
points during the day, thus distinguishing energetically extreme fires 
from energetically extreme hotspots. This process reduced 88.4 mil-
lion satellite observations to 30.7 million daily ΣFRP events. We then 
evaluated temporal trends and biogeographic associations in the most 
extreme of these events, defined here as those exceeding the 99.99th 
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and in the temperate conifer forest, Mediterranean forest/woodland, 
and boreal forest biomes (Fig. 2b). Biome-specific generalized linear 
models revealed that the global increase in extreme events was almost 
entirely driven by strong increases in the temperate conifer forest 
biome (Pyear = 0.00002, z statistic = 4.28) and the boreal forests and 
taiga biome (Fig. 2c; Pyear = 0.000003, z = 4.64). In the temperate coni-
fer forest biome, the annual number of extreme events estimated by 
a generalized linear model increased by 11.1-fold, from 6 in 2003 to 67 
in 2023 (Fig. 2c). Similarly, extreme events in the boreal forest biome 
increased by 7.3-fold, from a model-estimated 14.9 to 108.7, over the 
21 years of the study (Fig. 2c). No significant trends were apparent in 
other biomes (Fig. 2c). The increasing trends in the boreal forest and 
temperate conifer forest biomes are in line with documented increases 
in mean FRP in those regions15.

The frequency of extreme events has increased exponentially 
in the temperate conifer forests of the American West and the boreal 
forest of North America and Russia (Fig. 2c). Recent extreme fire years 
in the western United States have been characterized by extremely low 
fuel moisture over very broad areas35. Such increasing fuel aridity has 
been linked to an exponential increase in burned area because aridity 
promotes fire growth, and the potential for rapid growth increases 
as fires get larger36. Increasing fuel aridity caused by anthropogenic 
climate change has driven more than half of the increase in the extent 
of forest fire in the western United States between 1979 and 201523, and 
simulations suggest that fuel limitations from fire-fuel feedbacks are 
unlikely to significantly quell the trajectory37. Similar trends between 
anomalous area burnt and fuel dryness have also been observed in 
southeast Australia2,19.

percentile of daily ΣFRP. This process identified 2,913 extreme events 
(of which 13% were associated with fires burning in the same cell within 
the subsequent 7 days).

The frequency of extreme wildfire events increased by a 
model-estimated 2.2-fold over the 21-year study period (Fig. 1b; 
Pf(year) = 0.00003, estimated degrees of freedom (edf) = 2, χ2 statistic 
= 18.4). Extreme events occurred on all continents except Antarc-
tica (Fig. 1a and Extended Data Fig. 1). The six most extreme years 
with respect to the frequency of major events occurred from 2017 
onwards (Fig. 1b). This increasing trend was apparent for ΣFRP cal-
culated using day and night hotspots separately (Fig. 1b), but there 
was stronger statistical evidence of an increasing trend at night-time 
(Pf(year) = 0.00006, edf = 1.84, χ2 = 16.65) than at daytime (Pf(year) = 0.003, 
edf = 1.68, χ2 = 8.98). The stronger increasing trend at night is in line 
with the observation that temperatures are warming faster at night 
than during the day32, and such warming is consequently reducing the 
night-time barrier to wildfire33.

In addition to the increasing frequency of extreme wildfire 
events, the magnitude of extreme wildfire events has also increased 
significantly. For the 20 most extreme events in each year, the aver-
age ΣFRP has similarly increased by 2.3-fold over the study, and this 
increase appears to be accelerating (Fig. 1c; Pf(year) = 0.00003, edf = 1.96, 
F statistic = 3.88). Like the frequency of extreme events, the 6 most 
extreme years with respect to magnitude occurred within the last 
7 years (Fig. 1c).

Relative to the area occupied by the Earth’s biogeographic realms 
and biomes, extreme events were disproportionately concentrated 
in the Nearctic and Australasia/Oceania realms (ratios > 1; Fig. 2a)34 
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Fig. 1 | Distribution and trends of the most extreme wildfires on Earth.  
The FRP sum (ΣFRP) was calculated by summing the FRP of MODIS hotspots on 
a 0.2° equal-area lattice for each day from 2003 to 2023. a, The points show the 
locations of the most extreme ΣFRP events, defined as those ≥99.99th percentile, 
totalling 2,913 events, overlaid on biogeographical realms34. See Extended Data 
Fig. 1 for annual distribution maps. b, Extreme wildfire events more than doubled 

in frequency over the 21 year period, including during both day and night. c, The 
20 most extreme events in each year show a sustained increase in the average 
intensity (MW, megawatts) of extreme wildfires. The lines in b and c show the fit 
(±95% confidence interval (CI)) of a generalized additive model. Note: values for 
2023 do not include December because those data were not available at the time 
of analysis.
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Despite the importance of extreme wildfire events, research has 
not yet, to our knowledge, revealed global trends in frequency or mag-
nitude19. This is probably due in part to the relatively short period 
over which satellites have observed FRP1. Short time series (9 years, 
2013–2021) have similarly impeded the discovery of trends in extreme 
fire-induced pyrocumulonimbus storms17, but a lack of evidence due 
to data deficiencies does not imply an absence of trends.

The previous lack of documented trends in extreme wildfires also 
probably stems from the dominant focus of the literature on burned 
area. Many studies, for example, report that the global burned area 
has decreased this century (for example, refs. 12–16), leading policy 
commentators to question the reality of worsening wildfire disasters 
(for example, ref. 38). Yet, as most fires are human ignited and have rela-
tively small impacts, a focus on average intensities and global burned 
area means that such analyses are swamped by relatively low-impact 
fires, including fire used for habitat management, pastoralism, agricul-
ture and silviculture39,40. A focus on global averages disproportionately 
weights Africa (67% of burned area) and conceals opposing trends in 
different regions16. Importantly, a focus on average intensities obscures 
the extreme events—those that cause the most damage and release the 
most emissions. By characterizing the daily integrated radiant energy 
released by fires, we contend that the ΣFRP approach used here pro-
vides a vital measure of the way in which fire behaviour is responding 
to climate change.

Our results show that events of extreme intensity have more than 
doubled in frequency and magnitude, with increases largely concen-
trated in the carbon-rich41 boreal and temperate conifer forests of the 

northern hemisphere. There were also several foci of extreme events 
in the southern hemisphere (southern Africa, Australia and South 
America). The last 7 years included the six most extreme years for ener-
getically extreme wildfires. The most recent year (2023) had both the 
hottest global temperature on record42 and the most extreme wildfire 
intensities (Fig. 1c) since MODIS sensors began observing wildfires. 
The increasing frequency and magnitude of extreme wildfire events 
is in step with global heating, highlighting the urgency with which we 
must adapt to a climate that is more conducive to extreme wildfires.

Methods
Identifying energetically extreme wildfire events
The MODIS sensors on NASA’s Terra and Aqua satellites identify active 
wildfires based on thermal anomalies. The MCD14ML product43 pro-
vides point locations of wildfire ‘hotspots’ at a resolution of 1 km. These 
locations represent the centre of a 1 km pixel that was identified by 
the fire and thermal anomaly algorithm as containing at least one fire 
somewhere within the pixel, thus detecting fires substantially smaller 
than a pixel44. We excluded locations labelled as probably resulting 
from non-fire sources, such as volcanoes, other static sources or off-
shore (for example, industrial). For additional robustness, we further 
filtered out ‘low confidence’ fires (that is, confidence <30 (ref. 45)). 
Each fire observation is accompanied by a measure of FRP, measuring 
the instantaneous fire energy (megawatts) emitted by a fire, which is 
known to scale to smoke plume size46 and has been widely used as a 
proxy of fire intensity1. The Terra satellite provides daily equatorial 
overpasses at approximately 10:30 a.m. and 10:30 p.m., and the Aqua 
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Fig. 2 | Patterns in extreme wildfire events among biogeographical realms 
and biomes. a,b, Ratio of extreme events to the area of the biogeographical 
realms (a) and biomes (b). Ratios were calculated by dividing the proportion 
of extreme events occurring in a realm or biome by the proportional area 
occupied by a realm or biome, with ratios >1 indicating a disproportionately high 
rate of extreme events (coloured orange). N indicates the number of extreme 
events. Biogeographical realms are shown in Fig. 1a, and biomes are shown in 

Supplementary Fig. 2, as delineated by ref. 34. c, Trends in the frequency of 
events among biomes with the most extreme events. The lines denote the fit 
(±95% CI) of generalized linear models, with annotations showing the model 
formula, P value for ‘year’ and deviance explained (‘d.e.’). These regressions 
indicate that the overall increase in extreme events is strongly driven by increases 
in the temperate conifer and boreal forest biomes. Note: a different y-axis is used 
for the boreal forest and taiga biome.
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satellite at 1:30 a.m. and 1:30 p.m., allowing separate investigations of 
trends in daytime and night-time fires.

Polar-orbiting satellites are biased at high latitudes because there 
is some overlap in the swaths of adjacent satellite overpasses47, leading 
to the possibility that the same pixel is double counted in subsequent 
orbits. We corrected this problem by identifying and omitting likely 
duplicate hotspots, similar to the approach of a previous study48. For 
the Terra and Aqua satellites, there should each be a maximum of one 
hotspot for each day and each night in each pixel. Thus, to identify likely 
duplicates, we identified pixels with multiple observations in a given 
day or night at a resolution of 500 m. Such cases with multiple hotspots 
indicate a likely duplicate, in which cases we retained one hotspot at 
random, leaving a combined maximum of four hotspots per 24 h period 
in each location. Of a total dataset of 88.4 million hotspots, this cleaning 
process removed 176,181 (0.19%) likely duplicates.

The Terra satellite began collecting data in February 200044 but 
suffered from hardware problems before November 200045. The Aqua 
satellite was launched later and began collecting data in June 200244. 
We chose to analyse the full combined Terra and Aqua datasets to pro-
vide the fullest characterization of fires over the course of a day. Thus, 
because of the lower sampling effort before 2003, we based our primary 
analysis on the years 2003–2023. However, see Supplementary Fig. 1 
for a comparison of the trends shown by Terra (2001–2023) and Aqua 
(2003–2023), revealing similar trends in both satellites.

To identify energetically extreme wildfire events, we calculated 
the daily energy released by wildfires using an equal-area, equal-shape 
global lattice with a 0.2° resolution, equating to cell sizes of approxi-
mately 22 × 22 km (~495 km2). We selected this scale as an ecologically 
reasonable but computationally tractable scale for analysing large vol-
umes of daily satellite data at a global scale. For each cell, we summed 
the FRP (ΣFRP) of hotspots for each of the 7,639 days between 1 January 
2003 and 30 November 2023. At the time of writing, scientific-quality 
observations were not yet available for December 2023, thus providing 
a partial and conservative record of the number of extreme events in 
2023. This process yielded 30.7 million daily ΣFRP ‘events’ from 88.4 
million hotspot observations. Because it has been reported that global 
warming is leading to warmer and drier air at night, in turn weakening 
the night-time barrier to fire33, we repeated the ΣFRP aggregation pro-
cess for daytime and night-time fires separately to investigate whether 
trends differed during day and night.

After calculating the ΣFRP events, we then selected the most 
energetically extreme events for subsequent analysis, defined here 
as events with ΣFRP ≥ 99.99th percentile (N = 2,913 events). Although 
this threshold itself is arbitrary, it unambiguously captures fires of 
extreme integrated radiant power output, does so in a systematic and 
unbiased fashion, and yields a reasonable sample size for subsequent 
analyses. All analyses were conducted using R version 4.3.0 (ref. 49).

Temporal and biogeographic trends in extreme wildfires
To characterize the biogeographic patterns in extreme events, we 
calculated the area-normalized ratio of extreme events among the bio-
geographical realms and biomes of the Earth. Biogeographical realms 
and biomes are described in ref. 34. To calculate the ratio, we divided 
the proportion of extreme events occurring in each realm and biome 
by the proportion of the Earth’s land area occupied by those regions 
(excluding Antarctica). If extreme events occurred randomly, we would 
expect ratios of approximately one; values substantially larger than one 
indicate extreme events are disproportionately common, and values 
less than one indicate extreme events are disproportionately rare.

To evaluate temporal trends in the frequency and magnitude of 
extreme events, we fit separate statistical models that investigate (1) 
the frequency of extreme events globally, (2) the frequency of extreme 
events among biomes and (3) the magnitude of extreme events globally. 
In all models, we interpreted P values as continuous rather than cate-
gorical measures of the strength of evidence, as previously advocated50.

First, we fit a generalized additive model (GAM) of the annual 
count of extreme events in response to a smooth (that is, nonlinear) 
effect of year (continuous variable; 2003–2023)51. GAMs allow fitting of 
nonlinear effects if supported by the data. We fit the model using auto-
matic term selection (‘select = TRUE’) available in the ‘mgcv’ package51, 
which imposes an additional penalty on smooth terms such that they 
are penalized out of the model if there is little evidence for an effect. 
We fit the model using the negative binomial distribution to account 
for overdispersion52. We followed the same process to model the trend 
for day ΣFRP and night ΣFRP separately.

Second, we fit separate generalized linear models for each of 
the six biomes with the largest number of events (providing a rea-
sonable sample to interrogate for trends). We fit these models with 
the annual count of extreme events modelled in response to a fixed 
effect of year, using the negative binomial distribution to account for 
overdispersion52.

Third, to investigate trends in the magnitude of the most extreme 
events, we selected the 20 most extreme events from each year, from 
which we calculated the annual average of extreme ΣFRP. We then 
modelled the annual average of extreme ΣFRP in response to a non-
linear effect of ‘year’ using a GAM with Gaussian distribution. Gen-
eralized linear models and GAMs were fit using the ‘mgcv’ package  
(version 1.8–42)51.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
MODIS active fire records used in the analysis were downloaded 
from the University of Maryland ftp server (sftp://fuoco.geog.
umd.edu) and are available via figshare at https://doi.org/10.6084/
m9.figshare.25132151 (ref. 53). Biomes of the world were downloaded 
from https://ecoregions.appspot.com/.

Code availability
Code for the analysis is available via figshare at https://doi.org/10.6084/
m9.figshare.25687113 (ref. 54).
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Extended Data Fig. 1 | Global distribution of extreme wildfire events in each year from 2003 to 2023. Points show the locations of energetically extreme events in 
each year (≥ 99.99th percentile).
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