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1 INTRODUCTION 1 

This document, Policy Assessment for the Reconsideration of the National Ambient Air 2 

Quality Standards for Particulate Matter, External Review Draft (hereafter referred to as the 3 

draft PA), presents the draft policy assessment for the U.S. Environmental Protection Agency’s 4 

(EPA’s) reconsideration of the review of the national ambient air quality standards (NAAQS) for 5 

particulate matter (PM) completed in 2020.1 The overall plan for the 2020 review was presented 6 

in the Integrated Review Plan for the National Ambient Air Quality Standards for Particulate 7 

Matter (IRP; U.S. EPA, 2016). The IRP also identified key policy-relevant issues to be addressed 8 

in the 2020 review and discussed the key documents that generally inform NAAQS reviews, 9 

including an Integrated Science Assessment (ISA) and a Policy Assessment (PA). The key 10 

considerations presented in this draft PA are intended to provide updates to the policy 11 

information to support the reconsideration of the 2020 PM NAAQS final action, which retained 12 

the primary and secondary PM2.5 and PM10 standards without revision (85 FR 82684, December 13 

18, 2020). In reconsidering the 2020 final action, the EPA will consider the scientific and 14 

technical analyses on which the December 2020 PM NAAQS final action was based, as well as 15 

the newly available scientific information evaluated in the Supplement to the 2019 Integrated 16 

Science Assessment for Particulate Matter (External Review Draft) (hereafter referred to as the 17 

draft ISA Supplement; U.S. EPA, 2021) and the policy implications of the new scientific 18 

evidence and updated quantitative analyses presented in this draft PA. Much of the information 19 

in this draft PA is drawn directly from information included in the 2019 ISA (U.S. EPA, 2019) 20 

and the 2020 PA (U.S. EPA, 2020). 21 

This document is organized into five chapters. Chapter 1 presents introductory 22 

information on the purpose of the PA, legislative requirements for reviews of the NAAQS, an 23 

overview of the history of the PM NAAQS, including background information on prior reviews, 24 

and a summary of the progress to date for the reconsideration of the 2020 final decision. Chapter 25 

2 provides an overview of the available information on PM-related emissions, atmospheric 26 

chemistry, monitoring and air quality. Chapter 3 focuses on policy-relevant aspects of the 27 

currently available health effects evidence as presented in the 2019 ISA and draft ISA 28 

Supplement, as well as updated exposure/risk information, and identifies and summarizes the key 29 

considerations related to this reconsideration of the primary PM2.5 standards. Chapter 4 draws 30 

substantially from the information presented in the 2020 PA on the policy-relevant aspects of the 31 

 
1 On June 10, 2021, the Agency announced its decision to reconsider the 2020 PM NAAQS final action. The press 

release for this announcement is available at: https://www.epa.gov/newsreleases/epa-reexamine-health-standards-

harmful-soot-previous-administration-left-unchanged 
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health effects evidence presented in the 2019 ISA and identifies and summarizes the key 1 

considerations related to this reconsideration of the primary standard PM10. Chapter 5 focuses on 2 

policy-relevant aspects of the currently available welfare effects evidence as presented in the 3 

2019 ISA and draft ISA Supplement, as well as updated quantitative analyses for visibility 4 

effects, and identifies and summarizes the key considerations related to this reconsideration of 5 

the secondary PM standards.2 More detail about the process for this reconsideration is described 6 

in section 1.4.2 below, and the approach for considering the available information for this 7 

reconsideration is presented within Chapters 3, 4, and 5 of this draft PA.   8 

1.1 PURPOSE 9 

The PA evaluates the potential policy implications of the available scientific evidence, as 10 

assessed in the ISA, and the potential implications of the available air quality, exposure or risk 11 

analyses. The role of the PA is to help “bridge the gap” between the Agency’s scientific 12 

assessments and quantitative technical analyses, and the judgments required of the Administrator 13 

in determining whether it is appropriate to retain or revise the NAAQS.  14 

In evaluating the question of adequacy of the current standards, and whether it may be 15 

appropriate to consider alternative standards, the PA focuses on information that is most 16 

pertinent to evaluating the standards and their basic elements: indicator, averaging time, form, 17 

and level.3 These elements, which together serve to define each standard, must be considered 18 

collectively in evaluating the health and welfare protection the standards afford.  19 

The PA is also intended to facilitate advice to the Agency and recommendations to the 20 

Administrator from an independent scientific review committee, the Clean Air Scientific 21 

Advisory Committee (CASAC), as provided for in the Clean Air Act (CAA). As discussed below 22 

in section 1.2, the CASAC is to advise on subjects including the Agency’s assessment of the 23 

relevant scientific information and on the adequacy of the current standards, and to make 24 

 
2 The welfare effects considered in this review include visibility impairment, climate effects, and materials effects 

(i.e., damage and soiling). Ecological effects associated with PM, and the adequacy of protection provided by the 

secondary PM standards for them, are being addressed in the separate review of the secondary NAAQS for oxides 

of nitrogen, oxides of sulfur and PM in recognition of the linkages between oxides of nitrogen, oxides of sulfur, 

and PM with respect to atmospheric chemistry and deposition, and with respect to ecological effects. Information 

on the current review of the secondary NAAQS for oxides of nitrogen, oxides of sulfur and PM can be found at 

https://www.epa.gov/naaqs/nitrogen-dioxide-no2-and-sulfur-dioxide-so2-secondary-air-quality-standards. 

3 The indicator defines the chemical species or mixture to be measured in the ambient air for the purpose of 

determining whether an area attains the standard. The averaging time defines the period over which air quality 

measurements are to be averaged or otherwise analyzed. The form of a standard defines the air quality statistic 

that is to be compared to the level of the standard in determining whether an area attains the standard. For 

example, the form of the annual NAAQS for fine particulate matter is the average of annual mean concentrations 

for three consecutive years, while the form of the 8-hour NAAQS for carbon monoxide is the second-highest 8-

hour average in a year. The level of the standard defines the air quality concentration used for that purpose. 
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recommendations as to any revisions of the standards that may be appropriate. The EPA 1 

generally makes available to the CASAC and the public one or more drafts of the PA for 2 

CASAC review and public comment. 3 

In this draft PA, we4 take into account the available scientific evidence, as assessed in the 4 

Integrated Science Assessment for Particulate Matter (Final Report) (2019 ISA [U.S. EPA, 5 

2019]) and in the draft ISA Supplement (U.S. EPA, 2021), as well as additional policy-relevant 6 

analyses of air quality and risks. The evaluation and preliminary conclusions presented in this 7 

draft PA have been informed by the scientific evidence presented in the 2019 ISA and the draft 8 

ISA Supplement, as well as the policy-relevant considerations and conclusions reached in the 9 

2020 PA, along with updated quantitative analyses of air quality, risk, and exposure, where 10 

available. Review and comments from the CASAC, as well as public comment, on this draft PA 11 

will inform the final evaluation and conclusions in the final PA. The final PA is intended to help 12 

the Administrator in considering the scientific and technical information, and in formulating 13 

judgments regarding the adequacy of the current standards and regarding alternative standards, 14 

as appropriate. 15 

Beyond informing the Administrator and facilitating the advice and recommendations of 16 

the CASAC, the PA is also intended to be a useful reference to all parties interested in the review 17 

of the PM NAAQS. In these roles, it is intended to serve as a source of policy-relevant 18 

information that informs the Agency’s review of the NAAQS for PM, and it is written to be 19 

understandable to a broad audience. 20 

1.2 LEGISLATIVE REQUIREMENTS 21 

Two sections of the Clean Air Act (CAA) govern the establishment and revision of the 22 

NAAQS. Section 108 (42 U.S.C. 7408) directs the Administrator to identify and list certain air 23 

pollutants and then to issue air quality criteria for those pollutants. The Administrator is to list 24 

those pollutants “emissions of which, in his judgment, cause or contribute to air pollution which 25 

may reasonably be anticipated to endanger public health or welfare”; “the presence of which in 26 

the ambient air results from numerous or diverse mobile or stationary sources”; and for which he 27 

“plans to issue air quality criteria….” (42 U.S.C. § 7408(a)(1)). Air quality criteria are intended 28 

to “accurately reflect the latest scientific knowledge useful in indicating the kind and extent of all 29 

identifiable effects on public health or welfare which may be expected from the presence of [a] 30 

pollutant in the ambient air….” 42 U.S.C. § 7408(a)(2). 31 

 
4 The terms “we,” “our,” and “staff” throughout this document refer to the staff in the EPA’s Office of Air Quality 

Planning and Standards (OAQPS).  
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Section 109 [42 U.S.C. 7409] directs the Administrator to propose and promulgate 1 

“primary” and “secondary” NAAQS for pollutants for which air quality criteria are issued [42 2 

U.S.C. § 7409(a)]. Section 109(b)(1) defines primary standards as ones “the attainment and 3 

maintenance of which in the judgment of the Administrator, based on such criteria and allowing 4 

an adequate margin of safety, are requisite to protect the public health.”5 Under section 5 

109(b)(2), a secondary standard must “specify a level of air quality the attainment and 6 

maintenance of which, in the judgment of the Administrator, based on such criteria, is requisite 7 

to protect the public welfare from any known or anticipated adverse effects associated with the 8 

presence of [the] pollutant in the ambient air.”6 9 

In setting primary and secondary standards that are “requisite” to protect public health 10 

and welfare, respectively, as provided in section 109(b), the EPA’s task is to establish standards 11 

that are neither more nor less stringent than necessary. In so doing, the EPA may not consider the 12 

costs of implementing the standards. See generally, Whitman v. American Trucking Associations, 13 

531 U.S. 457, 465-472, 475-76 (2001). Likewise, “[a]ttainability and technological feasibility are 14 

not relevant considerations in the promulgation of national ambient air quality standards.” 15 

American Petroleum Institute v. Costle, 665 F.2d 1176, 1185 (D.C. Cir. 1981). At the same time, 16 

courts have clarified the EPA may consider “relative proximity to peak background … 17 

concentrations” as a factor in deciding how to revise the NAAQS in the context of considering 18 

standard levels within the range of reasonable values supported by the air quality criteria and 19 

judgments of the Administrator. American Trucking Associations, Inc. v. EPA, 283 F.3d 355, 379 20 

(D.C. Cir. 2002). 21 

The requirement that primary standards provide an adequate margin of safety was 22 

intended to address uncertainties associated with inconclusive scientific and technical 23 

information available at the time of standard setting. It was also intended to provide a reasonable 24 

degree of protection against hazards that research has not yet identified. See Lead Industries 25 

Association v. EPA, 647 F.2d 1130, 1154 (D.C. Cir 1980), cert. denied, 449 U.S. 1042 (1980); 26 

American Petroleum Institute v. Costle, 665 F.2d at 1186 (D.C. Cir. 1981), cert. denied, 455 U.S. 27 

1034 (1982); Coalition of Battery Recyclers Ass'n v. EPA, 604 F.3d 613, 617-18 (D.C. Cir. 28 

2010); Mississippi v. EPA, 744 F.3d 1334, 1353 (D.C. Cir. 2013). Both kinds of uncertainties are 29 

 
5 The legislative history of section 109 indicates that a primary standard is to be set at “the maximum permissible 

ambient air level . . . which will protect the health of any [sensitive] group of the population,” and that for this 

purpose “reference should be made to a representative sample of persons comprising the sensitive group rather 

than to a single person in such a group.” S. Rep. No. 91-1196, 91st Cong., 2d Sess. 10 (1970). 

6 Under CAA section 302(h) (42 U.S.C. § 7602(h)), effects on welfare include, but are not limited to, “effects on 

soils, water, crops, vegetation, manmade materials, animals, wildlife, weather, visibility, and climate, damage to 

and deterioration of property, and hazards to transportation, as well as effects on economic values and on personal 

comfort and well-being.” 
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components of the risk associated with pollution at levels below those at which human health 1 

effects can be said to occur with reasonable scientific certainty. Thus, in selecting primary 2 

standards that include an adequate margin of safety, the Administrator is seeking not only to 3 

prevent pollution levels that have been demonstrated to be harmful but also to prevent lower 4 

pollutant levels that may pose an unacceptable risk of harm, even if the risk is not precisely 5 

identified as to nature or degree. The CAA does not require the Administrator to establish a 6 

primary NAAQS at a zero-risk level or at background concentration levels, see Lead Industries 7 

v. EPA, 647 F.2d at 1156 n.51, Mississippi v. EPA, 744 F.3d at 1351, but rather at a level that 8 

reduces risk sufficiently so as to protect public health with an adequate margin of safety. 9 

In addressing the requirement for an adequate margin of safety, the EPA considers such 10 

factors as the nature and severity of the health effects involved, the size of the sensitive 11 

population(s), and the kind and degree of uncertainties. The selection of any particular approach 12 

to providing an adequate margin of safety is a policy choice left specifically to the 13 

Administrator’s judgment. See Lead Industries Association v. EPA, 647 F.2d at 1161-62; 14 

Mississippi v. EPA, 744 F.3d at 1353. 15 

Section 109(d)(1) of the Act requires a review be completed every five years and, if 16 

appropriate, revision of existing air quality criteria to reflect advances in scientific knowledge on 17 

the effects of the pollutant on public health and welfare. Under the same provision, the EPA is 18 

also to review every five years and, if appropriate, revise the NAAQS, based on the revised air 19 

quality criteria.7 20 

Section 109(d)(2) addresses the appointment and advisory functions of an independent 21 

scientific review committee. Section 109(d)(2)(A) requires the Administrator to appoint this 22 

committee, which is to be composed of “seven members including at least one member of the 23 

National Academy of Sciences, one physician, and one person representing State air pollution 24 

control agencies.” Section 109(d)(2)(B) provides that the independent scientific review 25 

committee “shall complete a review of the criteria…and the national primary and secondary 26 

ambient air quality standards…and shall recommend to the Administrator any new…standards 27 

and revisions of existing criteria and standards as may be appropriate….” Since the early 1980s, 28 

this independent review function has been performed by the Clean Air Scientific Advisory 29 

Committee (CASAC) of the EPA’s Science Advisory Board. A number of other advisory 30 

functions are also identified for the committee by section 109(d)(2)(C), which reads: 31 

Such committee shall also (i) advise the Administrator of areas in which 32 

additional knowledge is required to appraise the adequacy and basis of existing, 33 

new, or revised national ambient air quality standards, (ii) describe the research 34 

 
7 This section of the Act requires the Administrator to complete these reviews and make any revisions that may be 

appropriate “at five-year intervals.” 
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efforts necessary to provide the required information, (iii) advise the 1 

Administrator on the relative contribution to air pollution concentrations of 2 

natural as well as anthropogenic activity, and (iv) advise the Administrator of any 3 

adverse public health, welfare, social, economic, or energy effects which may 4 

result from various strategies for attainment and maintenance of such national 5 

ambient air quality standards. 6 

As previously noted, the Supreme Court has held that section 109(b) “unambiguously bars cost 7 

considerations from the NAAQS-setting process” (Whitman v. Am. Trucking Associations, 531 8 

U.S. 457, 471 [2001]). Accordingly, while some of these issues regarding which Congress has 9 

directed the CASAC to advise the Administrator are ones that are relevant to the standard setting 10 

process, others are not. Issues that are not relevant to standard setting may be relevant to 11 

implementation of the NAAQS once they are established.8  12 

1.3 HISTORY OF REVIEWS OF THE PM NAAQS  13 

This section summarizes the PM NAAQS that have been promulgated in past reviews 14 

(Table 1-1). Each of these reviews is discussed briefly below. 15 

  16 

 
8 Some aspects of CASAC advice may not be relevant to EPA’s process of setting primary and secondary standards 

that are requisite to protect public health and welfare. Indeed, were EPA to consider costs of implementation 

when reviewing and revising the standards “it would be grounds for vacating the NAAQS.” Whitman, 531 U.S. at 

471 n.4. At the same time, the Clean Air Act directs CASAC to provide advice on “any adverse public health, 

welfare, social, economic, or energy effects which may result from various strategies for attainment and 

maintenance” of the NAAQS to the Administrator under section 109(d)(2)(C)(iv).  In Whitman, the Court 

clarified that most of that advice would be relevant to implementation but not standard setting, as it “enable[s] the 

Administrator to assist the States in carrying out their statutory role as primary implementers of the NAAQS.” Id. 

at 470 (emphasis in original). However, the Court also noted that CASAC’s “advice concerning certain aspects of 

‘adverse public health … effects’ from various attainment strategies is unquestionably pertinent” to the NAAQS 

rulemaking record and relevant to the standard setting process. Id. at 470 n.2. 
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Table 1-1. Summary of NAAQS promulgated for particulate matter 1971-2012.  1 

Review 
Completed 

Indicator 
Averaging 

Time 
Level Form 

1971 

Total 
Suspended 
Particles 
(TSP) 

24-hour 

260 µg/m3 
(primary) 
150 µg/m3 
(secondary) 

Not to be exceeded more than once per year 

Annual 

75 µg/m3 
(primary) 
60 µg/m3 
(secondary) 

Annual geometric mean 

1987 PM10 
24-hour 150 µg/m3 

Not to be exceeded more than once per year on 
average over a 3-year period 

Annual 50 µg/m3 Annual arithmetic mean, averaged over 3 years 

1997 

PM2.5 
24-hour 65 µg/m3 98th percentile, averaged over 3 years 

Annual 15.0 µg/m3 Annual arithmetic mean, averaged over 3 yearsa 

PM10 
24-hour 150 µg/m3 99th percentile, averaged over 3 yearsb 

Annual 50 µg/m3 Annual arithmetic mean, averaged over 3 years 

2006 

PM2.5 
24-hour 35 µg/m3 98th percentile, averaged over 3 years 

Annual 15.0 µg/m3 Annual arithmetic mean, averaged over 3 yearsc 

PM10 24-hourd 150 µg/m3 
Not to be exceed more than once per year on average 
over a 3-year period 

2012 
 

PM2.5 

24-hour 35 µg/m3 98th percentile, averaged over 3 years 

Annual 

12.0 µg/m3 
(primary) 
15.0 µg/m3 
(secondary) 

Annual mean, averaged over 3 yearse 

PM10 24-hour 150 µg/m3 
Not to be exceeded more than once per year on 
average over 3 years 

Note: When not specified, primary and secondary standards are identical. 
a The level of the 1997 annual PM2.5 standard was to be compared to measurements made at the community-
oriented monitoring site recording the highest concentration or, if specific constraints were met, measurements 
from multiple community-oriented monitoring sites could be averaged (i.e., “spatial averaging”) (62 FR 38652, 
July 18, 1997).  
b When the 1997 standards were vacated (see below), the form of the 1987 standards remained in place (i.e., not 
to be exceeded more than once per year on average over a 3-year period).  
c The EPA tightened the constraints on the spatial averaging criteria by further limiting the conditions under which 
some areas may average measurements from multiple community-oriented monitors to determine compliance (71 
FR 61144, October 17, 2006). 
d The EPA revoked the annual PM10 NAAQS in 2006 (71 FR 61144, October 17, 2006). 
e In the 2012 decision, the EPA eliminated the option for spatial averaging (78 FR 3086, January 15, 2013). 
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1.3.1 Reviews Completed in 1971 and 1987 1 

The EPA first established NAAQS for PM in 1971 (36 FR 8186, April 30, 1971), based 2 

on the original Air Quality Criteria Document (AQCD) (DHEW, 1969).9 The federal reference 3 

method (FRM) specified for determining attainment of the original standards was the high-4 

volume sampler, which collects PM up to a nominal size of 25 to 45 micrometers (µm) (referred 5 

to as total suspended particulates or TSP). The primary standards were set at 260 µg/m3, 24-hour 6 

average, not to be exceeded more than once per year, and 75 µg/m3, annual geometric mean. The 7 

secondary standards were set at 150 µg/m3, 24-hour average, not to be exceeded more than once 8 

per year, and 60 µg/m3, annual geometric mean.   9 

In October 1979 (44 FR 56730, October 2, 1979), the EPA announced the first periodic 10 

review of the air quality criteria and NAAQS for PM. Revised primary and secondary standards 11 

were promulgated in 1987 (52 FR 24634, July 1, 1987). In the 1987 decision, the EPA changed 12 

the indicator for particles from TSP to PM10, in order to focus on the subset of inhalable particles 13 

small enough to penetrate to the thoracic region of the respiratory tract (including the 14 

tracheobronchial and alveolar regions), referred to as thoracic particles.10 The level of the 24-15 

hour standards (primary and secondary) was set at 150 µg/m3, and the form was one expected 16 

exceedance per year, on average over three years. The level of the annual standards (primary and 17 

secondary) was set at 50 µg/m3, and the form was annual arithmetic mean, averaged over three 18 

years.  19 

1.3.2 Review Completed in 1997 20 

In April 1994, the EPA announced its plans for the second periodic review of the air 21 

quality criteria and NAAQS for PM, and in 1997 the EPA promulgated revisions to the NAAQS 22 

(62 FR 38652, July 18, 1997). In the 1997 decision, the EPA determined that the fine and coarse 23 

fractions of PM10 should be considered separately. This determination was based on evidence 24 

that serious health effects were associated with short- and long-term exposures to fine particles in 25 

areas that met the existing PM10 standards. The EPA added new standards, using PM2.5 as the 26 

indicator for fine particles (with PM2.5 referring to particles with a nominal mean aerodynamic 27 

diameter less than or equal to 2.5 µm). The new primary standards were as follows: (1) an annual 28 

standard with a level of 15.0 µg/m3, based on the 3-year average of annual arithmetic mean 29 

 
9 Prior to the review initiated in 2007 (see below), the AQCD provided the scientific foundation (i.e., the air quality 

criteria) for the NAAQS. Beginning in that review, the ISA has replaced the AQCD.   

10 PM10 refers to particles with a nominal mean aerodynamic diameter less than or equal to 10 µm. More 

specifically, 10 µm is the aerodynamic diameter for which the efficiency of particle collection is 50 percent.  
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PM2.5 concentrations from single or multiple community-oriented monitors;11 and (2) a 24-hour 1 

standard with a level of 65 µg/m3, based on the 3-year average of the 98th percentile of 24-hour 2 

PM2.5 concentrations at each monitor within an area. Also, the EPA established a new reference 3 

method for the measurement of PM2.5 in the ambient air and adopted rules for determining 4 

attainment of the new standards. To continue to address the health effects of the coarse fraction 5 

of PM10 (referred to as thoracic coarse particles or PM10-2.5; generally including particles with a 6 

nominal mean aerodynamic diameter greater than 2.5 µm and less than or equal to 10 µm), the 7 

EPA retained the annual primary PM10 standard and revised the form of the 24-hour primary 8 

PM10 standard to be based on the 99th percentile of 24-hour PM10 concentrations at each monitor 9 

in an area. The EPA revised the secondary standards by setting them equal in all respects to the 10 

newly established primary standards.  11 

Following promulgation of the 1997 PM NAAQS, petitions for review were filed by 12 

several parties, addressing a broad range of issues. In May 1999, the U.S. Court of Appeals for 13 

the District of Columbia Circuit (D.C. Circuit) upheld the EPA’s decision to establish fine 14 

particle standards, holding that "the growing empirical evidence demonstrating a relationship 15 

between fine particle pollution and adverse health effects amply justifies establishment of new 16 

fine particle standards." American Trucking Associations v. EPA, 175 F. 3d at 1027, 1055-56 17 

(D.C. Cir. 1999). The D.C. Circuit also found "ample support" for the EPA's decision to regulate 18 

coarse particle pollution, but vacated the 1997 PM10 standards, concluding that the EPA had not 19 

provided a reasonable explanation justifying use of PM10 as an indicator for coarse particles. 20 

American Trucking Associations v. EPA, 175 F. 3d at 1054-55. Pursuant to the D.C. Circuit’s 21 

decision, the EPA removed the vacated 1997 PM10 standards, and the pre-existing 1987 PM10 22 

standards remained in place (65 FR 80776, December 22, 2000). The D.C. Circuit also upheld 23 

the EPA’s determination not to establish more stringent secondary standards for fine particles to 24 

address effects on visibility. American Trucking Associations v. EPA, 175 F. 3d at 1027.  25 

The D.C. Circuit also addressed more general issues related to the NAAQS, including 26 

issues related to the consideration of costs in setting NAAQS and the EPA’s approach to 27 

establishing the levels of NAAQS. Regarding the cost issue, the court reaffirmed prior rulings 28 

holding that in setting NAAQS the EPA is “not permitted to consider the cost of implementing 29 

those standards.” American Trucking Associations v. EPA, 175 F. 3d at 1040-41. Regarding the 30 

levels of NAAQS, the court held that the EPA’s approach to establishing the level of the 31 

 
11 The 1997 annual PM2.5 standard was to be compared with measurements made at the community-oriented 

monitoring site recording the highest concentration or, if specific constraints were met, measurements from 

multiple community-oriented monitoring sites could be averaged (i.e., “spatial averaging”). In the 2012 review, 

the EPA replaced the term “community-oriented” monitor with the term “area-wide” monitor. Area-wide 

monitors are those sited at the neighborhood scale or larger, as well as those monitors sited at micro- or middle-

scales that are representative of many such locations in the same CBSA (78 FR 3236, January 15, 2013).  
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standards in 1997 (i.e., both for PM and for the ozone NAAQS promulgated on the same day) 1 

effected “an unconstitutional delegation of legislative authority.” American Trucking 2 

Associations v. EPA, 175 F. 3d at 1034-40. Although the court stated that “the factors EPA uses 3 

in determining the degree of public health concern associated with different levels of ozone and 4 

PM are reasonable,” it remanded the rule to the EPA, stating that when the EPA considers these 5 

factors for potential non-threshold pollutants “what EPA lacks is any determinate criterion for 6 

drawing lines” to determine where the standards should be set.  7 

The D.C. Circuit’s holding on the cost and constitutional issues were appealed to the 8 

United States Supreme Court. In February 2001, the Supreme Court issued a unanimous decision 9 

upholding the EPA’s position on both the cost and constitutional issues. Whitman v. American 10 

Trucking Associations, 531 U.S. 457, 464, 475-76. On the constitutional issue, the Court held 11 

that the statutory requirement that NAAQS be “requisite” to protect public health with an 12 

adequate margin of safety sufficiently guided the EPA’s discretion, affirming the EPA’s 13 

approach of setting standards that are neither more nor less stringent than necessary. 14 

The Supreme Court remanded the case to the Court of Appeals for resolution of any 15 

remaining issues that had not been addressed in that court’s earlier rulings. Id. at 475-76. In a 16 

March 2002 decision, the Court of Appeals rejected all remaining challenges to the standards, 17 

holding that the EPA’s PM2.5 standards were reasonably supported by the administrative record 18 

and were not “arbitrary and capricious” American Trucking Associations v. EPA, 283 F. 3d 355, 19 

369-72 (D.C. Cir. 2002).  20 

1.3.3 Review Completed in 2006 21 

In October 1997, the EPA published its plans for the third periodic review of the air 22 

quality criteria and NAAQS for PM (62 FR 55201, October 23, 1997). After the CASAC and 23 

public review of several drafts, the EPA’s NCEA finalized the AQCD in October 2004 (U.S. 24 

EPA, 2004a, U.S. EPA, 2004b). The EPA’s OAQPS finalized a Risk Assessment and Staff Paper 25 

in December 2005 (Abt Associates, 2005, U.S. EPA, 2005).12 On December 20, 2005, the EPA 26 

announced its proposed decision to revise the NAAQS for PM and solicited public comment on a 27 

broad range of options (71 FR 2620, January 17, 2006). On September 21, 2006, the EPA 28 

announced its final decisions to revise the primary and secondary NAAQS for PM to provide 29 

increased protection of public health and welfare, respectively (71 FR 61144, October 17, 2006). 30 

With regard to the primary and secondary standards for fine particles, the EPA revised the level 31 

 
12 Prior to the review initiated in 2007, the Staff Paper presented the EPA staff’s considerations and conclusions 

regarding the adequacy of existing NAAQS and, when appropriate, the potential alternative standards that could 

be supported by the evidence and information. More recent reviews present this information in the Policy 

Assessment.  
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of the 24-hour PM2.5 standards to 35 µg/m3, retained the level of the annual PM2.5 standards at 1 

15.0 µg/m3, and revised the form of the annual PM2.5 standards by narrowing the constraints on 2 

the optional use of spatial averaging. With regard to the primary and secondary standards for 3 

PM10, the EPA retained the 24-hour standards, with levels at 150 µg/m3, and revoked the annual 4 

standards.13 The Administrator judged that the available evidence generally did not suggest a link 5 

between long-term exposure to existing ambient levels of coarse particles and health or welfare 6 

effects. In addition, a new reference method was added for the measurement of PM10-2.5 in the 7 

ambient air in order to provide a basis for approving federal equivalent methods (FEMs) and to 8 

promote the gathering of scientific data to support future reviews of the PM NAAQS. 9 

Several parties filed petitions for review following promulgation of the revised PM 10 

NAAQS in 2006. These petitions addressed the following issues: (1) selecting the level of the 11 

primary annual PM2.5 standard; (2) retaining PM10 as the indicator of a standard for thoracic 12 

coarse particles, retaining the level and form of the 24-hour PM10 standard, and revoking the 13 

PM10 annual standard; and (3) setting the secondary PM2.5 standards identical to the primary 14 

standards. On February 24, 2009, the U.S. Court of Appeals for the District of Columbia Circuit 15 

issued its opinion in the case American Farm Bureau Federation v. EPA, 559 F. 3d 512 (D.C. 16 

Cir. 2009). The court remanded the primary annual PM2.5 NAAQS to the EPA because the 17 

Agency failed to adequately explain why the standards provided the requisite protection from 18 

both short- and long-term exposures to fine particles, including protection for at-risk populations. 19 

American Farm Bureau Federation v. EPA, 559 F. 3d 512, 520-27 (D.C. Cir. 2009). With regard 20 

to the standards for PM10, the court upheld the EPA’s decisions to retain the 24-hour PM10 21 

standard to provide protection from thoracic coarse particle exposures and to revoke the annual 22 

PM10 standard. American Farm Bureau Federation, 559 F. 2d at 533-38. With regard to the 23 

secondary PM2.5 standards, the court remanded the standards to the EPA because the Agency 24 

failed to adequately explain why setting the secondary PM standards identical to the primary 25 

standards provided the required protection for public welfare, including protection from visibility 26 

impairment. American Farm Bureau Federation, 559 F. 2d at 528-32. The EPA responded to the 27 

court’s remands as part of the next review of the PM NAAQS, which was initiated in 2007 28 

(discussed below).  29 

 
13 In the 2006 proposal, the EPA proposed to revise the 24-hour PM10 standard in part by establishing a new PM10-2.5 

indicator for thoracic coarse particles (i.e., particles generally between 2.5 and 10 µm in diameter). The EPA 

proposed to include any ambient mix of PM10-2.5 that was dominated by resuspended dust from high density 

traffic on paved roads and by PM from industrial sources and construction sources. The EPA proposed to exclude 

any ambient mix of PM10-2.5 that was dominated by rural windblown dust and soils and by PM generated from 

agricultural and mining sources. In the final decision, the existing PM10 standard was retained, in part due to an 

“inability…to effectively and precisely identify which ambient mixes are included in the [PM10-2.5] indicator and 

which are not” (71 FR 61197, October 17, 2006).  
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1.3.4 Review Completed in 2012 1 

In June 2007, the EPA initiated the fourth periodic review of the air quality criteria and 2 

the PM NAAQS by issuing a call for information in the Federal Register (72 FR 35462, June 28, 3 

2007). Based on the NAAQS review process, as revised in 2008 and again in 2009,14 the EPA 4 

held science/policy issue workshops on the primary and secondary PM NAAQS (72 FR 34003, 5 

June 20, 2007; 72 FR 34005, June 20, 2007), and prepared and released the planning and 6 

assessment documents that comprise the review process (i.e., IRP (U.S. EPA, 2008), ISA (U.S. 7 

EPA, 2009a), REA planning documents for health and welfare (U.S. EPA, 2009b, U.S. EPA, 8 

2009c), a quantitative health risk assessment (U.S. EPA, 2010a) and an urban-focused visibility 9 

assessment (U.S. EPA, 2010b), and PA (U.S. EPA, 2011)). In June 2012, the EPA announced its 10 

proposed decision to revise the NAAQS for PM (77 FR 38890, June 29, 2012).  11 

In December 2012, the EPA announced its final decisions to revise the primary NAAQS 12 

for PM to provide increased protection of public health (78 FR 3086, January 15, 2013). With 13 

regard to primary standards for PM2.5, the EPA revised the level of the annual PM2.5 standard15 to 14 

12.0 µg/m3 and retained the 24-hour PM2.5 standard, with its level of 35 µg/m3. For the primary 15 

PM10 standard, the EPA retained the 24-hour standard to continue to provide protection against 16 

effects associated with short-term exposure to thoracic coarse particles (i.e., PM10-2.5). With 17 

regard to the secondary PM standards, the EPA generally retained the 24-hour and annual PM2.5 18 

standards16 and the 24-hour PM10 standard to address visibility and non-visibility welfare effects.  19 

As with previous reviews, petitioners challenged the EPA’s final rule. Petitioners argued 20 

that the EPA acted unreasonably in revising the level and form of the annual standard and in 21 

amending the monitoring network provisions. On judicial review, the revised standards and 22 

monitoring requirements were upheld in all respects. NAM v EPA, 750 F.3d 921 (D.C. Cir. 23 

2014).  24 

1.3.5 Review Completed in 2020 25 

In December 2014, the EPA announced the initiation of the periodic review of the air 26 

quality criteria for PM and of the PM2.5 and PM10 NAAQS and issued a call for information in 27 

the Federal Register (79 FR 71764, December 3, 2014). On February 9 to 11, 2015, the EPA’s 28 

NCEA and OAQPS held a public workshop to inform the planning for the current review of the 29 

PM NAAQS (announced in 79 FR 71764, December 3, 2014). Workshop participants, including 30 

 
14 The history of the NAAQS review process, including revisions to the process, is discussed at 

https://www.epa.gov/naaqs/historical-information-naaqs-review-process.  

15 The EPA also eliminated the option for spatial averaging.  

16 Consistent with the primary standard, the EPA eliminated the option for spatial averaging with the annual 

standard.  
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a wide range of external experts as well as EPA staff representing a variety of areas of expertise 1 

(e.g., epidemiology, human and animal toxicology, risk/exposure analysis, atmospheric science, 2 

visibility impairment, climate effects), were asked to highlight significant new and emerging PM 3 

research, and to make recommendations to the Agency regarding the design and scope of this 4 

review. This workshop provided for a public discussion of the key science and policy-relevant 5 

issues around which the EPA has structured the current review of the PM NAAQS and of the 6 

most meaningful new scientific information that would be available in this review to inform our 7 

understanding of these issues.  8 

The input received at the workshop guided the EPA staff in developing a draft IRP, 9 

which was reviewed by the CASAC Particulate Matter Panel and discussed on public 10 

teleconferences held in May 2016 (81 FR 13362, March 14, 2016) and August 2016 (81 FR 11 

39043, June 15, 2016). Advice from the CASAC, supplemented by the Particulate Matter Panel, 12 

and input from the public were considered in developing the final IRP for this review (U.S. EPA, 13 

2016). The final IRP discusses the approaches to be taken in developing key scientific, technical, 14 

and policy documents in this review and the key policy-relevant issues that will frame the EPA’s 15 

consideration of whether the current primary and/or secondary NAAQS for PM should be 16 

retained or revised.  17 

In May 2018, the Administrator issued a memorandum describing a “back-to-basics” 18 

process for reviewing the NAAQS (Pruitt, 2018). This memo announced the Agency’s intention 19 

to conduct the current review of the PM NAAQS in such a manner as to ensure that any 20 

necessary revisions were finalized by December 2020. Following this memo, on October 10, 21 

2018 the Administrator additionally announced that the role of reviewing the key science 22 

assessments developed as part of the ongoing review of the PM NAAQS (i.e., drafts of the ISA 23 

and PA) would be performed only by the seven-member chartered CASAC (i.e., without the 24 

support of the CASAC Particulate Matter Panel that reviewed the draft IRP).17  25 

The EPA released the draft ISA in October 2018 (83 FR 53471, October 23, 2018). The 26 

draft ISA was reviewed by the chartered CASAC at a public meeting held in Arlington, VA in 27 

December 2018 (83 FR 55529, November 6, 2018) and was discussed on a public teleconference 28 

in March 2019 (84 FR 8523, March 8, 2019). The CASAC provided its advice on the draft ISA 29 

in a letter to the EPA Administrator dated April 11, 2019 (Cox, 2019a). The EPA took steps to 30 

address these comments in the final ISA, which was released in December 2019 (U.S. EPA, 31 

2019).  32 

The EPA released the draft PA in September 2019 (84 FR 47944, September 11, 2019). 33 

The draft PA was reviewed by the chartered CASAC and discussed in October 2019 at a public 34 

 
17 Announcement available at: https://www.regulations.gov/document/EPA-HQ-OAR-2015-0072-0223 
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meeting held in Cary, NC. Public comments were received via a separate public teleconference 1 

(84 FR 51555, September 30, 2019). A public meeting to discuss the chartered CASAC letter 2 

and response to charge questions on the draft PA was held in Cary, NC in December 2019 (84 3 

FR 58713, November 1, 2019), and the CASAC provided its advice on the draft PA, including its 4 

advice on the current primary and secondary PM standards, in a letter to the EPA Administrator 5 

dated December 16, 2019 (Cox, 2019b). With regard to the primary standards, the CASAC 6 

recommended retaining the current 24-hour PM2.5 and PM10 standards but did not reach 7 

consensus on the adequacy of the current annual PM2.5 standard. With regard to the secondary 8 

standards, the CASAC recommended retaining the current standards. In response to the 9 

CASAC’s comments, the 2020 final PA incorporated a number of changes (U.S. EPA, 2020), as 10 

described in detail in section I.C.5 of the 2020 proposal (85 FR 24100, April 30, 2020). 11 

On April 14, 2020, the EPA proposed to retain all of the primary and secondary PM 12 

standards, without revision. These proposed decisions were published in the Federal Register on 13 

April 30, 2020 (85 FR 24094, April 30, 2020). The EPA’s final decision on the PM NAAQS was 14 

published in the Federal Register on December 18, 2020 (85 FR 82684, December 18, 2020). In 15 

the 2020 rulemaking, the EPA retained the primary and secondary PM2.5 and PM10 standards, 16 

without revision. The EPA received three petitions for judicial review (described in more detail 17 

in section 1.4.3 below), as well as three petitions for reconsideration of the 2020 final action.  18 

1.4 RECONSIDERATION OF THE 2020 PM NAAQS FINAL ACTION 19 

On January 20, 2021, President Biden issued an “Executive Order on Protecting Public 20 

Health and the Environment and Restoring Science to Tackle the Climate Crisis,” (Executive 21 

Order 13990; 86 FR 7037, January 25, 2021)18 which directed review of certain agency actions. 22 

An accompanying fact sheet provides a non-exclusive list of agency actions that agency heads 23 

will review in accordance with that order, including the 2020 Particulate Matter NAAQS 24 

Decision.19  25 

1.4.1 Decision to Initiate a Reconsideration 26 

On June 10, 2021, the Agency announced its decision to reconsider the 2020 PM 27 

NAAQS final action.20 The EPA is reconsidering the December 2020 decision because the 28 

 
18 See https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/executive-order-protecting-

public-health-and-environment-and-restoring-science-to-tackle-climate-crisis/ 

19 See https://www.whitehouse.gov/briefing-room/statements-releases/2021/01/20/fact-sheet-list-of-agency-actions-

for-review/ 

20 The press release for this announcement is available at: https://www.epa.gov/newsreleases/epa-reexamine-health-

standards-harmful-soot-previous-administration-left-unchanged 
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available scientific evidence and technical information indicate that the current standards may 1 

not be adequate to protect public health and welfare, as required by the Clean Air Act. We note 2 

that the 2020 PA concluded that the scientific evidence and information supported revising the 3 

level of the primary annual PM2.5 standard to below the current level of 12 µg/m3 while retaining 4 

the primary 24-hour PM2.5 standard (U.S. EPA, 2020). The EPA also notes that the 2020 PA 5 

concluded that the available scientific evidence and information supported retaining the primary 6 

PM10 standard and secondary PM standards without revision (U.S. EPA, 2020).  7 

1.4.2 Process for Reconsideration of the 2020 PM NAAQS Decision 8 

In its announcement of the reconsideration of the PM NAAQS, the Agency explained 9 

that, in support of the reconsideration, it would develop a supplement to the 2019 ISA and a 10 

revised PA.   The EPA also explained that the draft ISA Supplement and draft PA would be 11 

reviewed at a public meeting by the CASAC, and the public will have opportunities to comment 12 

on these documents during the CASAC review process, as well as to provide input during the 13 

rulemaking through the public comment process and public hearings on the proposed 14 

rulemaking.   15 

On March 31, 2021, the Administrator announced his decision to reestablish the 16 

membership of the CASAC to “ensure the agency received the best possible scientific insight to 17 

support our work to protect human health and the environment.”21 Consistent with this 18 

memorandum, a call for nominations of candidates to the EPA’s chartered CASAC was 19 

published in the Federal Register (86 FR 17146, April 1, 2021). On June 17, 2021, the 20 

Administrator announced his selection of the seven members to serve on the chartered CASAC.22 21 
23 Additionally, a call for nominations of candidates to a PM-specific panel was published in the 22 

Federal Register (86 FR 33703, June 25, 2021). The members of the PM CASAC panel were 23 

announced on August 30, 2021.24 24 

The draft ISA Supplement was released in September 2021 (U.S. EPA, 2021). The 25 

evidence presented within the 2019 ISA, along with the targeted identification and evaluation of 26 

new scientific information in the draft ISA Supplement, provides the scientific basis for the 27 

 
21 The press release for this announcement is available at: https://www.epa.gov/newsreleases/administrator-regan-

directs-epa-reset-critical-science-focused-federal-advisory 

22 The press release for this announcement is available at: https://www.epa.gov/newsreleases/epa-announces-

selections-charter-members-clean-air-scientific-advisory-committee 

23 The list of members of the chartered CASAC and their biosketches are available at: 

https://yosemite.epa.gov/sab/sabpeople.nsf/WebExternalCommitteeRosters?OpenView&committee=CASAC&sec

ondname=Clean%20Air%20Scientific%20Advisory%20Committee%20 

24 The list of members of the PM CASAC panel and their biosketches are available at: 

https://casac.epa.gov/ords/sab/f?p=105:14:9979229564047:::14:P14_COMMITTEEON:2021%20CASAC%20P

M%20Panel  
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reconsideration of the 2020 PM NAAQS final decision. The draft ISA Supplement focuses on a 1 

thorough evaluation of some studies that became available after the literature cutoff date of the 2 

2019 ISA that could either further inform the adequacy of the current PM NAAQS or address 3 

key scientific topics that have evolved since the literature cutoff date for the 2019 ISA.  In 4 

selecting the health effects to evaluate within the draft ISA Supplement, the EPA focused on the 5 

strongest causality determinations for health effects categories presented in the 2019 ISA, and 6 

the subsequent use of the health effects evidence in the 2020 PA with respect to which were most 7 

useful in informing staff conclusions (U.S. EPA, 2021).25 Specifically, within the draft ISA 8 

Supplement, the focus is only on the health effects evidence where the 2019 ISA concluded a 9 

“causal relationship” (U.S. EPA, 2021, section 1.2.1). Consistent with the rationale for the health 10 

effects, the selection of the welfare effects to evaluate within the draft ISA Supplement were 11 

based on the causality determinations reported in the 2019 ISA and the subsequent use of 12 

scientific evidence in the 2020 PA.26 Specifically, for welfare effects, the focus within the draft 13 

ISA Supplement is on visibility effects. The draft ISA Supplement also considers recent health 14 

effects evidence that addresses key scientific topics where the literature has evolved since the 15 

2020 review was completed, specifically since the literature cutoff date for the 2019 ISA.27 16 

Building on the rationale presented in section 1.2.1, the draft ISA Supplement considered 17 

peer-reviewed studies published from approximately January 2018 through March 2021 that 18 

meet the following criteria: 19 

• Health effects: 20 

− Health effect categories where the 2019 PM ISA concluded a “causal 21 

relationship” (i.e., short- and long-term PM2.5 exposure and cardiovascular effects 22 

 
25 As described in section 1.2.1 of the draft ISA Supplement: “In considering the public health protection provided 

by the current primary PM2.5 standards, and the protection that could be provided by alternatives, [the U.S. EPA, 

within the 2020 PM PA] emphasized health outcomes for which the ISA determined that the evidence supports 

either a “causal” or a “likely to be causal” relationship with PM2.5 exposures” (U.S. EPA, 2020). Although the 

2020 PA initially focused on this broader set of evidence, the basis of the discussion on potential alternative 

standards primarily focused on health effect categories where the 2019 PM ISA concluded a “causal 

relationship” (i.e., short- and long-term PM2.5 exposure and cardiovascular effects and mortality) as reflected in 

Figures 3-7 and 3-8 of the 2020 PA (U.S. EPA, 2020). 

26 As described in section 1.2.1 of the draft ISA Supplement: The 2019 PM ISA concluded a “causal relationship” 

for each of the welfare effects categories evaluated (i.e., visibility, climate effects and materials effects). While 

the 2020 PA considered the broader set of evidence for these effects, for climate effects and material effects, it 

concluded that there remained “substantial uncertainties with regard to the quantitative relationships with PM 

concentrations and concentration patterns that limit[ed] [the] ability to quantitatively assess the public welfare 

protection provided by the standards from these effects” (U.S. EPA, 2020). 

27 These key scientific topics include experimental studies conducted at near-ambient concentrations, epidemiologic 

studies that employed causal modeling methods or conducted accountability analyses, studies that assess the 

relationship between PM2.5 exposure and Coronavirus Disease 2019 (COVID-19) infection and death; and in 

accordance with recent EPA guidance on addressing environmental justice, studies that examine disparities in 

PM2.5 exposure and the risk of health effects (U.S. EPA, 2021, section 1.2.1). 



October 2021 1-17 Draft – Do Not Quote or Cite 

and mortality). Additionally, for these health effect categories the recent studies 1 

evaluated are limited to: 2 

o U.S. and Canadian epidemiologic studies  3 

o Epidemiologic studies that employed causal modeling methods or 4 

conducted accountability analyses (i.e., examined the impact of a policy 5 

on reducing PM2.5 concentrations) 6 

• Welfare Effects:  7 

− U.S. and Canadian studies that provide new information on public preferences for 8 

visibility impairment and/or developed methodologies or conducted quantitative 9 

analyses of light extinction 10 

• Key Scientific Topics 11 

− Experimental studies (i.e., controlled human exposure and animal toxicological) 12 

conducted at near-ambient PM2.5 concentrations 13 

− At-Risk Populations 14 

o U.S. and Canadian-based epidemiologic or exposure studies examining 15 

potential disparities in either PM2.5 exposures or the risk of health effects 16 

by race/ethnicity or socioeconomic status (SES) 17 

− U.S. and Canadian-based epidemiologic studies that examined the relationship 18 

between PM2.5 exposures and COVID-19 infection and/or death 19 

Given the narrow scope of the draft ISA Supplement, it is important to recognize that the 20 

evaluation does not encompass the full multidisciplinary evaluation presented within the 2019 21 

ISA that would result in weight-of-evidence conclusions on causality (i.e., causality 22 

determinations). The draft ISA Supplement critically evaluates and provides key study specific 23 

information for those recent studies deemed to be of greatest significance for informing 24 

preliminary conclusions on the PM NAAQS in the context of the body of evidence and scientific 25 

conclusions presented in the 2019 ISA. 26 

This draft PA considers the scientific evidence presented in the 2019 ISA and draft ISA 27 

Supplement. This draft PA additionally considers the quantitative and technical information 28 

presented in the 2020 PA, along with updated and newly available analyses since the completion 29 

of the 2020 review. For those health and welfare effects for which the draft ISA Supplement 30 

evaluated recently available evidence and updated quantitative analyses were supported (i.e., 31 

PM2.5-related health effects and visibility effects), the draft PA includes consideration of this 32 

newly available scientific and technical information in reaching preliminary conclusions. For 33 

those health and welfare effects for which newly available scientific and technical information 34 

were not evaluated (i.e., PM10-2.5-related health effects and non-visibility effects), the preliminary 35 

conclusions presented in this draft PA rely heavily on the information that supported the 36 

conclusions in the 2020 PA. 37 
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1.4.3 Ongoing Litigation 1 

Following publication of the 2020 final action, several parties filed petitions for review of 2 

the EPA’s final decision in the D.C. Circuit and the Court consolidated the cases. In order to 3 

consider whether reconsideration of the 2020 final action was warranted, the EPA moved for two 4 

90-day abeyances in these consolidated cases, which the Court granted. After the EPA 5 

announced that is reconsidering the 2020 final decision, the EPA filed a motion with the Court to 6 

hold the consolidated cases in abeyance until March 1, 2023. The court has not yet acted on the 7 

EPA’s motion, which the court granted on October 1, 2021.    8 
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2 PM AIR QUALITY  1 

This chapter provides an overview of recent ambient air quality with respect to PM. It 2 

summarizes information on the distribution of particle size in ambient air, including discussions 3 

about size fractions and components (section 2.1), ambient monitoring of PM in the U.S. (section 4 

2.2), ambient concentrations of PM in the U.S. (section 2.3), and background PM (section 2.4).  5 

2.1 DISTRIBUTION OF PARTICLE SIZE IN AMBIENT AIR 6 

In ambient air, PM is a mixture of substances suspended as small liquid and/or solid 7 

particles. Particle size is an important consideration for PM, as distinct health and welfare effects 8 

have been linked with exposures to particles of different sizes. Particles in the atmosphere range 9 

in size from less than 0.01 to more than 10 micrometers (µm) in diameter (U.S. EPA, 2019b, 10 

section 2.2). When describing PM, subscripts are used to denote the aerodynamic diameter1 of 11 

the particle size range in micrometers (µm) of 50% cut points of sampling devices. The EPA 12 

defines PM2.5, also referred to as fine particles, as particles with aerodynamic diameters 13 

generally less than or equal to 2.5 μm. The size range for PM10-2.5, also called coarse or thoracic 14 

coarse particles, includes those particles with aerodynamic diameters generally greater than 2.5 15 

μm and less than or equal to 10 μm. PM10, which is comprised of both fine and coarse fractions, 16 

includes those particles with aerodynamic diameters generally less than or equal to 10 μm. 17 

Figure 2-1 provides perspective on these particle size fractions. In addition, ultrafine particles 18 

(UFP) are often defined as particles with a diameter of less than 0.1 μm based on physical size, 19 

thermal diffusivity or electrical mobility (U.S. EPA, 2019b, section 2.2).  20 

 
1 Aerodynamic diameter is the size of a sphere of unit density (i.e., 1 g/cm3) that has the same terminal settling 

velocity as the particle of interest (U.S. EPA, 2018, U.S. EPA, 2019b, section 4.1.1).  
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 1 

Figure 2-1. Comparisons of PM2.5 and PM10 diameters to human hair and beach sand. 2 
(Adapted from: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics)  3 

Atmospheric distributions of particle size generally exhibit distinct modes that roughly 4 

align with the PM size fractions defined above. The nucleation mode is made up of freshly 5 

generated particles, formed either during combustion or by atmospheric reactions of precursor 6 

gases. The nucleation mode is especially prominent near sources like heavy traffic, industrial 7 

emissions, biomass burning, or cooking (Vu et al., 2015). While nucleation mode particles are 8 

only a minor contributor to overall ambient PM mass and surface area, they are the main 9 

contributors to ambient particle number (U.S. EPA, 2019b, section 2.2). By number, most 10 

nucleation mode particles fall into the UFP size range, though some fraction of the nucleation 11 

mode number distribution can extend above 0.1 μm in diameter. Nucleation mode particles can 12 

grow rapidly through coagulation or uptake of gases by particle surfaces, giving rise to the 13 

accumulation mode. The accumulation mode is typically the predominant contributor to PM2.5 14 

mass and surface area, though only a minor contributor to particle number (U.S. EPA, 2019b, 15 

section 2.2). PM2.5 sampling methods measure most of the accumulation mode mass, although a 16 

small fraction of particles that make up the accumulation mode are greater than 2.5 μm in 17 

diameter. Coarse mode particles are formed by mechanical generation, and through processes 18 

like dust resuspension and sea spray formation (Whitby et al., 1972). Most coarse mode mass is 19 

captured by PM10−2.5 sampling, but small fractions of coarse mode mass can be smaller than 2.5 20 

μm or greater than 10 μm in diameter (U.S. EPA, 2019b, section 2.2).  21 

Most particles are found in the lower troposphere, where they can have residence times 22 

ranging from a few hours to weeks. Particles are removed from the atmosphere by wet 23 
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deposition, such as when they are carried by rain or snow, or by dry deposition, when particles 1 

settle out of suspension due to gravity. Atmospheric lifetimes are generally longest for PM2.5, 2 

which often remains in the atmosphere for days to weeks (U.S. EPA, 2019b, Table 2-1) before 3 

being removed by wet or dry deposition. In contrast, atmospheric lifetimes for UFP and PM10−2.5 4 

are shorter. Within hours, UFP can undergo coagulation and condensation that lead to formation 5 

of larger particles in the accumulation mode, or can be removed from the atmosphere by 6 

evaporation, deposition, or reactions with other atmospheric components. PM10−2.5 are also 7 

generally removed from the atmosphere within hours, through wet or dry deposition (U.S. EPA, 8 

2019b, Table 2-1).  9 

2.1.1 Sources of PM Emissions 10 

PM is composed of both primary (directly emitted particles) and secondary chemical 11 

components. Primary PM is derived from direct particle emissions from specific PM sources 12 

while secondary PM originates from gas-phase chemical compounds present in the atmosphere 13 

that have participated in new particle formation or condensed onto existing particles (U.S. EPA, 14 

2019b, section 2.3). Primary particles, and gas-phase compounds contributing to secondary 15 

formation PM, are emitted from both anthropogenic and natural sources.  16 

Anthropogenic sources of PM include both stationary and mobile sources. Stationary 17 

sources include fuel combustion for electricity production and other purposes, industrial 18 

processes, agricultural activities, and road and building construction and demolition. Mobile 19 

sources of PM include diesel- and gasoline-powered highway vehicles and other engine-driven 20 

sources (e.g., ships, aircraft, and construction and agricultural equipment). Both stationary and 21 

mobile sources directly emit primary PM to ambient air, along with secondary PM precursors 22 

(e.g., SO2) that contribute to the secondary formation of PM in the atmosphere (U.S. EPA, 23 

2019b, section 2.3, Table 2-2).  24 

 Natural sources of PM include dust from the wind erosion of natural surfaces, sea salt, 25 

wildland fires, primary biological aerosol particles (PBAP) such as bacteria and pollen, oxidation 26 

of biogenic hydrocarbons such as isoprene and terpenes to produce secondary organic aerosol 27 

(SOA), and geogenic sources such as sulfate formed from volcanic production of SO2 (U.S. 28 

EPA, 2009, section 3.3, Table 3-2). While most of the above sources release or contribute 29 

predominantly to fine aerosol, some sources including windblown dust, and sea salt also produce 30 

particles in the coarse size range (U.S. EPA, 2019b, section 2.3.3). 31 

Generally, the sources of PM for different size fractions vary. While PM2.5 in ambient air 32 

is largely emitted directly by sources such as those described above or through secondary PM 33 

formation in the atmosphere, PM10-2.5 is almost entirely from primary sources (i.e., directly 34 

emitted) and is produced by surface abrasion or by suspension of sea spray or biological 35 
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materials such as microorganisms, pollen, and plant and insect debris (U.S. EPA, 2019b, section 1 

2.3.2.1).  2 

In sections 2.1.1.1 and 2.1.1.2 below, we describe the most recently available information 3 

on sources contributing to PM2.5 and PM10-2.5 emissions into ambient air, respectively, based on 4 

the 2017 National Emissions Inventory (NEI).2 In section 2.1.1.3, we describe information on 5 

sources contributing to emissions of PM components and precursor gases, with a focus on the 6 

2017 NEI. Section 2.3.1 discusses emission trends and identifies the sectors that have 7 

experienced the most change in direct PM and precursor emissions from 1990 to 2017. It should 8 

be noted that major decreases have been observed in NOX and SO2 emissions over this time, with 9 

continued reductions observed from the 2014 NEI to the 2017 NEI.  For a more detailed review 10 

of the changes in PM and PM precursor emissions from the 2014 NEI to the 2017 NEI, please 11 

refer to the 2017 NEI Technical Support Document (U.S. EPA, 2021). 12 

2.1.1.1 Sources Contributing to Primary PM2.5 Emissions  13 

The National Emissions Inventory (NEI) is a comprehensive and detailed estimate of air 14 

emissions of criteria pollutants, criteria pollutant precursors, and hazardous air pollutants from a 15 

comprehensive set of air emissions sources, including point sources (e.g., electric generating 16 

units, boilers, etc.), nonpoint (or area) sources (e.g., oil & gas, residential wood combustion, and 17 

many other dispersed sources), mobiles sources, and events (large fires). There are over 3,000 18 

sources for which the NEI is developed. The NEI is released every three years based primarily 19 

upon data provided by state, local, and tribal air agencies for sources in their jurisdictions and 20 

supplemented by data developed by the EPA. The NEI is built using the Emissions Inventory 21 

System (EIS) first to collect the data from state, local, and tribal air agencies and then to blend 22 

that data with other data sources. 23 

Based on the 2017 NEI, approximately 5.7 million tons/year of PM2.5 were estimated to 24 

be directly emitted to the atmosphere from a number of source sectors in the U.S. This total 25 

excludes sources that are not a part of the NEI (e.g., windblown dust, geogenic sources). As 26 

shown in Figure 2-2, nearly half of the total primary PM2.5 emissions nationally are contributed 27 

by the dust and fire sectors together. Dust includes agricultural, construction, and road dust. Of 28 

these, agricultural dust and road dust in sum make the greatest contributions to PM2.5 emissions 29 

nationally. Fires include wildfires, prescribed fires, and agricultural fires, with wildfires and 30 

prescribed fires accounting for most of the fire-related primary PM2.5 emissions nationally (U.S. 31 

 
2 These sections do not provide a comprehensive list of all sources, nor do they provide estimates of emission rates 

or emission factors for all source categories. Individual subsectors of source types were aggregated up to a sect or 

level as used in Figure 2-2 and Figure 2-4. More information about the sectors and subsectors can be found as a 

part of the 2017 NEI (U.S. EPA, 2021).  
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EPA, 2019b, section 2.3.1.1). Other lesser-contributing anthropogenic sources of PM2.5 1 

emissions nationally include stationary fuel combustion and agriculture sources. 2 

 3 
Figure 2-2. Percent contribution of PM2.5 national emissions by source sectors. (Source: 4 

2017 NEI) 5 

The relative contributions of specific sources to annual emissions of primary PM2.5 can 6 

vary from location to location, with a notable difference in contributions of sources of PM2.5 7 

emissions in urban areas compared to national emissions. For example, the 2019 ISA illustrates 8 

this variation of primary PM2.5 emissions with data from five urban counties in the U.S. (U.S. 9 

EPA, 2019b, Figure 2-3).3 Across the majority of these urban areas, the largest PM2.5-emitting 10 

sectors are mobile sources and fuel combustion. This is in contrast to fires, which account for the 11 

largest fraction of primary emissions nationally but make much smaller contributions in many 12 

urban counties (U.S. EPA, 2019b, section 2.3.1.2, Figure 2-3). While primary PM2.5 from mobile 13 

sources are a dominant contributor in some urban areas, accounting for an estimated 13 to 30% 14 

of the total primary PM2.5 emissions, mobile sources contribute only about 5% to total primary 15 

PM2.5 emissions nationally as shown in Figure 2-2. 16 

Another way to examine the emissions data shown in Figure 2-2 is by county. Figure 2-3 17 

presents county-based total PM2.5 emissions divided by the area of the county to normalize for 18 

differences in county size. This “emissions density” map highlights regions of the country with 19 

 
3 The five counties included in the 2019 ISA analysis include Queens County, NY, Philadelphia County, PA, Los 

Angeles County, CA, Sacramento County, CA, and Maricopa County (Phoenix), AZ (U.S. EPA, 2019b, section 

2.3.1.2). 
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the highest total PM2.5 emissions by county accounting for county size. While Figure 2-3 shows 1 

total PM2.5 emissions, different sectors will contribute at different levels across the country. 2 

 3 

 4 

Figure 2-3. 2017 NEI PM2.5 Emissions Density Map, tons per square mile 5 

2.1.1.2 Sources Contributing to Primary PM10 Emissions  6 

Although the NEI does not estimate emissions of PM10-2.5 (coarse PM) specifically, 7 

estimates of PM10 emissions can provide insight into sources of coarse particles. Thus, the 8 

discussion below focuses on PM10 emissions. The relative contributions of key sources to 9 

national PM10 emissions, based on the 2017 NEI, are shown in Figure 2-4. Total PM10 emissions 10 

are estimated to be about 17 million tons. National emissions of PM10 are dominated by dust and 11 

agriculture, contributing a combined 70% of the total emissions. Current NEI estimates of dust 12 

emissions across the U.S. are based on limited emissions profile and activity information. For a 13 

number of reasons, quantification of dust emissions is highly uncertain. Much like wildfires, dust 14 

emissions are common but intermittent emissions sources. Additionally, the suspension and 15 

resuspension of dust is difficult to quantify. Moreover, some dust particles in the PM10-2.5 size 16 

range are also transported internationally and are considered as a part of the background 17 

component of PM as opposed to a primary emission of coarse PM (U.S. EPA, 2019b, section 18 

2.3.3). 19 

As with PM2.5, the relative contributions of sources to total PM10 emissions varies from 20 

location to location (e.g., depending on local climate, geography, degree of urbanization, etc.). 21 

However, unlike PM2.5, the sectors included in Figure 2-4 are expected to be among the most 22 

important contributors to coarse PM emissions at both the national and more regional levels, 23 

particularly given the sources of the particles in these source categories (e.g., mineral dust, 24 

primary biological aerosols (including pollen), sea spray). As noted previously, the NEI does not 25 

include sources such as pollen, sea spray, windblown dust, or geogenic sources, though those 26 

sources also likely contribute to PM10 emissions. Figure 2-4 shows the national contributions to 27 
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PM10 emissions from particular source sectors and Figure 2-5 exhibits the corresponding 1 

emissions density map for PM10.  2 

 3 

 4 
Figure 2-4. Percent contribution of PM10 emissions by national source sectors. (Source: 5 

2017 NEI)  6 

 7 

 8 
Figure 2-5. 2017 NEI PM10 Emissions Density Map, tons per square mile 9 

2.1.1.3 Sources Contributing to Emissions of PM Components and Precursor Gases 10 

Understanding the components of PM is particularly important for providing insight into 11 

which sources contribute to PM mass, as well as to better understand the health and welfare 12 

effects of particles. Major components of PM2.5 mass include sulfate (SO4
2-), nitrate (NO3

-), 13 
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elemental or black carbon (EC or BC), organic carbon (OC), and crustal materials. Some of these 1 

PM components are emitted directly to the air (e.g., EC/BC) while others are formed secondarily 2 

through reactions by gaseous precursors (e.g., sulfate, nitrate). The following sections 3 

specifically discuss the sources that contribute to the specific PM2.5 components, including 4 

particulate carbon (section 2.1.1.3.1) and precursor gases (section 2.1.1.3.2). 5 

2.1.1.3.1 Sources Contributing to Emissions of Particulate Carbon  6 

Of the directly emitted components of PM2.5, emissions of elemental (or black) carbon 7 

and organic carbon often make up the largest percentage of directly emitted PM2.5 mass. Figure 8 

2-6 illustrates the sources that contribute to national emissions of elemental and organic carbon 9 

based on the 2017 NEI. The top panel of Figure 2-6 shows that fires account for most (i.e., 63%) 10 

of the 1.8 million tons of particulate OC emissions estimated in the 2017 NEI, while the bottom 11 

panel of Figure 2-6 shows that fires and mobile sources (mostly diesel sources) contribute 71% 12 

of the estimated ~ 284,000 tons of particulate EC in the 2017 NEI. It should be noted that the 13 

fraction of EC to PM2.5 was lower in the 2017 NEI compared to the 2014 NEI, owing to a 14 

significantly lower contribution of EC from fires in the 2017 NEI compared to previous NEIs. 15 

This change in the EC fraction resulted from an in-house research program to investigate the 16 

PM2.5 chemical composition of the emissions from fires burning different fuels and in different 17 

combustion phases. It should be noted that the OC contributions on a percentage basis increased 18 

in accordance with the EC decreases. While these results have not yet been directly published, 19 

this information has been acknowledged and used in other EPA analyses (Kelly et al., 2019b, 20 

Figure 13). 21 

  22 
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 1 

 2 

Figure 2-6. Percent contribution to organic carbon (top panel) and elemental carbon 3 
(bottom panel) national emissions by source sectors. (Source: 2017 NEI)  4 
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Figure 2-7 shows the emissions density map for elemental carbon. This map illustrates 1 

that the EC emissions signals are strong in the Southeast U.S, the central region of the U.S. (i.e., 2 

Kansas and Oklahoma), and parts of the West and Northwest U.S., where fires make substantial 3 

contributions to PM2.5. In addition, areas where diesel off-road and on-road sources are a large 4 

part of the emissions mix also stand out (urban and highway corridors). The OC density map (not 5 

shown) shows the highest emissions density in locations with substantial biomass burning 6 

activity, consistent with most of the OC emissions coming from fires (Figure 2-6).  7 

 8 

Figure 2-7. 2017 NEI Elemental Carbon Emissions Density Map, tons per square mile. 9 

2.1.1.3.2 Sources Contributing to Emissions of Precursor Gases   10 

As discussed further in the 2019 ISA (U.S. EPA, 2019b, section 2.3.2.1), secondary PM 11 

is formed in the atmosphere by photochemical oxidation reactions of both inorganic and organic 12 

gas-phase precursors. Precursor gases include SO2, NOX, and volatile organic compound (VOC) 13 

gases of anthropogenic or natural origin (U.S. EPA, 2019b, section 2.3.2.1). Anthropogenic SO2 14 

and NOX are the predominant precursor gases in the formation of secondary PM2.5, and ammonia 15 

also plays an important role in the formation of nitrate PM by neutralizing sulfuric acid and nitric 16 

acid. In addition, atmospheric oxidation of VOCs, both anthropogenic and biogenic, is an 17 

important source of organic aerosols, particularly in summer. The semi-volatile and non-volatile 18 

products of VOC oxidation reactions can condense onto existing particles or can form new 19 

particles (U.S. EPA, 2009, section 3.3.2; U.S. EPA, 2019b, section 2.3.2).  20 

Emissions of each of the precursor gases noted above are estimated in the NEI and have 21 

unique source signatures at the national level. Figure 2-8 illustrates the source contributions at 22 

the national level for these PM2.5 precursor gases. As shown in Panel A in Figure 2-8, stationary 23 

fuel combustion sources contribute nearly 70% of the estimated total of 2.8 million tons of 24 

national SO2 national emissions. Within this source category, nearly all of the SO2 emitted to the 25 

atmosphere comes from electricity generating units, or EGUs. Anthropogenic NOX emissions, 26 

shown in panel B, are emitted by a range of combustion sources, including mobile sources (59%) 27 
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and stationary fuel combustion sources (25%). In the 2017 NEI, there is an estimated total of 1 

10.3 million tons of NOX emitted. Of the total estimated 4.3 million tons of anthropogenic 2 

ammonia (NH3) emissions shown in panel C of Figure 2-8, NH3 emissions are dominated by the 3 

agriculture source categories. In these categories, NH3 is predominantly emitted by livestock 4 

waste from animal husbandry operations (56%) and fertilizer application (25%). In urban areas, 5 

on-road mobile sources may also contribute significantly to NH3 emissions (U.S. EPA, 2019b, 6 

Figure 2-3; Sun et al., 2014; U.S. EPA, 2020). Of the estimated 17.2 million tons of VOC 7 

emissions from anthropogenic sources, fires (39%) and “miscellaneous” (22%)4 are the highest 8 

contributors, followed by mobile sources (17%) and industrial processes (18%), as shown in 9 

Figure 2-8 panel D. It should be noted that as these traditional combustion sources of VOCs are 10 

reduced by regulations and controls, new non-combustion sources, such as volatile chemical 11 

products (solvents) are emerging as key contributors to anthropogenic VOC totals in some parts 12 

of the country, and particularly in urban corridors. In addition, biogenic sources (not shown in 13 

Figure 2-8) are significant contributors to both VOC and NOx emissions. 14 

 15 

 16 

 17 
Figure 2-8. Percent contribution to sulfur dioxide (panel A), oxides of nitrogen (panel B), 18 

ammonia (panel C), and volatile organic compounds (panel D) national emissions by 19 

source sectors. (Source: 2017 NEI). All graphics only show anthropogenic contributions. 20 

 
4 The “miscellaneous” category includes such things as solvents, commercial cooking and waste disposal. 
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Figure 2-9 to Figure 2-12 below show the emissions density maps corresponding to each 1 

of the PM2.5 precursors included in Figure 2-8.  2 

 3 

 4 

Figure 2-9. SO2 Emissions Density Map, tons per square mile. 5 

 6 

 7 
Figure 2-10. NOX Emissions Density Map, tons per square mile. 8 
 9 

 10 
Figure 2-11. NH3 Emissions Density Map, tons per square mile. 11 
 12 
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 1 
Figure 2-12. Anthropogenic (including wildfires) VOC Emissions Density Map, tons per 2 

square mile. 3 

2.1.1.3.3 Uncertainty in Emission Estimates 4 

Accuracy in an emissions inventory reflects the extent to which the inventory represents 5 

the actual emissions that occurred. Anthropogenic emissions of air pollutants result from a 6 

variety of sources such as power plants, industrial sources, motor vehicles and agriculture. The 7 

emissions from any individual source typically vary in both time and space. It is not practically 8 

possible to monitor each of the emission sources individually and, therefore, emission 9 

inventories necessarily contain assumptions, and must rely too on interpolation and extrapolation 10 

from a limited set of sample data.  11 

The NEI process is based on a “bottom up” approach to developing emission estimates. 12 

This means that a combination of activity and an appropriate emissions factor is used to estimate 13 

emissions for all processes, including accounting for controls as possible. For the thousands of 14 

sources that make up the NEI, there is uncertainty in one or all of these factors. For some 15 

sources, such as EGUs, direct emission measurements enable the emission factors to be more 16 

certain than for sources without such direct measurements. For example, emission factors for 17 

residential wood combustion are taken from information available in the literature, regardless of 18 

its pedigree and direct applicability to the source in question. Many of these issues related to the 19 

analysis of uncertainty in the NEI are discussed by Day et al. (2019).  20 

It is not clear how uncertainties in emission estimates affect air quality modeling, as there 21 

are no numerical empirical uncertainty estimates available for the NEI. However, by comparing 22 

modeled concentrations to ambient measurements, overall uncertainty in model outputs can be 23 

characterized. Some of this uncertainty in model outputs is likely due to uncertainty in emission 24 

estimates. The EPA uses information from air quality models and feedback from modelers and 25 

other stakeholders to help identify which sectors to prioritize for emissions data methods 26 

improvements. 27 
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2.2 AMBIENT PM MONITORING METHODS AND NETWORKS 1 

To promote uniform enforcement of the air quality standards set forth under the CAA and 2 

to achieve the degree of public health and welfare protection intended for the NAAQS, the EPA 3 

established PM Federal Reference Methods (FRMs)5 for both PM10 and PM2.5 (40 CFR 4 

Appendix J and L to Part 50) and performance requirements for approval of Federal Equivalent 5 

Methods (FEMs) (40 CFR Part 53). Amended following the 2006 and 2012 PM NAAQS 6 

reviews, the current PM monitoring network relies on FRMs and automated continuous FEMs, in 7 

part to support changes necessary for implementation of the revised PM standards. The 8 

requirements for measuring ambient air quality and reporting ambient air quality data and related 9 

information are the basis for 40 CFR Appendices A through E to Part 58.   10 

The EPA and its partners at state, local, and tribal monitoring agencies manage and 11 

operate the nation’s ambient air monitoring networks. The EPA provides minimum monitoring 12 

requirements for criteria pollutants and related monitoring (e.g., the Chemical Speciation 13 

Network (CSN)), including identification of an FRM for criteria pollutants and guidance 14 

documents to support implementation and operation of the networks. Monitoring agencies carry 15 

out and perform ambient air monitoring in accordance with the EPA’s requirements and 16 

guidance as well as often meeting their own state monitoring needs that may go beyond the 17 

minimum federal requirements. Data from the ambient air monitoring networks are available 18 

from two national databases: 1) the Air Quality System (AQS) database, which is the EPA’s 19 

long-term repository of ambient air monitoring data and 2) the AirNow database, which provides 20 

near real-time data used in public reporting and forecasting of the Air Quality Index (AQI).6  21 

The EPA and monitoring agencies manage and operate robust national networks for both 22 

PM10 and PM2.5, as these are the two measurement programs directly supporting the PM 23 

NAAQS. PM10 measurements are based on gravimetric mass, while PM2.5 measurements include 24 

gravimetric mass and chemical speciation. A smaller network of stations is operating and 25 

reporting data for PM10-2.5 gravimetric mass and a few monitors are operated to support special 26 

projects, including pilot studies, for continuous speciation and particle count data. Monitoring 27 

networks and additional monitoring efforts for each of the various PM size fractions and for PM 28 

 
5 FRMs provide the methodological basis for comparison to the NAAQS and also serve as the “gold  standard” for 

the comparison of other methods being reviewed for potential approval as equivalent methods. The EPA keeps a 

complete list of designated reference and equivalent methods available on its Ambient Monitoring Technology 

Information Center (AMTIC) website (https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants).   

6 The AQI is an index for reporting daily air quality and translates air quality data into numbers and colors to help 

people understand how clean or polluted the air is, and what associated health effects might be a concern, 

especially for ozone and particle pollution. 

https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants
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composition are discussed below.7 Section 2.2.1 provides information on monitoring for total 1 

suspended particulates (TSP), section 2.2.2 provides information on monitoring for PM10, section 2 

2.2.3 provides information on monitoring PM2.5, section 2.2.4 provides information on 3 

monitoring for PM10-2.5, and section 2.2.5 provides information on additional PM metrics. All 4 

sampler and monitor counts provided in these sections are based on data submitted to the EPA 5 

for calendar year 2020, unless otherwise noted. Figure 2-13 below illustrates the changes in PM 6 

monitoring stations reporting to the EPA’s AQS database by size fraction since 1970. 7 

 8 

 9 

Figure 2-13. PM Monitoring stations reporting to EPA’s AQS database by PM size 10 
fraction, 1970-2020. 11 

2.2.1 Total Suspended Particulates (TSP) Sampling 12 

The EPA first established NAAQS for PM in 1971, based on the original air quality 13 

criteria document (DHEW, 1969). The reference method specified for determining attainment of 14 

the original standards was the high-volume sampler, which collects PM up to a nominal size of 15 

25 to 45 μm (referred to as total suspended particles or TSP). TSP was replaced by PM10 as the 16 

indicator for the PM NAAQS in the 1987 final rule (52 FR 24854, July 1, 1987). TSP sampling 17 

remains in operation at a limited number of locations primarily to provide aerosol collection for 18 

TSP lead (Pb) analysis as well as for instances where a state may continue to have state standards 19 

for TSP. The size of the TSP network peaked in the mid-1970s when over 4,300 TSP samplers 20 

 
7 More information on ambient monitoring networks can be found at https://www.epa.gov/amtic 

https://www.epa.gov/amtic
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were in operation. As of 2020, there were 104 TSP samplers still in operation as part of the Pb 1 

monitoring program; of these, 25 also report TSP mass.   2 

2.2.2 PM10 Monitoring 3 

To support the 1987 PM10 NAAQS, the EPA and its state and local partners implemented 4 

the first size-selective PM monitoring network in 1990 with the establishment of a PM10 network 5 

consisting of mainly high-volume samplers. The network design criteria emphasize monitoring at 6 

middle8 and neighborhood9 scales to effectively characterize the emissions from both mobile and 7 

stationary sources, although not ruling out microscale10 monitoring in some instances (40 CFR 8 

Part 58 Appendix D, 4.6 (b)). The PM10 monitoring network peaked in size in 1995 with 1,665 9 

stations reporting data.  10 

In 2020, there were 680 PM10 stations in operation to support comparison of the PM10 11 

data to the NAAQS, trends, and reporting and forecasting of the AQI. Though the PM10 network 12 

 
8 For PM10, middle-scale is defined as follows: Much of the short-term public exposure to PM10 is on this scale and 

on the neighborhood scale. People moving through downtown areas or living near major roadways or stationary 

sources, may encounter particulate pollution that would be adequately characterized by measu rements of this 

spatial scale. Middle scale PM10 measurements can be appropriate for the evaluation of possible short -term 

exposure public health effects. In many situations, monitoring sites that are representative of micro -scale or 

middle-scale impacts a re not unique and are representative of many similar situations. This can occur along traffic 

corridors or other locations in a residential district. In this case, one location is representative of a neighborhood 

of small-scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the 

characteristic concentrations for other areas with dimensions of a few hundred meters such as the parking lot and 

feeder streets associated with shopping centers, stadia, and office buildings. In the case of PM10, unpaved or 

seldomly swept parking lots associated with these sources could be an important source in addition to the 

vehicular emissions themselves.  

9 For PM10, neighborhood scale is defined as follows: Measurements in this category represent conditions 

throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of 

generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, 

as well as the land use and land surface characteristics. In some cases, a  location carefully chosen to provide 

neighborhood scale data would represent not only the immediate neighborhood but also neighborhoods of the 

same type in other parts of the city. Neighborhood scale PM10 sites provide information about trends and 

compliance with standards because they often represent conditions in areas where people commonly live and 

work for extended periods. Neighborhood scale data could provide valuable information for develo ping, testing, 

and revising models that describe the larger-scale concentration patterns, especially those models relying on 

spatially smoothed emission fields for inputs. The neighborhood scale measurements could also be used for 

neighborhood comparisons within or between cities. 

10 For PM10, microscale is defined as follows: This scale would typify areas such as downtown street canyons, traffic 

corridors, and fence line stationary source monitoring locations where the general public could be exposed to 

maximum PM10 concentrations. Microscale particulate matter sites should be located near inhabited buildings or 

locations where the general public can be expected to be exposed to the concentration measured. Emissions from 

stationary sources such as primary and secondary smelters, power plants, and other large industrial processes 

may, under certain plume conditions, likewise result in high ground level concentrations at the microscale. In the 

latter case, the microscale would represent an area impacted by the plume with dimensions extending up to 

approximately 100 meters. Data collected at microscale sites provide information for evaluating and developing 

hot spot control measures. 
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is relatively stable, monitoring agencies may continue divesting of some of the PM10 monitoring 1 

stations where concentration levels are low relative to the NAAQS.  2 

While the PM10 network is national in scope, there are areas of the west, such as 3 

California and Arizona, with substantially higher PM10 station density than the rest of the 4 

country. In the PM10 mass network, 385 of the stations operate automated continuous mass 5 

monitors approved as FEMs and 295 operate FRMs. About 30 of the PM10 stations have 6 

collocation with both continuous FEMs and FRMs. More than half of the PM10 stations with 7 

FRMs operate on a sample frequency of one in every sixth day, with about 55 stations operating 8 

every third day and another 55 stations operating every day. 9 

2.2.3 PM2.5 Monitoring 10 

To support the 1997 PM2.5 NAAQS, the first PM standard with PM2.5 as an indicator, the 11 

EPA and states implemented a PM2.5 network consisting of ambient air monitoring sites with 12 

mass and/or chemical speciation measurements. Network operation began in 1999 with nearly 13 

1,000 monitoring stations operating FRMs to measure fine particle mass. The PM2.5 monitoring 14 

program remains one of the major ambient air monitoring programs operated across the country.  15 

For most urban locations, PM2.5 monitors are sited at the neighborhood scale,11 where 16 

PM2.5 concentrations are reasonably homogeneous throughout an entire urban sub-region. In each 17 

CBSA with a monitoring requirement, at least one PM2.5 monitoring station representing area-18 

wide air quality is to be sited in an area of expected maximum concentration. Sites that represent 19 

relatively unique microscale, localized hot-spot, or unique middle scale impact sites are only 20 

eligible for comparison to the 24-hour PM2.5 NAAQS.  21 

There are three main components of the current PM2.5 monitoring program: FRMs, PM2.5 22 

continuous mass monitors, and CSN samplers. The FRMs are primarily used for comparison to 23 

the NAAQS, but also serve other important purposes such as developing trends and evaluating 24 

the performance of PM2.5 continuous mass monitors. PM2.5 continuous mass monitors are 25 

automated methods primarily used to support forecasting and reporting of the AQI, but are also 26 

used for comparison to the NAAQS where approved as FEMs. The CSN and related Interagency 27 

Monitoring of Protected Visual Environments (IMPROVE) network are used to provide 28 

 
11 For PM2.5, neighborhood scale is defined as follows: Measurements in this category would represent conditions 

throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of 

generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, 

as well as the land use and land surface characteristics. Much of the PM2.5 exposures are expected to be associated 

with this scale of measurement. In some cases, a  location carefully chosen to provide neighborhood scale data 

would represent the immediate neighborhood as well as neighborhoods of the same type in other parts of the city. 

PM2.5 sites of this kind provide good information about trends and compliance with standards because they often 

represent conditions in areas where people commonly live and work for periods comparable to those specified in 

the NAAQS. In general, most PM2.5 monitoring in urban areas should have this scale. 
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chemical composition of the aerosol which serve a variety of objectives. This section provides an 1 

overview of each of these components of the PM2.5 monitoring program and of recent changes to 2 

PM2.5 monitoring requirements.  3 

2.2.3.1 Federal Reference Method and Continuous Monitors 4 

As noted above, the PM2.5 monitoring network began operation in 1999 with nearly 1,000 5 

monitoring stations operating FRMs. The PM2.5 FRM network peaked in operation in 2001 with 6 

over 1,150 monitoring stations. In the PM2.5 network for 2020 there were 527 FRM filter-based 7 

samplers that provide 24-hour PM2.5 mass concentration data. Of these operating FRMs, 68 are 8 

providing daily PM2.5 data, 340 every third day, and 119 every sixth day.  9 

As of 2020, there are 950 continuous PM2.5 mass monitors that provide hourly data on a 10 

near real-time basis reporting across the country. A total of 660 of the PM2.5 continuous monitors 11 

are FEMs and therefore used both for comparison with the NAAQS and to report the AQI. 12 

Another 290 monitors not approved as FEMs are operated primarily to report the AQI. These 13 

legacy PM2.5 continuous monitors were largely purchased prior to the availability of PM2.5 14 

continuous FEMs.  15 

The first method approved as a continuous PM2.5 FEM was the Met One BAM 1020. This 16 

method, approved in 2008, accounts for just over a third of the operating PM2.5 continuous FEMs 17 

in the country. The EPA has approved a total of 11 PM2.5 continuous methods as FEMs. Other 18 

methods approved as continuous PM2.5 FEMs include beta attenuation from multiple instrument 19 

manufacturers; optical methods such as the GRIMM and Teledyne T640; and methods 20 

employing the Tapered Element Oscillating Microbalance (TEOM) with a Filter Dynamic 21 

Measurement System (FDMS) manufactured by Thermo Fisher Scientific.  22 

The quality of the data generated by PM2.5 FRMs and automated FEMs were analyzed for 23 

years 2018-2020. Data quality terms for measurement uncertainty regularly assessed in the PM2.5 24 

monitoring program include precision and bias. Precision is calculated by comparing data from 25 

collocated methods of the same make and model operated by the same monitoring organization. 26 

Bias is calculated by comparing data from routinely operated FRMs or automated FEMs by the 27 

monitoring organization and comparing that to data from reference method audit samplers 28 

temporarily collocated and operated independently from the staff in the monitoring organization. 29 

Goals for measurement uncertainty are defined in Appendix A to 40 CFR Part 58. They state 30 

“Measurement Uncertainty for Automated and Manual PM2.5 Methods. The goal for acceptable 31 

measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the 32 

coefficient of variation (CV) of 10 percent and ±10 percent for total bias.” The most recent three-33 

year average estimate of national aggregate PM2.5 FRM precision is 7.6% and bias is –7.5%.   34 
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Automated PM2.5 FEMs include a wide variety of approved methods which can have 1 

different measurement principles. Data aggregated across all automated FEMs for years 2018-2 

2020 result in a collocated precision of 12.8%.  Bias can be calculated from the reference method 3 

audit program and by comparing continuous FEMs to collocated FRMs run by the monitoring 4 

agency. The 2018-2020 reference method audit program had a bias of -1.7% with a sample size 5 

of 573 audits across all continuous FEMs. Continuous FEMs compared to collocated monitoring 6 

agency FRMs were biased higher by 11.5% with a large sample size of 85,539 collocated pairs 7 

for 2018-2020 (all cases where both the FRM and continuous FEM are at or above 3.0 μg/m3). 8 

When evaluating automated FEMs as individual methods, only two of the seven methods with 9 

available collocated precision data met the measurement uncertainty goal and six of the eleven 10 

methods met the bias goal. However, for collocated precision data and when considering a 11 

requirement for approval of candidate FEMs: “Statistical analyses based on the DQO model 12 

show that the precision of a candidate method is not, statistically, very important to annual 13 

concentration averages used for NAAQS attainment decisions, but would be important for a 14 

daily standard” (71 FR 2620, January 17, 2006) In summary, PM2.5 automated FEMs tend to 15 

have higher collocated precision than FRMs and tend to have a positive bias relative to state and 16 

local operated FRMs.   17 

2.2.3.2 Chemical Speciation and IMPROVE Networks 18 

Due to the complex nature of fine particles, the EPA and states implemented the CSN to 19 

better understand the components of fine particle mass at selected locations across the country. 20 

The CSN was first piloted at 13 sites in 2000, and after the pilot phase, the program continued 21 

with deployment of the Speciation Trends Network (STN) later that year. The CSN ultimately 22 

grew to 54 trends sites and peaked in operation in 2005 with 252 stations: the 54 trends stations 23 

and nearly 200 supplemental stations. The original CSN program had multiple sampler 24 

configurations including the Thermo Andersen RAAS, Met One SASS/SuperSASS, and URG 25 

MASS. During the 2000s, the EPA and states worked to align the network to one common 26 

sampler for elements and ions, which was the Met One SASS/SuperSASS. In 2005, the CASAC 27 

provided recommendations to the EPA for making changes to the CSN. These changes were 28 

intended to improve data comparability with the rural IMPROVE carbon concentration data. To 29 

accomplish this, the EPA replaced the existing carbon channel sampling and analysis methods 30 

with a new modified IMPROVE version III module C sampler, the URG 3000N. Implementation 31 

of the new carbon sampler and analysis was broken into three phases starting in May 2007 32 

through October 2009. 33 
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In the 2020 PM2.5 CSN, long-term measurements are made at about 75 largely urban 1 

locations comprised of either the STN or the National Core (NCore) network.12 NCore is a 2 

multipollutant network measuring particles, gases, and basic meteorology that has been in formal 3 

operation since January 1, 2011. Particle measurements made at NCore include PM2.5 filter-based 4 

mass, which is largely the FRM, except in some rural locations that utilize the IMPROVE 5 

program PM2.5 mass filter-based measurement; PM2.5 speciation using either the CSN program or 6 

IMPROVE program; and PM10-2.5 mass utilizing an FRM, FEM or IMPROVE for some of the 7 

rural locations. As of 2020, the NCore network includes a total of 78 stations of which 63 are in 8 

urban or suburban stations designed to provide representative population exposure and another 9 

15 rural stations designed to provide background and transport information. The NCore network 10 

is deployed in all 50 States, DC, and Puerto Rico with at least one station in each state and two or 11 

more stations in larger population states (California, Florida, Illinois, Michigan, New York, 12 

North Carolina, Ohio, Pennsylvania, and Texas).  13 

Both the STN and NCore networks are intended to remain in operation indefinitely. The 14 

CSN measurements at NCore and STN stations operate every third day. Six of these stations 15 

have collocated sets of CSN samplers where the collocated samplers operate every sixth day to 16 

provide precision calculations of each chemical species measured. Another approximately 70 17 

CSN stations, known as supplemental sites, are intended to be potentially less permanent 18 

locations used to support State Implementation Plan (SIP) development and other monitoring 19 

objectives.13 Supplemental CSN stations typically operate every sixth day. In January 2015, 38 20 

supplemental CSN stations that are largely located in the eastern half of the country stopped 21 

operations to ensure a sustainable CSN network moving forward .14  22 

Specific components of fine particles are also measured through the IMPROVE 23 

monitoring program,15 which supports regional haze characterization and tracks changes in 24 

 
12  In most cases where a city has an STN station, it is located at the same site as the NCore station. In a few cases, a  

city may have an STN station located at a  different location than the NCore station.  

13 See https://www.epa.gov/amtic/chemical-speciation-network-csn for more information on the PM2.5 speciation 

monitoring program.  

14 Based on assessments of the CSN network and IMPROVE protocol sites, monitoring resources were redistributed 

to focus on new or high priorities. More information on the CSN and IMPROVE protocol assessments is 

available at https://www.epa.gov/amtic/csn-and-improve-protocol-network-assessment.   

15 Recognizing the importance of visual air quality, Congress included legislation in the 1977 Clean Air Act to 

prevent future and remedy existing visibility impairment in Class I areas. To aid the implementation of this 

legislation, the IMPROVE program was initiated in 1985 and substantially expanded in 2000 -2003. This program 

implemented an extensive long-term monitoring program to establish the current visibility conditions, track 

changes in visibility and determine causal mechanism for the visibility impairment in the National Parks and 

Wilderness Areas. For more information, see https://vista.cira.colostate.edu/Improve/.    
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visibility in Class I areas16 as well as many other rural and some urban areas. As of 2018, the 1 

IMPROVE network includes 110 monitoring locations that are part of the base network 2 

supporting regional haze and another 38 locations operated as IMPROVE protocol sites where a 3 

monitoring agency has requested participation in the program. These IMPROVE protocol sites 4 

operate the same way as the IMPROVE program, but they may serve several monitoring 5 

objectives (i.e., the same objectives as the CSN) and are not explicitly tied to the Regional Haze 6 

Program. Samplers at IMPROVE stations operate every third day. In January 2016, eight 7 

IMPROVE protocol stations stopped operating to ensure a sustainable IMPROVE program 8 

moving forward. Details on the process and outcomes of the CSN supplemental and IMPROVE 9 

protocol assessments used to identify sites that would no longer be funded are available on a 10 

website.17 Together, the CSN and IMPROVE data provide chemical species information for fine 11 

particles that are critical for use in health and epidemiologic studies to help inform reviews of the 12 

primary PM NAAQS. CSN and IMPROVE data can also be used to better understand visibility 13 

through calculation of light extinction using the IMPROVE algorithm18 to support reviews of the 14 

secondary PM NAAQS.  15 

The quality of the data generated by the PM2.5 speciation networks (CSN and IMPROVE) 16 

is assessed regularly, using a variety of metrics. Overall network precision, including 17 

uncertainties associated with both field operations and laboratory analyses, is assessed using the 18 

subset of sites with collocated samplers. Fractional uncertainty is one metric that both speciation 19 

networks regularly calculates using collocated data pairs above the MDL and reflects the overall 20 

percent uncertainty for the measurements. For CSN data collected between June 2016 and 21 

December 2019, the fractional uncertainties range from 5.6% for sulfate to 36.4% for chlorine.19 22 

For IMPROVE data collected in 2016 and 2017, the fractional uncertainties range from 2% for 23 

sulfur and sulfate to 27% for phosphorous.20 In general, uncertainties are higher for species with 24 

 
16 See Regional Haze rule text at 50 CFR Part 51.308(d)(4) and (f)(6) (pasted below) lists SIP requirements, one of 

which is a “Monitoring Strategy…”. This part of the rule doesn’t necessarily require IMPROVE, rather it simply 

assures states that IMPROVE will meet this requirement. Specifically, this text reads: “(6) Monitoring strategy 

and other implementation plan requirements. The State must submit with the implementation plan a monitoring 

strategy for measuring, characterizing, and reporting of  regional haze visibility impairment that is representative 

of all mandatory Class I Federal areas within the State. Compliance with this requirement may be met through 

participation in the Interagency Monitoring of Protected Visual Environments network.”  

17 See the CSN and IMPROVE Protocol Network Assessment Website at: https://www.epa.gov/amtic/csn-and-

improve-protocol-network-assessment 

18 The IMPROVE algorithm is an equation to estimate light extinction based on the measured concentration of 

several PM components and is used to track visibility progress in the Regional Haze Rule. More information 

about the IMPROVE algorithm is at available at: http://vista.cira.colostate.edu/Improve/the-improve-algorithm.  

19 https://airquality.ucdavis.edu/sites/g/files/dgvnsk1671/files/inline-

files/CSN_AnnualReport_2016Data_03.06.2019_FINAL_APPROVED.pdf   

20 http://vista.cira.colostate.edu/improve/wp-content/uploads/2019/11/IMPROVE_QAReport_11.15.2019.pdf    

https://www.epa.gov/amtic/csn-and-improve-protocol-network-assessment
https://www.epa.gov/amtic/csn-and-improve-protocol-network-assessment
http://vista.cira.colostate.edu/Improve/the-improve-algorithm
https://airquality.ucdavis.edu/sites/g/files/dgvnsk1671/files/inline-files/CSN_AnnualReport_2016Data_03.06.2019_FINAL_APPROVED.pdf
https://airquality.ucdavis.edu/sites/g/files/dgvnsk1671/files/inline-files/CSN_AnnualReport_2016Data_03.06.2019_FINAL_APPROVED.pdf
http://vista.cira.colostate.edu/improve/wp-content/uploads/2019/11/IMPROVE_QAReport_11.15.2019.pdf


October 2021 2-22 Draft – Do Not Quote or Cite 

concentrations near the detection limit. Bias for the speciation networks can be assessed using 1 

reports from interlaboratory comparisons.21 2 

2.2.3.3 Recent Changes to PM2.5 Monitoring Requirements 3 

Key changes made to the EPA’s monitoring requirements as a result of the 2012 PM 4 

NAAQS review included the addition of PM2.5 monitoring at near-road locations in core-based 5 

statistical areas (CBSAs) over 1 million in population; the clarification of terms used in siting of 6 

PM2.5 monitors and their applicability to the NAAQS; and the provision of flexibility on data 7 

uses to monitoring agencies where their PM2.5 continuous monitors are not providing data that 8 

meets the performance criteria used to approve the continuous method as an FEM. The addition 9 

of PM2.5 monitoring at near-road locations was phased in from 2015 to 2017. On January 1, 10 

2015, 22 CBSAs with a population of 2.5 million or more were required to have a PM2.5 FRM or 11 

FEM operating at a near-road monitoring station. On January 1, 2017, 30 CBSAs with a 12 

population between 1 million and 2.5 million were required to have a PM2.5 FRM or FEM 13 

operating are a near-road monitoring station.  14 

The terms clarified as a part of the 2012 rulemaking ensure consistency with all other 15 

NAAQS and long-standing definitions used by the EPA (78 FR 3234, January 15, 2013). The 16 

flexibility provided to monitoring agencies ensures that the incentives of utilizing PM2.5 17 

continuous monitors (e.g., efficiencies in operation and availability of hourly data in near-real 18 

time) are realized without having potentially poor performing data being used in situations where 19 

the data is not applicable to the NAAQS (78 FR 3241, January 15, 2013).  20 

2.2.4 PM10-2.5 Monitoring 21 

In the 2006 PM NAAQS review, the EPA promulgated a new FRM for the measurement 22 

of PM10-2.5 mass in ambient air. Although the standard for coarse particles uses a PM10 indicator, 23 

a new FRM for PM10-2.5 mass was developed to provide a basis for approving FEMs and to 24 

promote the gathering of scientific data to support future reviews of the PM NAAQS. The PM10-25 

2.5 FRM (or approved FEMs, where available) was implemented at required NCore stations by 26 

January 1, 2011. In addition to NCore, there are other collocated PM10 and PM2.5 low-volume 27 

FRMs operating across the country that are essentially providing the PM10-2.5 FRM measurement 28 

by the difference method.  29 

PM10-2.5 measurements are currently performed across the country at NCore stations, 30 

IMPROVE monitoring stations, and at a few additional locations where state or local agencies 31 

choose to operate a PM10-2.5 method. For urban NCore stations and other State and Local Air 32 

 
21 https://www.epa.gov/amtic/chemical-speciation-network-interlaboratory-performance-evaluation-comparison-

results 

https://www.epa.gov/amtic/chemical-speciation-network-interlaboratory-performance-evaluation-comparison-results
https://www.epa.gov/amtic/chemical-speciation-network-interlaboratory-performance-evaluation-comparison-results
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Monitoring Stations (SLAMS) the method employed is either a PM10-2.5 FRM, which is 1 

performed using a low-volume PM10 FRM collocated with a low volume PM2.5 FRM of the same 2 

make and model, or FEMs for PM10-2.5, including filter-based dichotomous methods and 3 

continuous methods of which several makes and models are approved . Filter-based PM10-2.5 4 

measurements at NCore (i.e., the FRM or dichotomous filter-based FEM) operate every third 5 

day, while continuous methods have data available every hour of every day. PM10-2.5 filter-based 6 

methods at other SLAMS typically operate every third or sixth day. For IMPROVE, which is 7 

largely a rural network, PM10-2.5 measurements are made with two sample channels; one each for 8 

PM10 and PM2.5. All IMPROVE program samplers operate every third day. All together there 9 

were 287 stations in 2020 where PM10-2.5 data were being reported to the AQS database.  10 

There is no operating chemical speciation network for characterizing the specific 11 

components of coarse particles. In 2015, Washington University at St. Louis, under contract to 12 

the EPA, reported on a coarse particle speciation pilot study with several objectives aimed at 13 

addressing this issue, such as evaluating a coarse particle species analyte list and evaluating 14 

sampling and analytical methods (U.S. EPA, 2015). The coarse particle speciation pilot study 15 

provides useful information for any organization wishing to pursue coarse particle speciation.  16 

2.2.5 Additional PM Measurements and Metrics 17 

There are additional PM measurements and metrics made at a much smaller number of 18 

stations. These measurements may be associated with special projects or are complementary 19 

measurements to other networks where the monitoring agency has prioritized having the 20 

measurements. None of these measurements are required by regulation. They include PM 21 

measurements such as particle counts, continuous carbon, and continuous sulfate. 22 

The EPA and state and local agencies have also been working together to pilot additional 23 

PM methods at near-road monitoring stations that may be of interest to data users. These 24 

methods include such techniques as particle counters, particle size distribution, and black carbon 25 

by aethalometer. These methods and their rationale for use at near-road monitoring stations are 26 

described in a Technical Assistance Document (TAD) on NO2 near-road monitoring (U.S. EPA, 27 

2012, section 16). 28 

Aethalometer measurements of the concentration of optically absorbing particles have 29 

been submitted to AQS for many years. Data uses include characterizing black carbon and wood 30 

smoke. Ambient air monitoring stations that may have aethalometers include some of the near-31 

road monitoring stations and National Air Toxics Trends Stations (NATTS). In 2020, data from 32 

72 monitoring sites across the county were reported from aethalometers and other related 33 

commercially available continuous carbon analyzers. While aethalometer and related continuous 34 
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carbon data are available at high time resolutions (e.g., 5-minute data), they are typically 1 

reported to the AQS database in 1-hour periods. 2 

Continuous elemental and organic carbon data were monitored at select locations 3 

participating in a pilot of the Sunset EC/OC analyzer as well as a few additional sites that were 4 

already operating before the EPA initiated the pilot study.22 The Sunset EC/OC analyzer 5 

provides high-time-resolution carbon data, typically every hour, but in some remote locations the 6 

instrument is programmed to run every two hours to ensure collection of enough aerosol. The 7 

data from the Sunset EC/OC analyzer was compared to filter-based carbon methods from the 8 

carbon channel of the CSN program. The Sunset EC/OC analyzer was operated at each of the 9 

study sites for at least three years. Results from this pilot study are available in an EPA report 10 

(U.S. EPA, 2019a).  A key finding from the study suggests that when the Sunset instrument was 11 

working well, OC and optical EC were comparable to CSN OC and EC; however, the time and 12 

resources needed to keep a Sunset analyzer operational did not merit replacement of CSN OC 13 

and EC measurements. 14 

As of 2020, continuous sulfate is measured at two remaining monitoring sites, one each 15 

in Maine and North Carolina. Several other stations have historical data but are no longer 16 

monitoring continuous sulfate. Discontinued monitoring efforts for continuous sulfate is likely an 17 

outcome of the significantly lower sulfate concentrations throughout the east where these 18 

methods were operated. The continuous sulfate analyzer provides hourly data and these data can 19 

be readily compared to 24-hour sulfate data which are collected from the ion channel in both the 20 

CSN and IMPROVE programs. 21 

In addition, over the last few years, the EPA has investigated the use of several PM 22 

sensor technologies as one of several areas of research intended to address the next generation of 23 

air measurements. The investigation into air sensors is envisioned to work towards near real-time 24 

or continuous measurement options that are smaller, cheaper, and more portable than traditional 25 

FRM or FEM methods. These sensor devices have the potential to be used in several applications 26 

such as identifying hotspots, informing network design, providing personal exposure monitoring, 27 

supporting risk assessments, and providing background concentration data for permitting. The 28 

EPA has hosted workshops and published several documents and peer-reviewed articles on this 29 

work.23  30 

 
22 The six sites that participated in the study were Washington, DC; Chicago, IL; St. Louis, MO; Houston, TX; Las 

Vegas, NV; and Los Angeles, CA. 

23 For more information, see https://www.epa.gov/sciencematters/epas-next-generation-air-measuring-research  and 

https://www.epa.gov/air-sensor-toolbox 

https://www.epa.gov/sciencematters/epas-next-generation-air-measuring-research
https://www.epa.gov/air-sensor-toolbox
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2.3 AMBIENT AIR CONCENTRATIONS 1 

This section summarizes available information on recent ambient PM concentrations. 2 

Section 2.3.1 presents trends in emissions of PM and precursor gases, while section 2.3.2 3 

presents trends in monitored ambient concentrations of PM in the U.S. Section 2.3.3 discusses 4 

approaches for predicting ambient PM2.5 by hybrid modeling approaches. 5 

2.3.1 Trends in Emissions of PM and Precursor Gases 6 

 Direct emissions of PM have remained relatively unchanged  in recent years, while 7 

emissions of some precursor gases have declined substantially.24 As illustrated in Figure 2-14,25 8 

from 1990 to 2017, SO2 emissions have undergone the largest declines while NH3 emissions 9 

have undergone the smallest change. Declining SO2 emissions during this time period are 10 

primarily a result of reductions at stationary sources such as EGUs, with substantial reductions 11 

also from mobile sources (U.S. EPA, 2019b, section 2.3.2.1). In more recent years (i.e., 2002 to 12 

2017), emissions of SO2 and NOX have undergone the largest declines, while direct PM2.5 and 13 

NH3 emissions have undergone the smallest changes, as shown in Table 2-1. Regional trends in 14 

emissions can differ from the national trends illustrated in Figure 2-14 and Table 2-1.26 For 15 

example, Hand et al. (2012) studied reductions in EGU-related annual SO2 emissions during the 16 

2001-2010 period and found that while SO2 emissions decreased throughout the U.S. by an 17 

average of 6.2% per year, the amount of change varied across the U.S. with the largest percent 18 

reductions in the western U.S. at 20.1% per year. 19 

It should be noted that the reductions shown in PM2.5 and PM10 emissions in Figure 2-14, 20 

a Table 2-1, and any subsequent discussions of emission trends are most likely due to changes in 21 

the methods used by the EPA to estimate emissions for source sectors over time In all likelihood, 22 

emissions from dust and fires have increased over this time, which has been noted earlier in this 23 

document and mentioned broadly in the literature as well (Pu and Ginoux, 2017; Li et al., 2021; 24 

Liu et al., 2014; Schoennagel et al., 2017). It should also be noted that these data (in Figure 2-14 25 

and Table 2-1) do not include emissions from wildfires, and these emissions can fluctuate greatly 26 

from year to year.   27 

 28 

 
24 More information on these trends, including details on methods and explanations on the noted changes over time 

is available a t https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data . 

25 Emission trends in Figure 2-14 do not include wildfire emissions. 

 

https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
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 1 
Figure 2-14. National emission trends of PM2.5, PM10, and precursor gases from 1990 to 2 

2017.  3 

 4 

Table 2-1. Percent Changes in PM and PM precursor emissions in the NEI for the time 5 
periods 1990-2017 and 2002-2017. 6 

Pollutant 
Percent Change 

in Emissions: 
1990 to 2017 

Percent Change 
in Emissions: 
2002 to 2017 

Major Sources that contribute to 
changes over time 

NH3 -3.1% +5.6% 
Agricultural Sources (Fertilizer and 
Livestock Waste), Fires 

NOX -62% -60% EGUs, Mobile Sources 

SO2 -90% -84% EGUs, other Stationary Sources 

VOCs -45% -26% Solvents, Fires, Mobile Sources 

PM2.5 -36% -14% Dust, Fires 

PM10 -43% -25% Dust, Fires 

 7 

2.3.2 Trends in Monitored Ambient Concentrations  8 

2.3.2.1 National Characterization of PM2.5 Mass  9 

At long-term monitoring sites in the U.S., annual PM2.5 concentrations from 2017 to 2019 10 

averaged 8.0 μg/m3 (with the 10th and 90th percentiles at 5.9 and 10.0 μg/m3, respectively) and 11 

the 98th percentiles of 24-hour concentrations averaged 21.3 μg/m3 (with the 10th and 90th 12 

percentiles at 14.0 and 29.7 μg/m3, respectively). Figure 2-15 (top panels) shows that the highest 13 

0

5000

10000

15000

20000

25000

30000

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

E
m

is
si

on
s,

 
T

on
s,

 x
10

00

Year

NH3 NOx PM2.5 PM10 SO2 VOCs



October 2021 2-27 Draft – Do Not Quote or Cite 

ambient PM2.5 concentrations occur in the west, particularly in California and the Pacific 1 

northwest. Much of the eastern U.S. has lower ambient concentrations, with annual average 2 

concentrations generally well below 12.0 μg/m3 and 98th percentiles of 24-hour concentrations 3 

generally at or below 30 μg/m3.  4 

 These concentrations are distinct from design values in part because they include days 5 

with episodic events like wildfires and dust storms which can have very high PM2.5 and/or PM10 6 

concentrations. The EPA’s Exceptional Events Rule (81 FR 68216, October 3, 2016),  most 7 

recently updated in 2016, describes the process by which these events can be excluded from the 8 

design values used for comparison to the NAAQS. For the remainder of Chapter 2, episodic 9 

events are included in the calculations of PM concentrations. When design values are discussed 10 

in Chapter 2, regionally-concurred exceptional events (as of June 2021) have been excluded from 11 

the analysis. 2712 

 
27 Regionally-concurred exceptional events are unusual or naturally-occurring events such as wildfires or high wind 

dust events that have 1) resulted in PM2.5 concentrations above the level of the NAAQS, 2) been submitted by 

tribal, state or local air agencies under the EPA’s Exceptional Events Rule to their respective EPA Region, and 3) 

received concurrence. 
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  1 

 2 

Figure 2-15. Annual average and 98th percentile of 24-hour PM2.5 concentrations (in g/m3) from 2017-2019 (top) and linear 3 

trends and their associated significance (based on p-values) in PM2.5 concentrations from 2000-2019 (bottom).4 
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Analysis of monthly data indicate distinct peaks in national ambient PM2.5 concentrations 1 

during the summer and the winter (U.S. EPA, 2019b, Figure 2-22). Through 2008, the summer 2 

peaks reflected the highest national average PM2.5 concentrations. These summer peaks in 3 

ambient PM2.5 concentrations were largely a consequence of summertime peaks in SO2 4 

emissions from power plants in the eastern U.S., and subsequent sulfate formation. However, 5 

substantial reductions in SO2 emissions (see above and U.S. EPA, 2019b, sections 2.5.1.1.1 and 6 

2.5.2.2.1) have changed this pattern. Starting in 2009, winter peaks in national average PM2.5 7 

concentrations have been higher than those in the summer (U.S. EPA, 2019b, section 2.5.2.2.1). 8 

This pattern is illustrated by data from 2013 to 2015, when average winter PM2.5 concentrations 9 

were about 11 μg/m3, average summer concentrations were about 9 μg/m3, and average spring 10 

and fall concentrations were about 7 μg/m3 (Chan et al., 2018).  11 

The ambient PM2.5 concentrations in Figure 2-15 reflect the substantial reductions that 12 

have occurred across much of the U.S. over recent years (Figure 2-15, bottom panels and Figure 13 

2-16). From 2000 to 2019, national annual average PM2.5 concentrations have declined from 13.5 14 

μg/m3 to 7.6 μg/m3, a 43% decrease (Figure 2-16).28 These declines have occurred at both urban 15 

and rural monitoring sites, although urban PM2.5 concentrations remain consistently higher than 16 

those in rural areas (Chan et al., 2018) due to the so-called “urban increment” of PM2.5 from 17 

local sources in an urban area that is additive to the regional and natural background PM2.5 18 

concentrations. 19 

 20 
Figure 2-16. Seasonally-weighted annual average PM2.5 concentrations in the U.S. from 21 

2000 to 2019 (406 sites). (Note: The white line indicates the mean concentration while the 22 
gray shading denotes the 10th and 90th percentile concentrations.)  23 

 
28 See https://www.epa.gov/air-trends/particulate-matter-pm25-trends for up-to-date PM2.5 trends information. 

https://www.epa.gov/air-trends/particulate-matter-pm25-trends


 

October 2021 2-30 Draft – Do Not Quote or Cite 

Analyses at individual monitoring sites indicate that declines in ambient PM2.5 1 

concentrations have been most consistent across the eastern U.S. and in parts of coastal 2 

California, where both annual average and 98th percentiles of 24-hour concentrations have 3 

declined significantly (Figure 2-15, bottom panels). In contrast, trends in ambient PM2.5 4 

concentrations have been less consistent over much of the western U.S., with no significant 5 

changes since 2000 observed at some sites in the Pacific northwest, the northern Rockies and 6 

plains, and the southwest, particularly for 98th percentiles of 24-hour concentrations (Figure 2-7 

15, bottom panels). Trends in annual average PM2.5 concentrations have been highly correlated 8 

with trends in 98th percentiles of 24-hour concentrations at individual sites (Figure 2-17). Such 9 

correlations are highest across the eastern U.S. and in coastal California, and are somewhat 10 

lower, though still generally positive, at sites in the Central and Western U.S. (i.e., outside of 11 

coastal California).  12 

 13 

Figure 2-17. Pearson’s correlation coefficient between annual average and 98th percentile 14 

of 24-hour PM2.5 concentrations from 2000-2019.  15 

2.3.2.2 Characterization of PM2.5 Mass at Finer Spatial and Temporal Scales  16 

2.3.2.2.1 CBSA Maximum Annual Versus Daily Design Values  17 

 Analysis of recent air quality indicates that maximum annual and daily PM2.5 design 18 

values within a CBSA are positively correlated with some noticeable regional variability (Figure 19 

2-18). In the Southeast, Northeast, and Industrial Midwest regions, the annual design values are 20 

high relative to the daily design values due in part to the infrequent impacts of episodic events 21 



 

October 2021 2-31 Draft – Do Not Quote or Cite 

like wildfire or dust storms. On the other hand, the Northwest region has very high daily design 1 

values relative to the annual design values. This is due to episodically high PM2.5 concentrations 2 

that affect the region, both from wintertime stagnation events and summer/fall wildfire smoke 3 

events.29 The relatively small population and low emissions in the region result in much lower 4 

PM2.5 concentrations during the other parts of the year not affected by these episodes. 5 

 6 

 7 

Figure 2-18. Scatterplot of CBSA maximum annual versus daily design values (2017-2019) 8 
with the solid black line representing the ratio of daily and annual NAAQS values. 9 

2.3.2.2.2 PM2.5 Near Major Roadways  10 

Because of its longer atmospheric lifetime (U.S. EPA, 2019b, section 2.2), PM2.5 is 11 

expected to exhibit less spatial variability on an urban scale than UFP or PM10-2.5 (U.S. EPA, 12 

2019b, section 2.5.1.2.1). Analyses in the 2009 ISA for PM indicated that correlations between 13 

 
29 Due to the recent time period shown in Figure 2-18, it is likely that some of the annual and daily design values are 

affected by potential exceptional events associated with wildfire smoke that have yet to be regionally -concurred 

and removed from the design value calculations. The EPA defines exceptional events as unusual or natural-

occurring events that that affect air quality but are not reasonably controllable using techniques that tribal, state, 

or local air agencies may implement. This is especially likely for the daily design values in the Northwest region, 

which experienced frequent wildfire smoke events during the 2017-2019 period. 
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PM2.5 monitoring sites up to a distance of 100 km from each other were greater than 0.75 in most 1 

urban areas. However, more substantial spatial variation has been reported for some urban areas, 2 

due in part to proximity between monitors and emissions sources (U.S. EPA, 2019b, section 3 

2.5.1.2.1). The recent deployment of PM2.5 monitors near major roads in large urban areas 4 

provides some insight into this spatial variation.  5 

As discussed above, in the 2012 review of the PM NAAQS, the EPA required monitoring 6 

of PM2.5, along with NO2 and CO, near major roads in CBSAs with populations greater than 1 7 

million. PM2.5 monitoring was required to start for the largest CBSAs at the beginning of 2015, 8 

and several years of data are now available for analysis at these sites. DeWinter et al. (2018) 9 

analyzed these data and found that the average near-road increment (difference between near-10 

road PM2.5 concentrations and the concentrations at other sites in the same CBSA) was 1.2 μg/m3 11 

for 2014-2015. Gantt et al. (2021) found that this near-road increment has a diurnal cycle, with a 12 

peak during the morning rush hour. This near-road increment likely is additive to the urban 13 

increment of PM2.5 from local sources in the CBSA including mobile sources on the numerous 14 

non-highway roads that are not monitored by the near-road network. For 2016-2018, Gantt et al. 15 

(2021) also reported that 52% and 24% of the time the near-road sites reported the highest annual 16 

and 24-hour PM2.5 design value in the CBSA, respectively. Of the CBSAs with the highest 17 

annual design values at near-road sites reported by Gantt et al. (2021), those design values were, 18 

on average, 0.8 µg/m3 higher than at the highest measuring non-near-road sites (range is 0.1 to 19 

2.1 µg/m3 higher at near-road sites).  20 

Although most near-road monitoring sites do not have sufficient data to evaluate long-21 

term trends in near-road PM2.5 concentrations, Gantt et al. (2021) analyzed data at one long-term 22 

near-road-like site in Elizabeth, NJ,30 and found that the annual average increment has generally 23 

decreased between 2001 and 2018 from about 2.0 μg/m3 to about 1.3 μg/m3. The trend in the 24 

near-road increment of elemental carbon at the Elizabeth, NJ site has shown a similar reduction, 25 

with values of ~1.0 μg/m3 in 2001 decreasing to ~0.5 μg/m3 in 2018. These data are consistent 26 

with the timing of EPA emission standards for motor vehicles.31 Although long-term data are not 27 

available at other near-road sites, the national scope of the diesel vehicle controls suggests the 28 

near-road environment across the U.S. may have experienced similar decreasing trends in near-29 

road PM2.5 increments. 30 

2.3.2.2.3 Sub-Daily Concentrations of PM2.5 31 

 
30 The Elizabeth Lab site in Elizabeth, NJ is situated approximately 30 meters from travel lanes of the Inte rchange 

13 toll plaza of the New Jersey Turnpike and within 200 meters of travel lanes for Interstate 278 and the New 

Jersey Turnpike. 

31 See https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings#nonroad-diesel.  

https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings#nonroad-diesel
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Ambient PM2.5 concentrations can exhibit a diurnal cycle that varies due to impacts from 1 

intermittent emission sources, meteorology, and atmospheric chemistry. The PM2.5 monitoring 2 

network in the U.S. has an increasing number of continuous FEM monitors reporting hourly 3 

PM2.5 mass concentrations that reflect this diurnal variation. The 2019 ISA describes a two-4 

peaked diurnal pattern in urban areas, with morning peaks attributed to rush-hour traffic and 5 

afternoon peaks attributed to a combination of rush hour traffic, decreasing atmospheric dilution, 6 

and nucleation (U.S. EPA, 2019b, section 2.5.2.3, Figure 2-32). Because a focus on annual 7 

average and 24-hour average PM2.5 concentrations could mask sub-daily patterns, and because 8 

some health studies examine PM exposure durations shorter than 24-hours, it is useful to 9 

understand the broader distribution of sub-daily PM2.5 concentrations across the U.S. Figure 2-19 10 

below presents the frequency distribution of 2-hour average PM2.5 mass concentrations from all 11 

FEM PM2.5 monitors in the U.S. for 2017-2019.32 At sites meeting the current primary PM2.5 12 

standards, these 2-hour concentrations generally remain below 10 μg/m3, and virtually never 13 

exceed 30 μg/m3. Two-hour concentrations are higher at sites violating the current standards, 14 

generally remaining below 16 μg/m3 and virtually never exceeding 80 μg/m3.  15 

  16 

Figure 2-19. Frequency distribution of 2017-2019 2-hour averages for sites meeting both or 17 
violating either PM2.5 NAAQS for October to March (blue) and April to September 18 

(red). 19 

 
32 As discussed further in section 3.2, PM2.5 controlled human exposure studies often examine 2-hour exposures. 

Thus, when evaluating those studies in the context of the current primary PM2.5 standards, it is useful to consider 

the distribution of 2-hour PM2.5 concentrations. Similar analyses of 4-hour and 5-hour PM2.5 concentrations are 

presented in Appendix A, Figure A-2 and Figure A-3, respectively.  
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The extreme upper end of the distribution of 2-hour PM2.5 concentrations is shifted higher 1 

during the warmer months (red in Figure 2-19), generally corresponding to the period of peak 2 

wildfire frequency (April to September) in the U.S. At sites meeting the current primary 3 

standards, the highest 2-hour concentrations measured virtually never occur outside of the period 4 

of peak wildfire frequency. Most of the sites measuring these very high concentrations are in the 5 

northwestern U.S. and California, where wildfires have been relatively common in recent years 6 

(see Appendix A, Figure A-1). When the period of peak wildfire frequency is excluded from the 7 

analysis (blue in Figure 2-19), the extreme upper end of the distribution is reduced. 8 

2.3.2.3 Chemical Composition of PM2.5 9 

Based on recent air quality data, the major chemical components of PM2.5 have distinct 10 

spatial distributions. Sulfate concentrations tend to be highest in the eastern U.S., while in the 11 

Ohio Valley, Salt Lake Valley, and California nitrate concentrations are highest and relatively 12 

high concentrations of organic carbon are widespread across most of the Continental U.S., as 13 

shown in Figure 2-20. Elemental carbon, crustal material, and sea-salt are found to have the 14 

highest concentrations in the northeast U.S., southwest U.S., and coastal areas, respectively.   15 

 16 

Figure 2-20. Annual average PM2.5 sulfate, nitrate, organic carbon, and elemental carbon 17 
concentrations (in µg/m3) from 2017-2019. 18 
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An examination of PM2.5 composition trends can provide insight into the factors 1 

contributing to overall reductions in ambient PM2.5 concentrations. The biggest change in PM2.5 2 

composition that has occurred in recent years is the reduction in sulfate concentrations due to 3 

reductions in SO2 emissions. Between 2000 and 2015, the nationwide annual average sulfate 4 

concentration decreased by 17% at urban sites and 20% at rural sites. This change in sulfate 5 

concentrations is most evident in the eastern U.S. and has resulted in organic matter or nitrate 6 

now being the greatest contributor to PM2.5 mass in many locations (U.S. EPA, 2019b, Figure 2-7 

19). The overall reduction in sulfate concentrations has contributed substantially to the decrease 8 

in national average PM2.5 concentrations as well as the decline in the fraction of PM10 mass 9 

accounted for by PM2.5 (U.S. EPA, 2019b, section 2.5.1.1.6; section 2.3.1 above). 10 

2.3.2.4 National Characterization of PM10 Mass 11 

At long-term monitoring sites in the U.S., the 2017-2019 average of 2nd highest 24-hour 12 

PM10 concentration was 68 μg/m3 (with the 10th and 90th percentiles at 28 and 124 μg/m3, 13 

respectively) (Figure 2-21, top panels).33 The highest PM10 concentrations tend to occur in the 14 

western U.S. Seasonal analyses indicate that ambient PM10 concentrations are generally higher in 15 

the summer months than at other times of year, though the most extreme high concentration 16 

events are more likely in the spring (U.S. EPA, 2019b, Table 2-5). This is due to fact that the 17 

major PM10 emission sources, dust and agriculture, are more active during the warmer and drier 18 

periods of the year.  19 

 
33 The form of the current 24-hour PM10 standard is one-expected-exceedance, averaged over three years.  
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  1 

  2 
Figure 2-21. Annual average and 2nd highest PM10 concentrations (in g/m3) from 2017-2019 (top) and linear trends and their 3 

associated significance in PM10 concentrations from 2000-2019 (bottom).4 
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Recent ambient PM10 concentrations reflect reductions that have occurred across much of the 1 

U.S. (Figure 2-21, bottom panels). From 2000 to 2019, 2nd highest 24-hour PM10 concentrations 2 

have declined by about 46% (Figure 2-22).34 Analyses at individual monitoring sites indicate that 3 

annual average PM10 concentrations have declined at most sites across the U.S., with much of the 4 

decrease in the eastern U.S. associated with reductions in PM2.5 concentrations. Annual second 5 

highest 24-hour PM10 concentrations have generally declined in the eastern U.S., while 6 

concentrations in the much of the midwest and western U.S. have remained unchanged or 7 

increased since 2000 (Figure 2-21, bottom panels).  8 

 9 
Figure 2-22. National trends in Annual 2nd Highest 24-Hour PM10 concentrations from 10 

2000 to 2019 (262 sites). (Note: The white line indicates the mean concentration while the 11 
gray shading denotes the 10th and 90th percentile concentrations.) 12 

Compared to previous reviews, data available from the NCore monitoring network in the 13 

current reconsideration allows a more comprehensive analysis of the relative contributions of 14 

PM2.5 and PM10-2.5 to PM10 mass. PM2.5 generally contributes more to annual average PM10 mass 15 

in the eastern U.S. than the western U.S. (Figure 2-23). At most sites in the eastern U.S., the 16 

majority of PM10 mass is comprised of PM2.5. As ambient PM2.5 concentrations have declined in 17 

the eastern U.S. (section 2.3.2.2, above), the ratios of PM2.5 to PM10 have also declined.  18 

 19 

 
34 For more information, see https://www.epa.gov/air-trends/particulate-matter-pm10-trends#pmnat. 

https://www.epa.gov/air-trends/particulate-matter-pm10-trends#pmnat
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 1 

Figure 2-23. Annual average PM2.5/PM10 ratio for 2017-2019. 2 

For days with very high PM10 concentrations (Figure 2-24), the PM2.5/PM10 ratios are 3 

typically higher than the annual average ratios. This is particularly true in the northwestern U.S. 4 

where the high PM10 concentrations can occur during wildfires with high PM2.5. 5 

 6 

  7 

Figure 2-24. PM2.5/PM10 ratio on the date of the second highest PM10 concentrations for 8 

2017-2019. 9 
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2.3.2.5 National Characterization of PM10-2.5 Mass 1 

Since the 2012 review, the availability of PM10-2.5 ambient concentration data has greatly 2 

increased. As illustrated in Figure 2-2535 (top panels), annual average and 98th percentile PM10-2.5 3 

concentrations exhibit less distinct differences between the eastern and western U.S. than for 4 

either PM2.5 or PM10. Additionally, compared to PM2.5 and PM10, changes in PM10-2.5 5 

concentrations have been small in magnitude and inconsistent in direction (Figure 2-25, lower 6 

panels).7 

 
35 The sites shown in Figure 2-25 have a data completeness of either 75% or ≥182 valid days in each year. 
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        1 

          2 
Figure 2-25. Annual average and 98th percentile PM10-2.5 concentrations (g/m3) from 2017-2019 (top) and linear trends and 3 

their associated significance in PM10-2.5 concentrations from 2000-2019 (bottom).4 
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2.3.2.6 Characterization of the Ultrafine Fraction of PM2.5 Mass 1 

 Compared to PM2.5 mass, there is relatively little data on U.S. particle number 2 

concentrations, which are dominated by UFP. In the published literature, annual average particle 3 

number concentrations reaching about 20,000 to 30,000 cm3 have been reported in U.S. cities 4 

(U.S. EPA, 2019b). In addition, based on UFP measurements in two urban areas (New York 5 

City, Buffalo) and at a background site (Steuben County) in New York, there is a pronounced 6 

difference in particle number concentration between different types of locations (Figure 2-26; 7 

U.S. EPA, 2019b, Figure 2-18). Urban particle number counts were several times higher than at 8 

the background site, and the highest particle number counts in an urban area with multiple sites 9 

(Buffalo) were observed at a near-road location. Hourly data indicate that particle numbers 10 

remain fairly constant throughout the day at the background site, that they peak around 8:00 a.m. 11 

in Buffalo and New York City (NYC), and that they remain high into the evening hours with 12 

distinct rush hour and early afternoon peaks.  13 

 14 

Figure 2-26. Average hourly particle number concentrations from three locations in the 15 

State of New York for 2014 to 2015 (green is Steuben County, orange is Buffalo, red is 16 
New York City). (Source: Figure 2-18 in U.S. EPA, 2019b). 17 

Long-term trends in UFP are generally not available at U.S. monitoring sites. However, 18 

data on number size distribution have been reported for an 8-year period from 2002 to 2009 in 19 

Rochester, NY. Number concentrations averaged 4,730 cm−3 for 0.01 to 0.05 μm particles and 20 

1,838 cm−3 for 0.05 to 0.1 μm particles (Wang et al., 2011). On average over the 8 years that 21 

UFP data were collected in Rochester, total particle number concentrations declined from the 22 

earlier period evaluated (i.e., 2001 to 2005) to the later period (2006 to 2009). This decline was 23 
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most evident for particles between 0.01 and 0.1 μm and was attributed to changes in local 1 

sources resulting from the 2007 Heavy Duty Highway Rule (66 FR 5002, January 18, 2001), a 2 

reduction in local industrial activity, and the closure of a nearby coal-fired power plant (Wang et 3 

al., 2011; U.S. EPA, 2019b, section 2.5.2.1.4).  4 

In addition, at a site in Illinois the annual average particle number concentration declined 5 

between 2000 and 2019, closely matching the reductions in annual PM2.5 mass over that same 6 

period (Figure 2-27, below). Particle number concentrations at this site are closer to those of the 7 

background site in Figure 2-27 than the urban sites. A recent study found that particle number 8 

concentrations in an urban area (Pittsburgh, PA) decreased between 2001-2002 and 2016-2017 9 

along with decreases in PM2.5 associated with SO2 emission reductions (Saha et al., 2018). 10 

However, the relationship between changes in ambient PM2.5 and UFPs cannot be 11 

comprehensively characterized due to the high variability and limited monitoring of UFPs. 12 

 13 

 14 
Figure 2-27. Time series of annual average mass and number concentrations (left) and 15 

scatterplot of mass vs. number concentration (right) between 2000-2019 in Bondville, IL.  16 

2.3.3 Characterizing Ambient PM2.5 Concentrations for Exposure 17 

Epidemiologic studies use various methods to characterize exposure to ambient PM2.5. 18 

The methods used to estimate PM2.5 concentrations can vary from traditional methods using 19 

monitoring data from ground-based monitors to those using more complex hybrid modeling 20 

approaches. Studies using hybrid modeling approaches aim to broaden the spatial coverage 21 

of estimated PM2.5 concentrations by expanding beyond just those areas with monitors and 22 

providing estimates in areas that do not have ground-based monitors (i.e., areas that are 23 

generally less densely populated and tend to have lower PM2.5 concentrations). As such, the 24 



 

October 2021 2-43 Draft – Do Not Quote or Cite 

hybrid modeling approaches tend to broaden the areas captured in the exposure assessment, and 1 

in doing so, the studies that utilize these methods tend to report lower mean PM2.5 concentrations 2 

than monitor-based approaches. Further, other aspects of the method used to calculate PM2.5 3 

concentrations (i.e. population weighting, trim mean) can also have an impact on the predicted 4 

exposure and the related study-reported mean concentration. 5 

2.3.3.1 Predicted Ambient PM2.5 and Exposure Based on Monitored Data 6 

Ambient concentrations of PM2.5 are often characterized using measurements from 7 

national monitoring networks due to the accuracy and precision of the measurements and the 8 

public availability of data. For applications requiring PM2.5 characterizations across urban areas, 9 

data averaging techniques such as area-wide and population-weighted averaging of monitors are 10 

sometimes used to provide complete coverage from the site measurements (U.S. EPA, 2019b, 11 

chapter 3).  12 

For an area to meet the NAAQS, all valid design values in that area, including the highest 13 

annual and 24-hour values, must be at or below the levels of the standards. Because monitors are 14 

often required in locations with high PM2.5 concentrations (section 2.2.3), areas meeting an 15 

annual PM2.5 standard with a particular level would be expected to have long-term average PM2.5 16 

concentrations (i.e., averaged across space and over time in the area) somewhat below that 17 

standard level. Figure 2-28 and Figure 2-29 indicate that, based on recent air quality in U.S. 18 

CBSAs, maximum annual PM2.5 design values are often 10% to 20% higher than annual average 19 

concentrations (i.e., averaged across multiple monitors in the same CBSA). The difference 20 

between the maximum annual design value and average concentration in an area can be smaller 21 

or larger than this range, likely depending on factors such as the number of monitors, monitor 22 

siting characteristics, and the distribution of ambient PM2.5 concentrations. Given that higher 23 

PM2.5 concentrations have been reported at some near-road monitoring sites, relative to the 24 

surrounding area (section 2.3.2.2.2), recent requirements for PM2.5 monitoring at near-road 25 

locations in large urban areas (section 2.2.3.3) may increase the ratios of maximum annual 26 

design values to averaged concentrations in some areas. Such ratios may also depend on how the 27 

average concentrations are calculated (i.e., averaged across monitors versus across modeled grid 28 

cells). Compared to annual design values, Figure 2-29 indicates a more variable relationship 29 

between maximum 24-hour PM2.5 design values and annual average concentrations.  30 

 31 
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 1 

Figure 2-28. Comparison of CBSA average annual design values and CBSA maximum 2 
annual design values for 2017-2019. (Note: Includes all CBSAs with at least 3 valid annual 3 
DVs.)    4 

 5 
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Table 2-2. Nationwide averages of ratios of maximum annual PM2.5 design values to 1 
average composite monitor PM2.5 concentrations across CBSAs. 2 

 3 

Years of 
Monitoring Data 

Number of Monitors 
per CBSA 

Number 
of CBSAs 

Ratio of Maximum 
Annual DV to CBSA 

Average 

Ratio of Maximum 
24-hour DV to CBSA 

Average 

2009-2011 

3 or more 67 1.12 1.13 

4 or more 33 1.14 1.16 

5 or more 18 1.17 1.19 

2012-2014 

3 or more 60 1.15 1.15 

4 or more 38 1.17 1.18 

5 or more 23 1.19 1.21 

2015-2017 

3 or more 65 1.16 1.19 

4 or more 38 1.19 1.21 

5 or more 30 1.20 1.24 

2017-2019 

3 or more 67 1.16 1.22 

4 or more 47 1.19 1.25 

5 or more 32 1.21 1.26 



 

October 2021 2-46 Draft – Do Not Quote or Cite 

  1 

 2 

Figure 2-29. Comparison of CBSA average annual design values and CBSA maximum 3 

daily design values for 2017-2019. (Note: Dashed lines indicate the level of the current 24-4 
hour PM2.5 standard (35 µg/m3) and the current annual PM standard (12 µg/m3). Includes all 5 

CBSAs with at least 3 valid daily and 3 valid annual DVs.) 6 

2.3.3.2 Predicted Ambient PM2.5 Based on Hybrid Modeling Approaches 7 

Ambient concentrations of PM2.5 are often characterized using measurements from 8 

national monitoring networks due to the accuracy and precision of the measurements and the 9 

public availability of data. For applications requiring PM2.5 characterizations across urban areas, 10 

data averaging techniques such as area-wide and population-weighted averaging of monitors are 11 

sometimes used to provide complete coverage from the site measurements (U.S. EPA, 2019b, 12 

chapter 3). Yet data averaging methods may not adequately represent the spatial heterogeneity of 13 

PM2.5 within an area and are not practical for large unmonitored areas or time periods. As a 14 

result, additional methods have been developed to improve PM2.5 characterizations in areas 15 

where monitoring is relatively sparse or unavailable. Methods include interpolation of monitored 16 

data, land-use regression models, chemical-transport models (CTMs), models based on satellite-17 
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derived aerosol optical depth (AOD), and hybrid spatiotemporal models that combine 1 

information from the individual approaches (U.S. EPA, 2019b, chapter 3). A number of recent 2 

studies have employed such methods to estimate PM2.5 air quality concentrations across the U.S. 3 

and Canada, and to estimate population exposures for use in epidemiologic analyses (U.S. EPA, 4 

2019b, sections 3.3 and 3.4). Given the increasing availability and application of these methods, 5 

in this section we provide an overview of recently developed hybrid modeling methods, their 6 

predictions and performance, and how predictions from various methods compare to each other.  7 

2.3.3.2.1 Overview of Hybrid Methods  8 

Hybrid methods are broadly classified into four categories: (1) methods based primarily 9 

on interpolation of monitor data, (2) Bayesian statistical downscalers, (3) methods based 10 

primarily on satellite-derived AOD, and (4) methods based on machine-learning algorithms. 11 

Each method is discussed briefly below.  12 

Interpolation-based methods are the simplest approach for developing spatial fields of 13 

PM2.5 concentrations and rely on the moderate degree of spatial autocorrelation in PM2.5 in many 14 

areas of the U.S. Interpolation methods often use inverse-distance or inverse-distance-squared 15 

weighted averaging of monitoring data to predict PM2.5 concentrations at unmonitored receptor 16 

points. Examples include the Voronoi neighbor averaging (VNA) approach and the enhanced 17 

VNA approach (eVNA). The VNA approach applies weighted averaging to the concentrations 18 

monitored in the Voronoi cells neighboring the cell containing the prediction point (Abt 19 

Associates, 2014). In the eVNA approach, monitored data are further weighted by the ratio of 20 

CTM predictions in the grid-cell containing the prediction point to the grid-cell containing the 21 

monitor (Abt Associates, 2014).  22 

Bayesian statistical modeling has been used to calibrate CTM PM2.5 predictions or 23 

satellite-derived AOD estimates to surface measurements (Berrocal et al., 2012; Wang et al., 24 

2018b, Berrocal et al., 2020). This approach, commonly referred to as a Bayesian downscaler 25 

because it “downscales” grid-cell average values to points, first regresses the PM2.5 predictions 26 

or AOD estimates on monitoring data. The resulting relationships are then used to develop a 27 

gridded PM2.5 field from the CTM or AOD input field. Bayesian downscalers have been applied 28 

to develop gridded daily PM2.5 fields at 12-km resolution for the conterminous U.S. (Wang et al., 29 

2018b; U.S. EPA, 2017). An ensemble technique that optimally combines predictions of CTM 30 

and AOD downscalers has also been developed to predict PM2.5 at high resolution over Colorado 31 

during the fire season (Geng et al., 2018).   32 

Surface PM2.5 concentrations can also be predicted based on satellite retrievals of AOD 33 

and the relationship between surface PM2.5 and AOD from CTM simulations (van Donkelaar et 34 

al., 2010). For example, in van Donkelaar et al. (2015a), satellite-based approaches (van 35 
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Donkelaar et al., 2010; van Donkelaar et al., 2013) were used to estimate a gridded field of 1 

global mean PM2.5 concentration for the 2001-2010 period that was combined with information 2 

from radiometrically stable satellite instruments (Boys et al., 2014) to develop global PM2.5 3 

fields over the 1998-2012 period (van Donkelaar et al., 2015a). Motivated by the limited use of 4 

surface measurements in this approach, van Donkelaar et al. (2015b) developed an updated 5 

method that incorporates additional information from PM2.5 monitoring networks to improve 6 

performance. Specifically, geographically weighted regression (GWR) of residual PM2.5 (i.e., the 7 

difference between monitored PM2.5 and predictions based on satellite-derived AOD) with land-8 

use and other variables is performed to improve PM2.5 concentration estimates in areas such as 9 

North America where monitoring is relatively dense (van Donkelaar et al., 2019; van Donkelaar 10 

et al., 2015b). This approach has been used to create long-term PM2.5 fields globally and for 11 

North America at about 1-km resolution. However, the developers caution that PM2.5 gradients 12 

may not be fully resolved at 1-km resolution due to the influence of coarser-scale data used in 13 

the model36 and report that mean error variance decreases when averaging the 1-km fields to 14 

coarser resolution (van Donkelaar et al., 2019).   15 

Daily PM2.5 fields based on non-parametric (i.e., machine learning) methods have also 16 

been developed to characterize PM2.5 over the U.S. Non-parametric methods facilitate the use of 17 

large numbers of predictor variables that may have complex nonlinear relationships with PM2.5 18 

concentrations that would be challenging to specify with a parametric method. For example, a 19 

neural network algorithm was used to predict daily PM2.5 fields at 1-km resolution over the 20 

conterminous U.S. during 2000-2012 using more than 50 predictor variables including satellite-21 

derived AOD, CTM predictions, satellite-derived absorbing aerosol index, meteorological data, 22 

and land-use variables (Di et al., 2016). A random forest algorithm was also applied to develop 23 

daily PM2.5 fields at 12-km resolution over the conterminous U.S. in 2011 and provide variable 24 

importance information for about 40 predictor variables including CTM results and satellite-25 

derived AOD (Hu et al., 2017). Satellite-derived AOD and the convolution layer for nearby 26 

PM2.5 measurements are ranked among the top five most important predictor variables for the 27 

importance metrics considered. An ensemble model based on random forest, neural network, and 28 

gradient boosting methods has also been recently applied to develop daily 1-km PM2.5 29 

concentration fields over the U.S. for the 2000-2015 period (Di et al., 2019). A wide range of 30 

parametric and non-parametric hybrid PM2.5 models have recently been reviewed in Chapter 3 of 31 

the 2019 ISA (U.S. EPA, 2019b). 32 

2.3.3.2.2 Performance of the Methods 33 

 
36 See http://fizz.phys.dal.ca/~atmos/martin/?page_id=140 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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The performance of hybrid modeling methods is often evaluated against surface 1 

measurements using n-fold cross validation (i.e., 1/n of the data are reserved for validation with 2 

the rest used for model training, and the process is repeated n times). Although model evaluation 3 

methods are not consistent across studies, ten-fold cross-validation statistics are often reported 4 

and support use of the hybrid methods just described. For example, the neural network achieved 5 

total R2 of 0.84 and root-mean-square error (RMSE) of 2.94 g m-3 for daily PM2.5 predictions at 6 

sites in the conterminous U.S. during 2000-2012 (Di et al., 2016). The random forest achieved 7 

total R2 of 0.80 and RMSE of 2.83 g m-3 for daily PM2.5 predictions at U.S. sites in 2011 (Hu et 8 

al., 2017). The satellite-derived AOD approach with GWR yielded an R2 of 0.79 and RMSE of 9 

1.7 g m-3 in cross validation for longer-term PM2.5 predictions at sites in North America (van 10 

Donkelaar et al., 2015b). The Bayesian downscalers had weaker performance in cross validation 11 

(e.g., national R2: 0.66-0.70; Wang et al., 2018b; Kelly et al., 2019a) than the other methods, 12 

possibly due to the relatively small number of predictor variables. However, the downscalers 13 

have advantages of simplicity, computational efficiency, and lower potential for overfitting 14 

compared with the machine learning methods.   15 

Although model validation analyses often report favorable performance in terms of 16 

aggregate cross-validation statistics, studies have reported heterogeneity in performance by 17 

season, region, and concentration range. For example, several methods had relatively high cross-18 

validation R2 in summer compared with other seasons (Kelly et al., 2019a ; Hu et al., 2017; Di et 19 

al., 2016; van Donkelaar et al., 2015b). Also, studies have noted relatively weak performance in 20 

parts of the western U.S., possibly due to the sharp concentration gradients, complex terrain, low 21 

concentrations (and therefore signal-to-noise ratio), less dense monitoring, prevalence of 22 

wildfire, and challenges in satellite retrievals and CTM modeling (Di et al., 2016; Wang et al., 23 

2018b; Hu et al., 2017; Kelly et al., 2019a). Predictive capability in terms of cross-validation R2 24 

has also been reported to weaken with decreasing PM2.5 concentration in several studies (e.g., 25 

Kelly et al., 2019a; Di et al., 2016; van Donkelaar et al., 2019). This trend could be due in part to 26 

increases in the fraction of the PM2.5 distribution that is explained by less predictable stochastic 27 

variation as PM2.5 concentrations decrease (Just et al., 2020). Trends in model performance 28 

associated with PM2.5 concentration (e.g., Figure 2-30) could also be due to the relatively sparse 29 

monitoring in remote areas, where PM2.5 concentrations tend to be low. Consistent with this 30 

hypothesis, studies have reported degradation of model performance metrics with increasing 31 

distance to the nearest in-sample monitor, suggesting that predictions are most reliable in densely 32 

monitored urban areas (Jin et al., 2019; Huang et al., 2018; Kelly et al., 2019a; Berrocal et al., 33 

2020).   34 

 35 
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 1 
Figure 2-30. R2 for ten-fold cross-validation of daily PM2.5 predictions in 2015 from three 2 

methods for individual sites as a function of observed concentration. Text indicates the 3 

number of monitors in the PM2.5 concentration range. Downscaler: Bayesian downscaler of 4 
CMAQ predictions; VNA: Voronoi Neighbor Averaging; eVNA: enhanced-VNA. From 5 
Kelly et al., 2019a. 6 

A limited number of studies have intercompared concentration predictions based on 7 

different PM2.5 characterization methods. Huang et al. (2018) compared PM2.5 concentrations 8 

from the method of Di et al. (2016) with concentrations from the CTM-based data fusion method 9 

of Friberg et al. (2016) and the satellite-derived AOD approach of Hu et al. (2014) for North 10 

Carolina. They reported general agreement in concentrations among methods, with some 11 

differences along the coast and in forested regions where monitoring is less dense. Yu et al. 12 

(2018) compared PM2.5 concentrations from fourteen approaches of varying complexity for 13 

developing PM2.5 spatial fields over the Atlanta, Georgia region. They reported that predictions 14 

of the methods can differ considerably, and the hybrid approaches that incorporate CTM 15 

predictions generally outperformed the simpler techniques (e.g., monitor interpolation). Also, 16 

model predictions appeared to be more reliable in the urban center based on relatively low cross 17 

validation R2 for sites away from the urban core. Jin et al. (2019) reported increasing uncertainty 18 

in hybrid model predictions with distance to the nearest AQS monitor. Keller and Peng (2019) 19 

reported that a prediction model incorporating CTM output outperformed a monitor averaging 20 

approach and error reduction could be achieved by restricting the study to areas near monitors. 21 

Diao et al. (2019) reviewed publicly available PM2.5 products and identified inconsistencies in 22 

PM2.5 predictions from several methods. Kelly et al. (2021) reported broad agreement among 23 

model predictions at the national scale but differences in the intra-urban variations in PM2.5 24 

concentrations. 25 

2.3.3.2.3 Comparison of PM2.5 Fields Across Approaches 26 

To illustrate features of the spatial fields reported in the literature, the annual mean PM2.5 27 

concentrations for 2011 from four methods is shown in Figure 2-31, where predictions from the 28 

methods were averaged to a common 12-km grid. The fields were developed using a Bayesian 29 

downscaler (downscaler, Berrocal et al., 2012), neural network (DI2016, Di et al., 2016), random 30 
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forest (HU2017, Hu et al., 2017), and GWR of residuals from satellite-based PM2.5 estimates 1 

(VD2019; van Donkelaar et al., 2019). Annual mean concentrations were developed from daily 2 

PM2.5 predictions in the downscaler, DI2016, and HU2017 cases and from monthly PM2.5 3 

predictions in the VD2019 case. General features of the 2011 fields are in reasonable agreement 4 

across methods, with elevated concentrations across broad areas of the eastern U.S. and in the 5 

San Joaquin Valley and South Coast Air Basin of California. The national mean PM2.5 6 

concentration for the VD2019 case (7.06 g m-3) is slightly lower than those of the other cases 7 

(7.36-7.44 g m-3), possibly because the VD2019 fields were developed using monthly (rather 8 

than daily) PM2.5 measurements. Use of monthly averages provides greater influence on the 9 

annual mean of sites with less frequent monitoring that tend to be in rural areas with relatively 10 

low concentrations. Mean PM2.5 concentrations predicted by the four methods in nine U.S. 11 

climate regions (Karl and Koss, 1984) are provided in Table 2-3.   12 

 13 

 14 

Figure 2-31. Comparison of 2011 annual average PM2.5 concentrations from four methods. 15 
(Note: These four methods include: downscaler (Berrocal et al., 2012), DI2016 (Di et al., 16 
2016), HU2017 (Hu et al., 2017), and VD2019 (van Donkelaar et al., 2019). Predictions have 17 

been averaged to a common 12-km grid for this comparison.)  18 

 19 

   20 
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Table 2-3. Mean 2011 PM2.5 concentration by region for predictions in Figure 2-29 1 

Region1 downscaler HU2017 DI2016 VD2019 

Northeast 8.5 8.0 8.2 7.5 

Southeast 9.9 10.0 9.4 9.8 

Ohio Valley 10.7 9.6 9.8 10.0 

Upper Midwest 8.8 7.9 7.9 7.1 

South 8.8 8.9 9.0 8.7 

Southwest 5.0 5.3 5.2 5.1 

N. Rockies & Plains 5.6 5.9 5.6 4.5 

Northwest 5.0 5.3 6.1 4.9 

West 5.5 5.7 6.0 6.5 

1 U.S. climate region: https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php.  

 2 

In Figure 2-32, PM2.5 concentrations predicted by the four methods are shown at their 3 

native resolution for regions centered on California, New Jersey, and Arizona. Predictions have 4 

sharper spatial gradients and span a wider range of concentrations for the western regions 5 

centered on California and Arizona (Figure 2-32, panels a and c) than the eastern region centered 6 

on New Jersey (Figure 2-32, panel b). Despite general agreement among predictions for the 7 

California and the eastern U.S. areas, the spatial texture of the concentration fields differs among 8 

methods. For instance, the 12-km Bayesian downscaler produces the smoothest PM2.5 9 

concentration field, and the 1-km neural network (DI2016) produces the field with the greatest 10 

variance. Some of the largest differences in PM2.5 concentration among methods occurred over 11 

southwest Arizona. The DI2016 and VD2019 methods predict higher concentrations in this area 12 

than the downscaler and HU2017 methods, and the DI2016 approach predicts distinct spatial 13 

features associated with Interstate 40, 10, and 8 that are not apparent in the other fields (Figure 2-14 

32, panel c).  15 

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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  1 

Figure 2-32. Comparison of 2011 annual average PM2.5 concentrations from four methods 2 
for regions centered on the (a) California (b) New Jersey, and (c) Arizona.  Predictions 3 

are shown at their native resolution (i.e., about 1-km for DI2016 and VD2019 and 12-km for 4 
downscaler and HU2017). 5 

 6 

In Figure 2-33, the coefficient of variation (CV; i.e., the standard deviation divided by the 7 

mean) among methods is shown in percentage units based on predictions that were averaged to a 8 

common 12-km grid. The largest values occur in the western U.S. (Figure 2-33, panel a), where 9 

spatial gradients are high, terrain is complex, wildfire is prevalent, monitoring is relatively 10 

sparse, and PM2.5 concentrations are low on average. The distance from the grid-cell center to the 11 

nearest monitor is greater than 100 km for broad areas of the west (Figure 2-34).  12 
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 1 

Figure 2-33. (a) Spatial distribution of the CV (i.e., standard deviation divided by mean) in 2 
percentage units for the four models in Figure 2-29. (b) Boxplot distributions of CV for 3 

grid cells binned by the average PM2.5 concentration for the four models. (Note: The box 4 
brackets the interquartile range (IQR), the horizontal line within the box represents the 5 
median, the whiskers represent 1.5 times the IQR from either end of the box, and circles 6 

represent individual values less than and greater than the range of the whiskers.) 7 

 8 

 9 

Figure 2-34. Distance from the center of the 12-km grid cells to the nearest PM2.5 10 
monitoring site for PM2.5 measurements from the AQS database and IMPROVE 11 
network.  12 

 13 

 Concentrations less than 5 g/m3 occur exclusively in the western U.S. for the downscaler 14 

and HU2017 methods, and the western U.S. plus a few areas along the northern U.S. border in 15 

the eastern U.S. for the DI2016 and VD2019 methods (Figure 2-35, top row). Concentrations 16 

between 5 and 7 g/m3 are predicted in the western U.S. and parts of New England for all 17 

methods and over Florida by the downscaler and DI2016 approaches (Figure 2-35, second row). 18 

The CV among methods increases with decreasing concentration (Figure 2-33 above, panel b), 19 

and the median CV is about 15% for grid cells with mean concentrations less than 7 g/m3.  As 20 

illustrated by Figure 2-33 and Figure 2-35, the low-concentration areas with relatively large CVs 21 

are in the western U.S. and along the northern and southern border of the eastern U.S. 22 
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 1 

Figure 2-35. Location of PM2.5 predictions by range in annual average concentration for 2 
the four prediction methods at their native resolution. (Note: Concentration ranges: < 5 3 

g/m3, 5-7 g/m3, 7-9 g/m3, 9-11 g/m3, and >11 g/m3.) 4 

 5 

The comparison of PM2.5 concentrations across approaches was based on the 2011 period 6 

due to the availability of predictions from multiple methods for that year. As discussed earlier in 7 

this chapter, PM2.5 concentrations have declined over the U.S. in the last several decades. Annual 8 

mean PM2.5 concentrations predicted by the VD2019 method for 2011 are compared with 9 

predictions for 2001, 2006, and 2016 in Figure 2-36. The VD2019 fields capture the trend of 10 

decreasing PM2.5 over the U.S. during this period, and the areas with annual mean PM2.5 11 

concentration greater than 11 g/m3 in 2016 are limited to California and southwest Arizona. 12 

 13 
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 1 

Figure 2-36. Annual mean PM2.5 from the VD2019 method (van Donkelaar et al., 2019) for 2 
2001, 2006, 2011, and 2016.  3 

2.3.3.2.4 Comparison of PM2.5 Fields in Estimating Exposure and Relative to 4 

Design Values 5 

Two types of hybrid approaches that have been utilized in several key PM2.5 6 

epidemiologic studies in the 2019 ISA and draft ISA Supplement include neural network 7 

approaches and use of GWR of residual PM2.5 with land-use and other variables to improve 8 

estimates of PM2.5 concentration in the US. As such, we further compare these two types of 9 

approaches across various scales and taking into account population weighting approaches 10 

utilized in epidemiologic studies when estimating PM2.5 exposure. Additionally, we assess how 11 

average PM2.5 concentrations computed using these hybrid surfaces compare to the maximum 12 

design values measured at ground-based monitors. For this assessment, we evaluate the DI201937 13 

and HA202038 surfaces. This analysis may help to inform how the magnitude of the overall study 14 

reported mean PM2.5 concentrations in epidemiologic studies may be influenced by the approach 15 

used to compute that mean and how that value might compare to monitor reported 16 

concentrations.  17 

In estimating exposure, some studies focus on estimating concentrations in urban areas, 18 

while others examine the entire U.S. or large portions of the country. Figure 2-37 shows the 19 

spatial distribution of the annual average PM2.5 concentrations for 2015 using the DI2019 surface 20 

nationwide (panel A) and for CBSAs only (panel B). As shown in the figure, the geographic 21 

coverage is much less when estimating the annual average PM2.5 concentrations at the CBSA 22 

scale compared to the national scale and tends to be primarily representative of areas that are 23 

 
37 This analysis includes an updated version of the surface used in  Di et al. (2016). Predictions in Di et al. (2016) 

were for 2000 to 2012 using a neural network model. The Di et al. (2019) study improved on that effort in several 

ways. First, a  generalized additive model was used that accounted for geographic variations in performance to 

combine predictions from three models (neural network, random forest, and gradient boosting) to make the final 

optimal PM2.5 predictions. Second, the datasets were updated that were used in model training and included 

additional variables such as 12-km CMAQ modeling as predictors. Finally, more recent years were included in 

the Di et al. (2019) study. 

38 The HA2020 field is based on the V4.NA.03 product available at: https://sites.wustl.edu/acag/datasets/surface-

pm2-5/. The name “HA2020” comes from the references for this product (Hammer et al., 2020; van Donkelaar et 

al., 2019). 

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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more urban or densely populated. Further, the areas that are not included in the CBSA-only 1 

analysis tend to have lower PM2.5 concentrations. These areas tend to be more rural or less 2 

densely populated areas, and likely correspond to those locations where monitoring data 3 

availability is limited or nonexistent. 4 

 5 

 6 

Figure 2-37.  Spatial distribution of the annual average PM2.5 concentrations for 2015 using 7 

the DI2019 surface nationwide (panel A) and for CBSAs only (panel B). 8 

Using the DI2019 and HA2020 surfaces, for each year of available data, the 1 km x 1 km 9 

grid cells for each modeled surface within a CBSA were averaged, resulting in an estimated 10 

average annual PM2.5 concentration at the CBSA spatial resolution. In addition, for each surface, 11 

all 1 km x 1 km grid cells were averaged over the conterminous U.S., resulting in an estimated 12 

average annual PM2.5 concentration at the national scale. These average annual PM2.5 13 
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concentrations for each year from 2000-2016 for the DI2019 and HA2020 surfaces are shown in 1 

Table 2-4. In addition, we also examined the average annual PM2.5 concentrations nationwide 2 

and in CBSAs in terms of a 3-year average, which is the averaging time of the annual standard. 3 

These averages are shown in Table 2-5. 4 

Table 2-4. Average Annual PM2.5 Concentration (µg/m3) by Year. 5 

Year 
DI2019 HA2020 

Nationwide a CBSAs b Nationwide a CBSAs b 

2000 8.36 8.96 7.37 7.83 

2001 7.88 8.49 7.08 7.61 

2002 7.99 8.59 7.37 7.98 

2003 8.25 8.72 7.03 7.51 

2004 7.62 8.18 6.59 7.13 

2005 7.98 8.51 7.34 7.92 

2006 7.68 8.13 6.72 7.21 

2007 7.90 8.41 7.26 7.69 

2008 7.13 7.59 6.51 7.00 

2009 6.52 6.94 6.02 6.45 

2010 6.71 7.10 6.09 6.47 

2011 6.72 7.13 6.31 6.74 

2012 6.69 6.95 6.24 6.47 

2013 6.15 6.50 5.75 6.14 

2014 6.08 6.41 5.61 6.04 

2015 6.00 6.25 5.43 5.76 

2016 5.29 5.56 4.98 5.36 
a Nationwide average annual PM2.5 concentrations include all 1 km x 1 km grid cells of the modeling surface. 
b CBSA average annual PM2.5 concentrations include only those 1 km x 1 km grid cells that were located within a CBSA. 

 6 

  7 
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Table 2-5. Three-Year Average of the Average Annual PM2.5 Concentrations (µg/m3). 1 

Year 
DI2019 HA2020 

Nationwide a CBSAs b Nationwide a CBSAs b 

2000-2002 8.08 8.68 7.27 7.81 

2001-2003 8.04 8.60 7.16 7.70 

2002-2004 7.95 8.50 7.00 7.54 

2003-2005 7.95 8.47 6.99 7.52 

2004-2006 7.96 8.28 6.88 7.42 

2005-2007 7.85 8.35 7.11 7.61 

2006-2008 7.57 8.04 6.83 7.30 

2007-2009 7.18 7.65 6.60 7.04 

2008-2010 6.78 7.21 6.21 6.64 

2009-2011 6.65 7.05 6.14 6.55 

2010-2012 6.71 7.06 6.21 6.56 

2011-2013 6.52 6.86 6.10 6.45 

2012-2014 6.31 6.62 5.87 6.22 

2013-2015 6.08 6.38 5.60 5.98 

2014-2016 5.79 6.07 5.34 5.72 
a Nationwide average annual PM2.5 concentrations include all 1 km x 1 km grid cells of the modeling surface. 
b CBSA average annual PM2.5 concentrations include only those 1 km x 1 km grid cells that were located within a CBSA. 

 2 

At the national scale, the average annual PM2.5 concentrations are slightly higher when 3 

using the DI2019 surface compared to the HA2020 surface but are generally similar. The 4 

average annual PM2.5 concentrations are also slightly lower using the HA2020 surface compared 5 

to the DI2019 surface when the analyses are conducted for CBSAs. However, regardless of 6 

which surface is used, the average annual PM2.5 concentrations for the CBSA-only analyses are 7 

somewhat higher than for the nationwide analyses (4-8% higher), likely reflecting the more 8 

urban or densely populated areas in the CBSA-only analyses that typically have higher PM2.5 in 9 

ambient air compared to more rural or less densely populated areas captured in the nationwide 10 

analyses.  11 

Similarly, as shown in Table 2-5, for both the DI2019 and HA2020 surfaces, the 12 

nationwide average annual PM2.5 concentrations, averaged over three years, are lower than the 13 

CBSA only average annual PM2.5 concentrations, averaged over three years. For the national 14 

scale, 3-year averages of the average annual PM2.5 concentrations generally range from about 5.3 15 

µg/m3 to 8.1 µg/m3, compared to the CBSA scale, which ranges from 5.7 µg/m3 to 8.7 µg/m3. 16 

Overall, these analyses suggest that there are slight differences in the average annual 17 

PM2.5 concentrations depending on the modeling method employed in a hybrid modeling study. 18 
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It is important to recognize that the use of different methods in the hybrid modeling studies to 1 

estimate mean PM2.5 concentrations may influence the comparability across studies 2 

We next evaluate how the averages of the model surfaces compare to regulatory design 3 

values and how population weighting influences the averages. For this analysis, we include 4 

CBSAs with three or more valid design values for the 3-year period.39 The regulatory design 5 

values for the CBSAs were calculated for each 3-year period for the CBSAs with 3 or more 6 

design values in each of the 3-year periods. Using the maximum design value for each CBSA 7 

and by each 3-year period, the ratio of maximum design values to modeled average annual PM2.5 8 

concentrations were calculated, for each 3-year period. In addition, we evaluated the influence of 9 

population weighting on the average annual PM2.5 concentrations using both the DI2019 and 10 

HA2020 surfaces for 3-year periods in CBSAs that also have available regulatory design value 11 

data. These data are shown in Table 2-6. 12 

Table 2-6. Average Annual PM2.5 Concentrations and Ratios to Regulatory Design Values. 13 

 14 

 As shown in Table 2-6, the results using the DI2019 and HA2020 surfaces are similar for 15 

the average annual PM2.5 concentrations, by each 3-year period. When population weighting is 16 

not applied, the average annual PM2.5 concentrations generally range from 7.0 to 8.6 µg/m3. 17 

When population weighting is applied, the average annual PM2.5 concentrations are slightly 18 

higher, ranging from 8.2 to 10.2 µg/m3. As with CBSAs versus the national comparison above, 19 

 
39 More details about the analytical methods used for this analysis are described in section A.7 of Appendix A. 

Years of 
Monitoring 

Data 

No. of 
CBSAs a  

Average 
Annual PM2.5 

Concentration 
(µg/m3) b 

Population 
Weighted 

Average Annual 
PM2.5 

Concentration 
(µg/m3) b 

Average 
Maximum 

Annual 
DVs 

(µg/m3) b 

Ratio of 
Average 

Maximum 
Annual DVs to 

Average Annual 
PM2.5 

Concentrations 

Ratio of 
Average 

Maximum 
Annual DVs to  

Population 
Weighted 

Average Annual 
PM2.5 

Concentrations 

DI2019 Surface from Di et al. (2019) 

2008-2010 67 8.61 10.17 11.67 1.48 1.15 
2011-2013 64 8.10 9.37 10.91 1.47 1.17 

2014-2016 61 7.22 8.26 9.57 1.41 1.17 
       

HA2020 Surface from Hammer et al. (2020) and van Donkelaar et al. (2019) 

2008-2010 67 8.25 9.93 11.67 1.50 1.18 
2011-2013 64 7.92 9.34 10.91 1.43 1.17 

2014-2016 61 6.98 8.19 9.57 1.43 1.18 
a The number of CBSAs with 3 or more valid design values for the 3-year period 
b Averaged across CBSAs 
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population weighting results in a higher average PM2.5 concentration than when population 1 

weighting is not applied. 2 

For the CBSAs included in the population weighted analyses, the average maximum 3 

annual design values generally range from 9.5 to 11.7 µg/m3. As shown in Table 2-6, these 4 

analyses show that the results are similar for both the DI2019 and HA2020 surfaces and the 5 

maximum annual PM2.5 design values are often 40% to 50% higher than average annual PM2.5 6 

concentrations when population weighting is not applied. However, when population weighting 7 

is applied, the ratio of the maximum annual PM2.5 design values to the average annual PM2.5 8 

concentrations are lower than when not population weighted, and generally range from 15% to 9 

18%. 10 

2.3.3.2.5 Summary 11 

Hybrid PM2.5 modeling methods have improved the ability to estimate PM2.5 exposure for 12 

populations throughout the conterminous U.S. compared with the earlier approaches based on 13 

monitoring data alone. Excellent performance in cross-validation tests suggests that hybrid 14 

methods are reliable for estimating PM2.5 exposure in many applications. As discussed in 15 

Chapter 3 of this draft PA, good agreement in health study results between monitor- and model-16 

based methods for urban areas (McGuinn et al., 2017) and general consistency in results for the 17 

conterminous U.S. (Jerrett et al., 2017; Di et al., 2016) also suggests that the fields are reliable 18 

for use in health studies. However, there are also important limitations associated with the 19 

modeled fields. First, performance evaluations for the methods are weighted toward densely 20 

monitored urban areas at the scales of representation of the monitoring networks. Predictions at 21 

different scales or in sparsely monitored areas are relatively untested. Second, studies have 22 

reported heterogeneity in performance with relatively weak performance in parts of the western 23 

U.S., at low concentrations, at greater distance to monitors, and under conditions where the 24 

reliability and availability of key input datasets (e.g., satellite retrievals and air quality modeling) 25 

are limited. Differences in predictions among different hybrid methods have also been reported 26 

and tend to be most important under conditions with the performance issues just noted. 27 

Differences in predictions could also be related to the different approaches used to create long-28 

term PM2.5 fields (e.g., averaging daily PM2.5 fields vs. developing long-term average fields), 29 

which is important due to variable monitoring schedules. More work is warranted on identifying 30 

the most appropriate model performance metrics and comprehensively characterizing model 31 

performance to further inform our understanding of the implications of using these fields to 32 

estimate PM2.5 exposures in health studies. 33 

When additional analyses are done to further compare the DI2019 and HA2020 surfaces, 34 

the results suggest the DI2019 and HA2020 surfaces predict similar average annual PM2.5 35 
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concentrations at the national scale and on average across all CBSAs in the U.S. The spatial scale 1 

can affect the magnitude of the average annual PM2.5 concentration with somewhat higher 2 

concentrations (4-8% higher) resulting from averaging across all CBSAs in the U.S. versus 3 

averaging across the entire U.S. Additionally, when average annual PM2.5 concentrations from 4 

the hybrid modeled surfaces are compared to the average maximum annual design value 5 

measured at ground-based monitors in a subset of CBSAs, the average of the maximum annual 6 

design values tends to be a 40-50% higher than the average annual PM2.5 concentration estimated 7 

from the hybrid modeling surfaces. When population weighting is introduced, the average of the 8 

maximum annual design values tends to only be 15-18% higher than the average annual PM2.5 9 

concentration estimated from the hybrid modeling surfaces. This analysis may help better 10 

explain why reported study means from different epidemiologic studies can vary and why these 11 

mean values tend to be lower than concentrations reported at ground-based monitors. However, 12 

it is important to recognize that these results only reflect two surfaces and two types of 13 

approaches and that the use of different hybrid methods to estimate mean PM2.5 concentrations 14 

may influence the comparability across studies.  15 

2.4 BACKGROUND PM 16 

For the purposes of this assessment, we define background PM as all particles that are 17 

formed by sources or processes that cannot be influenced by actions within the jurisdiction of 18 

concern. For this document, U.S. background PM is defined as any PM formed from emissions 19 

other than U.S. anthropogenic (i.e., manmade) emissions. Potential sources of U.S. background 20 

PM include both natural sources (i.e., PM that would exist in the absence of any anthropogenic 21 

emissions of PM or PM precursors) and transboundary sources originating outside U.S. borders.  22 

Ambient monitoring networks provide long-term records of speciated PM concentrations 23 

across the U.S., which can inform estimates of individual source contributions to background PM 24 

levels in different parts of the country. However, even the most remote monitors within the U.S. 25 

can be periodically affected by U.S. anthropogenic emissions. Monitor data are also limited in 26 

more remote areas due to a sparser monitoring network where PM concentrations are more likely 27 

influenced by background sources. Chemical transport models (CTMs) offer complementary 28 

information to ambient monitor networks by providing more spatially and temporally 29 

comprehensive estimates of atmospheric composition. CTMs can also be applied to isolate 30 

contributions from specific emission sources to PM concentrations in different areas via source 31 

apportionment or “zero-out” modeling (i.e., estimating what the residual concentrations would be 32 

were emissions from the emission source of interest to be entirely removed).  33 

At annual and national scales, estimated background PM concentrations in the U.S. are 34 

small compared to contributions from domestic anthropogenic emissions. For example, based on 35 
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zero-out modeling in the 2012 review of the PM NAAQS, annual background PM2.5 1 

concentrations were estimated to range from 0.5 - 3 µg/m3 across the sites examined. The 2 

magnitude and sources of background PM can vary widely by region and time of year. Coastal 3 

sites may experience a consistent contribution of PM from sea spray aerosol, while other areas 4 

covered with dense vegetation may be impacted by biogenic aerosol production during the 5 

summertime. Sources of background PM also operate across a range of time scales. While some 6 

sources like biogenic aerosol vary at monthly to seasonal scales, many sources of background 7 

PM are episodic in nature. These episodic sources (e.g., large wildfires) can be characterized by 8 

infrequent contributions to high-concentration events occurring over shorter periods of time (e.g., 9 

hours to several days). Such episodic events are sporadic and do not necessarily occur in all 10 

years. While these exceptional episodes can lead to violations of the daily PM2.5 standard (35 11 

µg/m3) in some cases (Schweizer et al., 2017), such events are routinely screened for and usually 12 

identifiable in the monitoring data. As described further below, contributions to background PM 13 

in the U.S. result mainly from sources within North America. Contributions from 14 

intercontinental events have also been documented (e.g., transport from dust storms occurring in 15 

deserts in North Africa and Asia), but these events are less common and represent a relatively 16 

small fraction of background PM in most places.  17 

While the potential sources of background PM discussed above include sources of both 18 

fine (PM2.5) and coarse (PM10-2.5) particles, background contributions to ambient UFP are less 19 

well characterized and are not discussed here due to lack of information. Section 2.4.1 below 20 

further discusses background PM from natural sources inside the U.S. Section 2.4.2 characterizes 21 

the role of international transport of PM from sources outside U.S. borders.  22 

2.4.1 Natural Sources  23 

As noted in section 2.1.1, sources that contribute to natural background PM include dust 24 

from the wind erosion of natural surfaces, sea salt, wildland fires, primary biological aerosol 25 

particles (PBAP) such as bacteria and pollen, oxidation of biogenic hydrocarbons such as 26 

isoprene and terpenes to produce SOA, and geogenic sources such as sulfate formed from 27 

volcanic production of SO2 and oceanic production of dimethyl-sulfide (DMS). While most of 28 

the above sources release or contribute predominantly to fine aerosol, some sources including 29 

windblown dust, and sea salt also produce particles in the coarse size range (U.S. EPA, 2019b, 30 

section 2.3.3).  31 

Biogenic emissions from plants are perhaps the most ubiquitous sources of background 32 

PM in the U.S. Certain species of plants and trees can release large amounts of VOCs such as 33 

isoprene and monoterpenes that are oxidized in the atmosphere to form organic aerosol. SOA 34 

production from biogenic emissions is largest in the southeastern U.S., where conditions are 35 
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warm, humid, and sunny for much of the year. Many of the processes involved with biogenic 1 

SOA formation are complex and remain highly uncertain. Results from radiocarbon techniques 2 

applied to distinguish modern (biogenic or fires) from fossil (anthropogenic) carbon fractions in 3 

organic aerosol have suggested comparable contributions from both carbon types in the 4 

Southeast where SOA concentrations are high (Schichtel et al., 2008). However, SOA formation 5 

from biogenic emission sources can also be facilitated by the presence of anthropogenic 6 

precursors (Xu et al., 2015). More work characterizing the interactions of anthropogenic and 7 

biogenic emissions is needed to determine the implications of such processes for background PM 8 

concentrations. 9 

Soil dust and sea salt have been estimated to account for less than 10% of urban PM2.5 on 10 

average in the U.S. (Karagulian et al., 2015), although episodic contributions from these sources 11 

can be much higher in some locations. For example, during a dust storm affecting Phoenix in 12 

July of 2011, peak hourly average PM10 concentrations were greater than 5,000 µg/m3, with area-13 

wide average hourly concentrations ranging from a few hundred to a few thousand µg/m3 14 

(Vukovic et al., 2014). Dust can also account for much of the PM that originates from outside the 15 

U.S., which we discuss further below (U.S. EPA, 2019b, section 2.5.4.2). In addition to sea salt 16 

aerosol, biological production of the sulfate precursor DMS can also occur in some marine 17 

environments, although the impact of DMS emissions on annual mean sulfate concentrations is 18 

likely very small in the U.S. (<0.2 µg/m3) and confined to coastal areas (Sarwar et al., 2018).  19 

Wildfires release large amounts of particles and gaseous PM precursors. Invasive species, 20 

historical fire management practices, frequency of drought, and extreme heat have resulted in 21 

longer fire seasons (Jolly et al., 2015) and more large fires (Dennison et al., 2014) over time. In 22 

addition to emissions from fires in the U.S., emissions from fires in other countries can be 23 

transported to the U.S. Transport of smoke from fires in Canada, Mexico, Central America, and 24 

Siberia have been documented in multiple studies (U.S. EPA, 2009). According to the NEI, 25 

wildfire smoke contributes between 10 and 20% of primary PM emissions in the U.S. per year 26 

(U.S. EPA, 2019b, section 2.3.1), with much higher localized contributions near fire-affected 27 

areas.  28 

To illustrate how episodic impacts from a large natural source can affect PM 29 

concentrations in the U.S., Figure 2-38 and Figure 2-39 show an example from a recent wildfire 30 

event. In summer 2017, smoke from wildfires in British Columbia, Canada led to severe air 31 

quality degradation in parts of the Pacific Northwest. A NASA Worldview40 image from August 32 

4, 2017 (Figure 2-38) shows smoke from multiple fire detections across southern British 33 

Columbia crossing into northern Washington state. Smoke from these fires was also captured at 34 

 
40 Available from https://worldview.earthdata.nasa.gov.  

https://worldview.earthdata.nasa.gov/
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the North Cascades IMPROVE monitor (Figure 2-39), where daily fine PM concentrations were 1 

increased from a typical baseline of less than 10 µg/m3 to ~100 µg/m3 during this time.  2 

 3 

Figure 2-38. Smoke and fire detections observed by the MODIS instrument onboard the 4 
Aqua satellite on August 4th, 2017 accessed through NASA Worldview.  5 

 6 

 7 

Figure 2-39. Fine PM mass time series during 2017 from the North Cascades IMPROVE 8 

site in north central Washington state.41  9 

 
41 Available at http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp. 

http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp


 

October 2021 2-66 Draft – Do Not Quote or Cite 

 Later in August and September 2017, many other wildfires occurred in Washington state 1 

and Oregon, making this fire season one of the worst for the Pacific Northwest in recent history. 2 

The severe fires in British Columbia, Washington and Oregon during 2017 have been linked to 3 

the combination of usually hot temperatures in August/September in the region following a very 4 

wet preceding winter season. While many of the most severe wildfire events in the U.S. occur in 5 

the western part of the country during the late summer, most of the contiguous U.S. is affected 6 

by wildfire smoke during some part of the year (Kaulfus et al., 2017).   7 

2.4.2 International Transport 8 

 Background PM contributions from international sources include PM that is both natural 9 

and anthropogenic in origin crossing into U.S. borders from Canada and Mexico or from longer 10 

range intercontinental transport. While in general the biggest contributions to U.S. background 11 

PM from international sources come from nearby Canada and Mexico, large episodic events 12 

from intercontinental sources can sometimes occur (e.g., windblown dust from Asia or Africa). 13 

This section discusses transboundary PM transport within North America (section 2.4.2.1) as 14 

well as long range intercontinental transport from anthropogenic (section 2.4.2.2) and natural 15 

(section 2.4.2.3) sources.    16 

2.4.2.1 Transboundary Transport in North America 17 

As discussed above, some of the largest potential international sources of U.S. 18 

background PM originate elsewhere in North America. PM produced from fires in both Canada 19 

and Mexico can affect air quality in the U.S., particularly in border states (Park et al., 2007; 20 

Miller et al., 2011; Wang et al., 2018a). Anthropogenic emissions from Canada and Mexico can 21 

also influence U.S. PM air quality. An inverse modeling study by Henze et al. (2009) estimated 22 

that in 2001 anthropogenic SOX emissions from Canada and Mexico accounted for 6% and 4% 23 

respectively of total daily inorganic PM2.5 in the U.S. These authors also estimated that SOX 24 

emissions related to international shipping accounted for approximately 2% of total inorganic 25 

PM in the U.S. 26 

2.4.2.2 Long Range Transport from Anthropogenic Sources 27 

Due to the relatively short atmospheric lifetime of particles (~days to weeks), long range 28 

transport of aerosols does not contribute significant PM mass to the U.S. Heald et al. (2006) 29 

estimated that transport from Asia accounted for less than 0.2 µg/m3 of sulfate PM2.5 in the 30 

Northwestern U.S. in spring, and Leibensperger et al. (2011) estimated intercontinental 31 

contributions from Asian anthropogenic SO2 and NOX emissions of 0.1 - 0.25 µg/m3 annually in 32 

the western U.S. Leibensperger et al. (2011) also concluded that much of the intercontinental 33 

influence captured by the GEOS-Chem model was in fact local PM production attributable to 34 
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domestic emissions in receptor countries arising from changes in global oxidant budgets, rather 1 

than impacts from PM directly transported across geopolitical boundaries. The studies above are 2 

also consistent with findings from other analyses. A report from the United Nations on global air 3 

quality synthesizing results across many studies estimated an annual average contribution of 4 

approximately 0.1 µg/m3 sulfate PM in North America due to transport from East Asia 5 

(TFHTAP, 2006). 6 

2.4.2.3 Long Range Transport from Natural Sources 7 

Long range transport of dust from both Asia (Vancuren and Cahill, 2002; Yu et al., 2008) 8 

and North Africa (Prospero, 1999b; Prospero, 1999a; Chiapello et al., 2005; McKendry et al., 9 

2007) has been shown to occasionally contribute to surface PM concentrations in some regions 10 

of the U.S. The likelihood of such long-range dust transport events depends on large-scale 11 

meteorological patterns, which can vary significantly across seasons and between years. Yu et al. 12 

(2015) found that the transport of North African dust across the Atlantic Ocean is strongly 13 

negatively correlated with precipitation in the Sahel during the preceding year. Dust from Africa 14 

has also shown a decreasing trend of approximately 10% per decade from 1982 to 2008 based on 15 

measurements of aerosol optical depth and surface concentrations in Barbados. This trend was 16 

attributed to a corresponding decrease in surface winds over source regions (Ridley et al., 2014). 17 

Variability in springtime Asian dust transport to the U.S. has been linked to north-south shifts in 18 

trans-Pacific flow modulated by the El Nino-Southern Oscillation (Achakulwisut et al., 2017), as 19 

well as to variations in regional precipitation affecting both dust emissions in Asia and 20 

atmospheric residence times during transport (Fischer et al., 2009).    21 

On average, intercontinental dust transport is estimated to contribute about 1-2 µg/m3 to 22 

annual PM2.5 at some U.S. sites (Jaffe et al., 2005; TFHTAP, 2006; Creamean et al., 2014). 23 

However, daily concentrations can be substantially larger for individual events, especially for 24 

coarser particles. For example, Jaffe et al. (2003) found evidence of Asian dust events in 1998 25 

and 2001 contributing 30-40 µg/m3 to daily PM10 at sites throughout the U.S., although the 26 

authors also note that large events of this scale are rare and only occurred twice during their 15-27 

year study period. Similar magnitudes have also been reported for individual North African 28 

events; analysis of a multidecadal record of African dust reaching Miami indicated 29 

concentrations of PM ranging from ~10 to 120 µg/m3 (Prospero, 1999a; Prospero, 1999b).42 In 30 

June 2020 a large dust transport episode originating in North Africa may have contributed up to 31 

50 µg/m3 for several days at multiple sites in the southeastern U.S. (Pu and Jin, 2021). 32 

 
42 Sample collection began in 1974, before network PM10 and PM2.5 samplers were developed, and no size cut was 

specified (Prospero, 1999a). 



 

October 2021 2-68 Draft – Do Not Quote or Cite 

2.4.3 Estimating Background PM with Recent Data 1 

 As discussed above, the 2009 PM ISA estimated background PM concentrations at 2 

several remote IMPROVE sites in different regions of the U.S. for 2004 using a combination of 3 

monitor data and zero-out air quality modeling. Revisiting the speciated IMPROVE PM data at 4 

the monitors included in the 2009 ISA assessment provides some insights into how contributions 5 

from different PM sources may have changed, and what those changes (or lack thereof) mean for 6 

our current understanding of background PM in the U.S. 7 

 Figure 2-40 shows observed annual average PM2.5 in 2004 and 2016 at the same remote 8 

monitors examined in the 2009 ISA. The comparisons show decreases in both total PM2.5 and 9 

ammonium sulfate across all sites examined, consistent with decreases in anthropogenic SO2 and 10 

other PM precursors observed over this time period. It is likely that most of the remaining 11 

ammonium sulfate observed at these sites is also a result of domestic anthropogenic emissions 12 

and therefore not relevant for assessments of background PM.  13 

 Sea salt and dust aerosol are likely natural in origin at these remote sites. With the 14 

exception of REDW1, a coastal site in California, soil and sea salt aerosol together account for 15 

less than about 0.5 µg/m3 of the annual average PM2.5 at all monitors examined here, which is 16 

below the values cited from the literature for long range dust contributions discussed above. 17 

Contributions from ammonium nitrate and elemental carbon could be from either anthropogenic 18 

or natural sources, but together represent less than about 0.5 µg/m3 at most of the sites in 2016. 19 

The largest contribution from nitrate occurs at the BRIG1 monitor in New Jersey and is likely 20 

anthropogenic given the high density of NOX from vehicle emissions in that region. 21 

 After ammonium sulfate, the next largest contributing species for most of the sites is 22 

organic matter, which for many of the monitors in Figure 2-40 represents 50% or more of total 23 

PM in both 2004 and 2016. In addition to the IMPROVE sites from the 2019 ISA, Figure 2-40 24 

also shows comparisons for three sites in the Southeast U.S. As a region, the Southeast has the 25 

highest levels of biogenic aerosol production in the country, so the organic matter contribution at 26 

these three sites likely represents an upper bound for the country of what natural biogenic 27 

organic aerosol production could be under present atmospheric conditions. The organic aerosol 28 

components shown in Figure 2-37 will also include the influence of fires for some monitors. The 29 

highest organic matter contribution for any of the sites shown in Figure 2-40, including the three 30 

Southeast monitors, is approximately 2 µg/m3. While contributions from ammonium sulfate have 31 

decreased substantially at some of the monitors, particularly the eastern sites, contributions from 32 

organic aerosol are roughly consistent between 2004 and 2016, as are the contributions from the 33 

other species assumed to be mostly natural in origin (soil and sea salt). Therefore, while no new 34 

zero-out modeling was done for the reconsideration, revisiting these monitors with more recent 35 
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data suggests that estimates of background concentrations at these monitors are still around 1-3 1 

µg/m3 and have not changed significantly since the 2012 PM NAAQS review. 2 

 While estimates of total annual background concentrations have generally not changed 3 

significantly since the 2012 review, our scientific understanding of organic aerosol formation has 4 

evolved. Organic aerosol can be produced from a variety of natural and anthropogenic processes, 5 

which presents a challenge for source attribution techniques. Additionally, new research over the 6 

past decade has identified a host of new sources and chemical pathways for SOA formation that 7 

have only recently begun to be implemented into CTMs. Further research implementing these 8 

new sources and pathways into CTMs is needed to understand 1) the behavior of these different 9 

algorithms under a range of possible atmospheric conditions, and 2) what the implications are for 10 

understanding SOA formation in the U.S.  11 

 12 

 13 

Figure 2-40. Speciated annual average IMPROVE PM2.5 in µg/m3 at select remote monitors 14 

during 2004 and 2016. (Note: Monitor locations are shown in Figure 2-41.) 15 

 16 
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  1 

Figure 2-41. Site locations for the IMPROVE monitors in Figure 2-40. (Note: Monitors also 2 

assessed in the 2009 ISA are shown in blue. Monitors only examined in this assessment are 3 
shown in red.) 4 
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3 RECONSIDERATION OF THE PRIMARY 1 

STANDARDS FOR PM2.5  2 

This chapter presents and evaluates the policy implications of the key aspects of the 3 

scientific and technical information pertaining to this reconsideration of the primary PM2.5 4 

standards. In so doing, this chapter presents key aspects of the evidence of health effects of 5 

PM2.5, as documented in the 2019 ISA (U.S. EPA, 2019) and draft ISA Supplement (U.S. EPA, 6 

2021a),1 with support from the prior ISAs and AQCDs, and associated public health 7 

implications. It also presents key aspects of updated quantitative risk analyses conducted for this 8 

reconsideration, as detailed in the appendices associated with this chapter. Together this 9 

information provides the basis for our evaluation of the scientific information regarding health 10 

effects of PM2.5 in ambient air and the potential for effects to occur under air quality conditions 11 

associated with the existing standard (or any alternatives considered), as well as the associated 12 

implications for public health. Our evaluation is focused around key policy-relevant questions 13 

derived from the IRP (U.S. EPA, 2016, section 2.1) for the review completed in 2020, and also 14 

takes into account conclusions reached in previous reviews. In this way we identify key policy-15 

relevant considerations and summary conclusions regarding the public health protection provided 16 

by the current standards for the Administrator’s consideration in this reconsideration of the 2020 17 

final decision on the primary PM2.5 standards. 18 

Within this chapter, background information on the current standards is summarized in 19 

section 3.1. The general approach for considering the available information in this 20 

reconsideration, including policy-relevant questions identified to frame our policy evaluation, is 21 

summarized in section 3.2. Key aspects of the available health effects evidence and associated 22 

public health implications and uncertainties are addressed in section 3.3, and the current air 23 

quality and risk information, with associated uncertainties, is addressed in section 3.4. Section 24 

3.5 summarizes the key evidence- and risk-based considerations identified in our evaluation and 25 

also presents associated preliminary conclusions on the adequacy of the current standards. Key 26 

remaining uncertainties and areas for future research are identified in section 3.6. 27 

 
1 As described in detail in section 1.4.2 above and section 3.3 below, the draft ISA Supplement focuses on a 

thorough evaluation of some studies that became available after the literature cutoff date of the 2019 ISA that 

could either further inform the adequacy of the current PM NAAQS or address key scientific topics that have 

evolved since the literature cutoff date for the 2019 ISA (U.S. EPA, 2021a). The selection of the health effects to 

evaluate within the draft ISA Supplement was based on the causality determinations reported in the 2019 ISA and 

the subsequent use of scientific evidence in the 2020 PA. Specifically, for PM2.5-related health effects, the focus 

within the draft ISA Supplement is on mortality and cardiovascular effects. The draft ISA Supplement does not 

include an evaluation of studies for other PM2.5-related health effects (U.S. EPA, 2021a). 
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3.1 BACKGROUND ON THE CURRENT STANDARDS 1 

The current primary PM2.5 standards were retained in 2020 based on the Administrator’s 2 

judgments regarding the available scientific evidence, the available risk information regarding 3 

the risk that may be allowed by such standards, and the appropriate degree of public health 4 

protection provided by the existing standards (85 FR 82718, December 18, 2020). With the 2020 5 

final decision, the EPA retained the primary 24-hour PM2.5, with its level of 35 µg/m3, and the 6 

primary annual PM2.5 standard, with its level of 12.0 µg/m3. This decision drew upon the 7 

scientific evidence assessed in the 2019 ISA, the evidence and quantitative risk information in 8 

the 2020 PA, the advice and recommendations of the CASAC, and public comments on the 9 

proposed decision (85 FR 24094, April 30, 2020). 10 

The health effects evidence base available in the 2020 review included extensive 11 

evidence from previous reviews as well as the evidence that had emerged since the prior review 12 

had been completed in 2012. This evidence base, spanning several decades, documents the 13 

relationship between short- and long-term PM2.5 exposure and mortality or serious morbidity 14 

effects. The evidence available in the 2019 ISA reaffirmed, and in some cases strengthened, the 15 

conclusions from the 2009 ISA regarding the health effects of PM2.5 exposures (U.S. EPA, 16 

2009). Much of the evidence came from epidemiologic studies conducted in North America, 17 

Europe, or Asia that demonstrated generally positive, and often statistically significant, PM2.5 18 

health effect associations. Such studies reported associations between estimated PM2.5 exposures 19 

and non-accidental, cardiovascular, or respiratory mortality; cardiovascular or respiratory 20 

hospitalizations or emergency department visits; and other mortality/morbidity outcomes (e.g., 21 

lung cancer mortality or incidence, asthma development). Experimental evidence, as well as 22 

evidence from panel studies, strengthened support for potential biological pathways through 23 

which PM2.5 exposures could lead to health effects reported in many population-epidemiologic 24 

studies, including support for pathways that could lead to cardiovascular, respiratory, nervous 25 

system, and cancer-related effects (U.S. EPA, 2019). Based on this evidence, the 2019 ISA 26 

concludes there to be a causal relationship between long- and short-term PM2.5 exposure and 27 

mortality and cardiovascular effects, as well as likely to be causal relationships between long- 28 

and short-term PM2.5 exposures and respiratory effects, as well as long-term PM2.5 exposures and 29 

cancer and nervous system effects (U.S. EPA, 2019, section 1.7). 30 

Epidemiologic studies reported PM2.5 health effect associations with mortality and/or 31 

morbidity across multiple U.S. cities and in diverse populations, including in studies examining 32 

populations and lifestages that may be at comparatively higher risk of experiencing a PM2.5-33 

related health effect (e.g., older adults, children). The 2019 ISA cited extensive evidence 34 

indicating that “both the general population as well as specific populations and lifestages are at 35 
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risk for PM2.5-related health effects” (U.S. EPA, 2019, p. 12-1). In support of the causal and 1 

likely to be causal determinations, the 2019 ISA cites substantial evidence for: 2 

• PM-related mortality and cardiovascular effects in older adults (U.S. EPA, 2019, sections 3 

11.1, 11.2, 6.1, and 6.2); 4 

• PM-related cardiovascular effects in people with pre-existing cardiovascular disease (U.S. 5 

EPA, 2019, section 6.1); 6 

• PM-related respiratory effects in people with pre-existing respiratory disease, particularly 7 

asthma (U.S. EPA, 2019, section 5.1); 8 

• PM-related impairments in lung function growth and asthma development in children (U.S. 9 

EPA, 2019, sections 5.1, 5.2, and 12.5.1.1). 10 

The 2019 ISA also noted that stratified analyses (i.e., analyses that allow for comparison of PM-11 

related health effects in subgroups to health effects for full populations) provided strong 12 

evidence for racial and ethnic differences in PM2.5 exposures and PM2.5-related health risk. Such 13 

analyses indicated that certain racial and ethnic groups such as Hispanic and non-Hispanic Black 14 

populations have higher PM2.5 exposures than non-Hispanic White populations, thus contributing 15 

to risk of adverse health effects in non-white populations (U.S. EPA, 2019, section 12.5.4). 16 

Stratified analyses focused on other groups also suggested that populations with pre-existing 17 

cardiovascular or respiratory disease, populations that are overweight or obese, populations that 18 

have particular genetic variants, and populations that are of low socioeconomic status could be at 19 

increased risk for PM2.5-related adverse health effects (U.S. EPA, 2019, chapter 12). 20 

The risk information available in the 2020 review included risk estimates for air quality 21 

conditions just meeting the existing primary PM2.5 standards, and also for air quality conditions 22 

just meeting potential alternative standards. The general approach to estimating PM2.5-associated 23 

health risks combined concentration-response functions from epidemiologic studies with model-24 

based PM2.5 air quality surfaces, baseline health incidence data, and population demographics for 25 

47 urban areas (U.S. EPA, 2020, section 3.3, Figure 3-10, Appendix C). The risk assessment 26 

estimated that the existing primary PM2.5 standards could allow a substantial number of PM2.5-27 

associated deaths in the U.S. Uncertainty in risk estimates (e.g., in the size of risk estimates) can 28 

result from a number of factors, including assumptions about the shape of the concentration-29 

response relationship with mortality at low ambient PM concentrations, the potential for 30 

confounding and/or exposure measurement error, and the methods used to adjust PM2.5 air 31 

quality. In light of the limitations and uncertainties, these risk estimates were given little weight 32 

by the Administrator in his decision on the standards (85 FR 82717, December 18. 2020). 33 

Consistent with the general approach routinely employed in NAAQS reviews, the initial 34 

consideration in the 2020 review of the primary PM2.5 standards was with regard to the adequacy 35 
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of protection provided by the then-existing standards. Key aspects of that consideration are 1 

summarized in section 3.1.1 below. 2 

3.1.1 Considerations Regarding the Adequacy of the Existing Standards in the 2020 3 

Review 4 

With the 2020 final decision, the EPA retained the primary 24-hour PM2.5 standard, with 5 

its level of 35 µg/m3, and the primary annual PM2.5 standard, with its level of 12.0 µg/m3. The 6 

Administrator’s conclusions regarding the adequacy of the primary PM2.5 standards at the time of 7 

the 2020 review was based on consideration of the evidence, analyses and conclusions contained 8 

in the 2019 ISA; the quantitative risk assessment in the 2020 PA; advice from the CASAC; and 9 

public comments. Key considerations informing the Administrator’s decisions that the 2012 10 

standards should be retained are summarized below. 11 

As an initial matter, the Administrator considered the range of scientific evidence 12 

evaluating these effects, including studies of at-risk populations, to inform his review of the 13 

primary PM2.5 standards, placing the greatest weight on evidence of effects for which the 2019 14 

ISA determined there to be a causal or likely to be causal relationship with long- and short-term 15 

PM2.5 exposures (85 FR 82714-82715, December 18, 2020). 16 

With regard to indicator, the Administrator recognized that, consistent with the evidence 17 

available in prior reviews, the scientific evidence in the 2020 review continued to provide strong 18 

support for health effects following short- and long-term PM2.5 exposures. He noted the 2020 PA 19 

conclusions that the information continued to support the PM2.5 mass-based indicator and 20 

remained too limited to support a distinct standard for any specific PM2.5 component or group of 21 

components, and too limited to support a distinct standard for the ultrafine fraction. Thus, the 22 

Administrator concluded that it was appropriate to retain PM2.5 as the indicator for the primary 23 

standards for fine particulates (85 FR 82715, December 18, 2020).  24 

With respect to averaging time and form, the Administrator noted that the scientific 25 

evidence continued to provide strong support for health effects associations with both long-term 26 

(e.g., annual or multi-year) and short-term (e.g., mostly 24-hour) exposures to PM2.5, consistent 27 

with the conclusions in the 2020 PA. In the 2019 ISA, epidemiologic and controlled human 28 

exposure studies examined a variety of PM2.5 exposure durations. Epidemiologic studies 29 

continued to provide strong support for health effects associated with short-term PM2.5 exposures 30 

based on 24-hour PM2.5 averaging periods, and the EPA noted that associations with sub-daily 31 

estimates are less consistent and, in some cases, smaller in magnitude (U.S. EPA, 2019, section 32 

1.5.2.1; U.S. EPA, 2020, section 3.5.2.2). In addition, controlled human exposure and panel-33 

based studies of sub-daily exposures typically examined subclinical effects, rather than the more 34 

serious population-level effects that have been reported to be associated with 24-hour exposures 35 
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(e.g., mortality, hospitalizations). Taken together, the 2019 ISA concludes that epidemiologic 1 

studies did not indicate that sub-daily averaging periods were more closely associated with 2 

health effects than the 24-hour average exposure metric (U.S. EPA, 2019, section 1.5.2.1). 3 

Additionally, while controlled human exposure studies provided consistent evidence for 4 

cardiovascular effects following PM2.5 exposures for less than 24 hours (i.e., < 30 minutes to 5 5 

hours), exposure concentrations in the studies were well-above the ambient concentrations 6 

typically measured in locations meeting the existing standards (U.S. EPA, 2020, section 3.2.3.1). 7 

Thus, these studies also did not suggest the need for additional protection against sub-daily PM2.5 8 

exposures (U.S. EPA, 2020, section 3.5.2.2). Therefore, the Administrator judged that the 24-9 

hour averaging time remained appropriate (85 FR 82715, December 18, 2020). 10 

With regard to the form of the 24-hour standard (98th percentile, averaged over three 11 

years), the Administrator noted that epidemiologic studies continued to provide strong support 12 

for health effect associations with short-term (e.g., mostly 24-hour) PM2.5 exposures (U.S. EPA, 13 

2020, section 3.5.2.3) and that controlled human exposure studies provided evidence for health 14 

effects following single short-term “peak” PM2.5 exposures. Thus, the evidence supported 15 

retaining a standard focused on providing supplemental protection against short-term peak 16 

exposures and supported a 98th percentile form for a 24-hour standard. The Administrator further 17 

noted that this form also provided an appropriate balance between limiting the occurrence of 18 

peak 24-hour PM2.5 concentrations and identifying a stable target for risk management programs 19 

(U.S. EPA, 2020, section 3.5.2.3). As such, the Administrator concluded to retain the form and 20 

averaging time of the current 24-hour standard (98th percentile, averaged over three years) and 21 

annual standard (annual average, averaged over three years) (85 FR 82715, December 18, 2020). 22 

With regard to the level of the standards, in reaching his final decision, the Administrator 23 

considered the large body of evidence presented and assessed in the 2019 ISA (U.S. EPA, 2019), 24 

the policy-relevant and risk-based conclusions and rationales as presented in the 2020 PA (U.S. 25 

EPA, 2020), advice from the CASAC, and public comments. In particular, in considering the 26 

2019 ISA and 2020 PA, he considered key epidemiologic studies that evaluated associations 27 

between PM2.5 air quality distributions and mortality and morbidity, including key accountability 28 

studies; the availability of experimental studies to support biological plausibility; controlled 29 

human exposure studies examining effects following short-term PM2.5 exposures; air quality 30 

analyses; and the important uncertainties and limitations associated with the information (85 FR 31 

82715, December 18, 2020).  32 

As an initial matter, the Administrator considered the protection afforded by both the 33 

annual and 24-hour standards together against long- and short-term PM2.5 exposures and health 34 

effects. The Administrator recognized that the annual standard was most effective in controlling 35 

“typical” PM2.5 concentrations near the middle of the air quality distribution (i.e., around the 36 
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mean of the distribution), but also provided some control over short-term peak PM2.5 1 

concentrations. On the other hand, the 24-hour standard, with its 98th percentile form, was most 2 

effective at limiting peak 24-hour PM2.5 concentrations, but in doing so also had an effect on 3 

annual average PM2.5 concentrations. Thus, while either standard could be viewed as providing 4 

some measure of protection against both average exposures and peak exposures, the 24-hour and 5 

annual standards were not expected to be equally effective at limiting both types of exposures. 6 

Thus, consistent with previous reviews, the Administrator’s consideration of the public health 7 

protection provided by the existing primary PM2.5 standards was based on his consideration of 8 

the combination of the annual and 24-hour standards. Specifically, he recognized that the annual 9 

standard was more likely to appropriately limit the “typical” daily and annual exposures that are 10 

most strongly associated with the health effects observed in epidemiologic studies. The 11 

Administrator concluded that an annual standard (as the arithmetic mean, averaged over three 12 

years) remained appropriate for targeting protection against the annual and daily PM2.5 exposures 13 

around the middle portion of the PM2.5 air quality distribution. Further, recognizing that the 24-14 

hour standard (with its 98th percentile form) was more directly tied to short-term peak PM2.5 15 

concentrations, and more likely to appropriately limit exposures to such concentrations, the 16 

Administrator concluded that the current 24-hour standard (with its 98th percentile form, 17 

averaged over three years) remained appropriate to provide a balance between limiting the 18 

occurrence of peak 24-hour PM2.5 concentrations and identifying a stable target for risk 19 

management programs. However, the Administrator recognized that changes in PM2.5 air quality 20 

to meet an annual standard would likely result not only in lower short- and long-term PM2.5 21 

concentrations near the middle of the air quality distribution, but also in fewer and lower short-22 

term peak PM2.5 concentrations. The Administrator further recognized that changes in air quality 23 

to meet a 24-hour standard, with a 98th percentile form, would result not only in fewer and lower 24 

peak 24-hour PM2.5 concentrations, but also in lower annual average PM2.5 concentrations (85 25 

FR 82715-82716, December 18, 2020).  26 

Thus, in considering the adequacy of the 24-hour standard, the Administrator noted the 27 

importance of considering whether additional protection was needed against short-term 28 

exposures to peak PM2.5 concentrations. In examining the scientific evidence, he noted the 29 

limited utility of the animal toxicologic studies in directly informing conclusions on the 30 

appropriate level of the standard given the uncertainty in extrapolating from effects in animals to 31 

those in human populations. The Administrator noted that controlled human exposure studies 32 

provided evidence for health effects following single, short-term PM2.5 exposures that 33 

corresponded best to exposures that might be experienced in the upper end of the PM2.5 air 34 

quality distribution in the U.S. (i.e., “peak” concentrations). However, most of these studies 35 

examined exposure concentrations considerably higher than are typically measured in areas 36 
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meeting the standards (U.S. EPA, 2020, section 3.2.3.1). In particular, controlled human 1 

exposure studies often reported statistically significant effects on one or more indicators of 2 

cardiovascular function following 2-hour exposures to PM2.5 concentrations at and above 120 3 

μg/m3 (at and above 149 μg/m3 for vascular impairment, the effect shown to be most consistent 4 

across studies). To provide insight into what these studies may indicate regarding the primary 5 

PM2.5 standards, the 2020 PA (U.S. EPA, 2020, p. 3-49) noted that 2-hour ambient 6 

concentrations of PM2.5 at monitoring sites meeting the current standards almost never exceeded 7 

32 μg/m3. In fact, even the extreme upper end of the distribution of 2-hour PM2.5 concentrations 8 

at sites meeting the primary PM2.5 standards remained well-below the PM2.5 exposure 9 

concentrations consistently shown in controlled human exposure studies to elicit effects (i.e., 10 

99.9th percentile of 2-hour concentrations at these sites is 68 μg/m3 during the warm season). 11 

Thus, the available experimental evidence did not indicate the need for additional protection 12 

against exposures to peak PM2.5 concentrations, beyond the protection provided by the 13 

combination of the 24-hour and the annual standards (U.S. EPA, 2020, section 3.2.3.1; 85 FR 14 

82716, December 18, 2020).  15 

With respect to the epidemiologic evidence, the Administrator noted that the studies did 16 

not indicate that associations in those studies were strongly influenced by exposures to peak 17 

concentrations in the air quality distribution and thus did not indicate the need for additional 18 

protection against short-term exposures to peak PM2.5 concentrations (U.S. EPA, 2020, section 19 

3.5.1). The Administrator noted that this was consistent with CASAC consensus support for 20 

retaining the current 24-hour standard. Thus, the Administrator concluded that the 24-hour 21 

standard with its level of 35 µg/m3 was adequate to provide supplemental protection (i.e., beyond 22 

that provided by the annual standard alone) against short-term exposures to peak PM2.5 23 

concentrations (85 FR 82716, December 18, 2020). 24 

With regard to the level of the annual standard, the Administrator recognized that the 25 

annual standard, with its form based on the arithmetic mean concentration, was most 26 

appropriately meant to limit the “typical” daily and annual exposures that were most strongly 27 

associated with the health effects observed in epidemiologic studies. However, the Administrator 28 

also noted that while epidemiologic studies examined associations between distributions of PM2.5 29 

air quality and health outcomes, they did not identify particular PM2.5 exposures that cause 30 

effects and thus, they could not alone identify a specific level at which the standard should be 31 

set, as such a determination necessarily required the Administrator’s judgment. Thus, consistent 32 

with the approaches in previous NAAQS reviews, the Administrator recognized that any 33 

approach that used epidemiologic information in reaching decisions on what standards are 34 

appropriate necessarily required judgments about how to translate the information from the 35 

epidemiologic studies into a basis for appropriate standards. This approach included 36 
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consideration of the uncertainties in the reported associations between daily or annual average 1 

PM2.5 exposures and mortality or morbidity in the epidemiologic studies. Such an approach is 2 

consistent with setting standards that are neither more nor less stringent than necessary, 3 

recognizing that a zero-risk standard is not required by the CAA (85 FR 82716, December 18, 4 

2020). 5 

The Administrator emphasized uncertainties and limitations that were present in 6 

epidemiologic studies in previous reviews and persisted in the 2020 review. These uncertainties 7 

included exposure measurement error, potential confounding by copollutants, increasing 8 

uncertainty of associations at lower PM2.5 concentrations, and heterogeneity of effects across 9 

different cities or regions (85 FR 82716, December 18, 2020). The Administrator also noted the 10 

advice given by the CASAC on this matter. The CASAC members who supported retaining the 11 

annual standard expressed their concerns with the epidemiologic studies, asserting that these 12 

studies did not provide a sufficient basis for revising the existing standards. They also identified 13 

several key concerns regarding the associations reported in epidemiologic studies and concluded 14 

that “while the data on associations should certainly be carefully considered, this data should not 15 

be interpreted more strongly than warranted based on its methodological limitations” (Cox, 2019, 16 

p. 8 consensus responses).  17 

Taking into consideration the views expressed by the CASAC members who supported 18 

retaining the annual standard, the Administrator recognized that epidemiologic studies examined 19 

associations between distributions of PM2.5 air quality and health outcomes, and they did not 20 

identify particular PM2.5 exposures that cause effects (U.S. EPA, 2020, section 3.1.2). While the 21 

Administrator remained concerned about placing too much weight on epidemiologic studies to 22 

inform conclusions on the adequacy of the primary standards, he noted the approach to 23 

considering such studies in the 2012 review. In the 2012 review, it was noted that the evidence of 24 

an association in any epidemiologic study was “strongest at and around the long-term average 25 

where the data in the study are most concentrated” (78 FR 3140, January 15, 2013). In 26 

considering the characterization of epidemiologic studies, the Administrator viewed that when 27 

assessing the mean concentrations of the key short-term and long-term epidemiologic studies in 28 

the U.S. that use ground-based monitoring (i.e., those studies where the mean is most directly 29 

comparable to the current annual standard), the majority of studies had mean concentrations at or 30 

above the level of the existing annual standard, with the mean of the study-reported means or 31 

medians equal to 13.5 µg/m3, a concentration level above the existing level of the primary annual 32 

standard of 12 µg/m3. The Administrator further noted his caution in directly comparing the 33 

reported study mean values to the standard level given that study-reported mean concentrations, 34 

by design, are generally lower than the design value of the highest monitor in an area, which 35 

determines compliance. In the 2020 PA, analyses of recent air quality in U.S. CBSAs indicated 36 
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that maximum annual PM2.5 design values for a given three-year period were often 10% to 20% 1 

higher than average monitored concentrations (i.e., averaged across multiple monitors in the 2 

same CBSA) (U.S. EPA, 2020, Appendix B, section B.7). He further noted his concern in 3 

placing too much weight on any one epidemiologic study but instead judged that it was more 4 

appropriate to focus on the body of studies together and therefore noted the calculation of the 5 

mean of study-reported means (or medians). Thus, while the Administrator was cautious in 6 

placing too much weight on the epidemiologic evidence alone, he noted that: (1) the reported 7 

mean concentration in the majority of the key U.S. epidemiologic studies using ground-based 8 

monitoring data were above the level of the existing annual standard; (2) the mean of the 9 

reported study means (or medians) (i.e., 13.5 µg/m3) was above the level of the current standard;2 10 

(3) air quality analyses showed the study means to be lower than their corresponding design 11 

values by 10-20%; and (4) these analyses must be considered in light of uncertainties inherent in 12 

the epidemiologic evidence. When taken together, the Administrator judged that, even if it were 13 

appropriate to place more weight on the epidemiologic evidence, this information did not call 14 

into question the adequacy of the current standards (85 FR 82716-82717, December 18, 2020). 15 

In addition to the evidence, the Administrator also considered the potential implications 16 

of the risk assessment. He noted that all risk assessments have limitations and that he remained 17 

concerned about the uncertainties in the underlying epidemiologic data used in the risk 18 

assessment. The Administrator also noted that in previous reviews, these uncertainties and 19 

limitations have often resulted in less weight being placed on quantitative estimates of risk than 20 

on the underlying scientific evidence itself (e.g., 78 FR 3086, 3098-99, January 15, 2013). These 21 

uncertainties and limitations included uncertainty in the shapes of concentration-response 22 

functions, particularly at low concentrations; uncertainties in the methods used to adjust air 23 

quality; and uncertainty in estimating risks for populations, locations and air quality distributions 24 

different from those examined in the underlying epidemiologic study (U.S. EPA, 2020, section 25 

3.3.2.4). Additionally, the Administrator noted similar concern expressed by some members of 26 

the CASAC who support retaining the existing standards; they highlighted similar uncertainties 27 

and limitations in the risk assessment (Cox, 2019). In light of all of this, the Administrator 28 

judged it appropriate to place little weight on quantitative estimates of PM2.5-associated mortality 29 

risk in reaching conclusions about the level of the primary PM2.5 standards (85 FR 82717, 30 

December 18, 2020).  31 

The Administrator additionally considered an emerging body of evidence from 32 

accountability studies that examined past reductions in ambient PM2.5 and the degree to which 33 

 
2 The median of the study-reported mean (or median) PM2.5 concentrations is 13.3 µg/m3, which was also above the 

level of the existing standard. 
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those reductions resulted in public health improvements. While the Administrator agreed with 1 

public commenters that well-designed and conducted accountability studies can be informative, 2 

he viewed that interpreting such studies in the context of the primary PM2.5 standards was 3 

complicated by the fact that some of the available studies had not evaluated PM2.5 specifically 4 

(e.g., as opposed to PM10 or total suspended particulates), did not show changes in PM2.5 air 5 

quality, or had not been able to disentangle health impacts of the interventions from background 6 

trends in health (U.S. EPA, 2020, section 3.5.1). He further recognized that the small number of 7 

available studies that did report public health improvements following past declines in ambient 8 

PM2.5 had not examined air quality meeting the existing standards (U.S. EPA, 2020, Table 3-3). 9 

This included U.S. studies that reported increased life expectancy, decreased mortality, and 10 

decreased respiratory effects following past declines in ambient PM2.5 concentrations. Such 11 

studies examined “starting” annual average PM2.5 concentrations (i.e., prior to the reductions 12 

being evaluated) ranging from about 13.2 to > 20 µg/m3 (i.e., U.S. EPA, 2020, Table 3-3). Given 13 

the lack of available accountability studies reporting public health improvements attributable to 14 

reductions in ambient PM2.5 in locations meeting the existing standards, together with his broader 15 

concerns regarding the lack of experimental studies examining PM2.5 exposures typical of areas 16 

meeting the existing standards, the Administrator judged that there was considerable uncertainty 17 

in the potential for increased public health protection from further reductions in ambient PM2.5 18 

concentrations beyond those achieved under the existing primary PM2.5 standards  (85 FR 82717, 19 

December 18, 2020).  20 

When the above considerations were taken together, the Administrator concluded that the 21 

scientific evidence assessed in the 2019 ISA, together with the analyses in the 2020 PA based on 22 

that evidence and consideration of CASAC advice and public comments, did not call into 23 

question the adequacy of the public health protection provided by the existing annual and 24-24 

hour PM2.5 standards. In particular, the Administrator judged that there was considerable 25 

uncertainty in the potential for additional public health improvements from reducing ambient 26 

PM2.5 concentrations below the concentrations achieved under the existing primary standards and 27 

that, therefore, standards more stringent than the existing standards (e.g., with lower levels) were 28 

not supported. That is, he judged that such standards would be more than requisite to protect the 29 

public health with an adequate margin of safety. This judgment reflected the Administrator’s 30 

consideration of the uncertainties in the potential implications of the lower end of the air quality 31 

distributions from the epidemiologic studies due in part to the lack of supporting evidence from 32 

experimental studies and retrospective accountability studies conducted at PM2.5 concentrations 33 

meeting the existing standards (85 FR 82717, December 18, 2020). 34 

In reaching this conclusion, the Administrator judged that the existing standards provided 35 

an adequate margin of safety. With respect to the annual standard, the level of 12 µg/m3 was 36 
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below the lowest “starting” concentration (i.e., 13.2 µg/m3) in the available accountability 1 

studies that showed public health improvements attributable to reductions in ambient PM2.5. In 2 

addition, while the Administrator placed less weight on the epidemiologic evidence for selecting 3 

a standard, he noted that the level of the annual standard was below the reported mean (and 4 

median) concentrations in the majority of the key U.S. epidemiologic studies using ground-based 5 

monitoring data (noting that these means tend to be 10-20% lower than their corresponding area 6 

design values which is the more relevant metric when considering the level of the standard) and 7 

below the mean of the reported means (or medians) of these studies (i.e., 13.5 µg/m3). In 8 

addition, the Administrator recognized that concentrations in areas meeting the existing 24-hour 9 

and annual standards remained well-below the PM2.5 exposure concentrations consistently shown 10 

to elicit effects in human exposure studies (85 FR 82717-82718, December 18, 2020).   11 

In addition, based on the Administrator’s review of the science, including controlled 12 

human exposure studies examining effects following short-term PM2.5 exposures, the 13 

epidemiologic studies, and accountability studies conducted at levels just above the existing 14 

annual standard, he judged that the degree of public health protection provided by the existing 15 

annual standard is not greater than warranted. This judgment, together with the fact that no 16 

CASAC member expressed support for a less stringent standard, led the Administrator to 17 

conclude that standards less stringent than the existing standards (e.g., with higher levels) were 18 

also not supported (85 FR 82718, December 18, 2020).  19 

In reaching his final decision, the Administrator concluded that the scientific evidence 20 

and technical information continued to support the existing annual and 24-hour PM2.5 standards. 21 

This conclusion reflected the Administrator’s view that there were important limitations and 22 

uncertainties that remained in the evidence. The Administrator concluded that these limitations 23 

contributed to considerable uncertainty regarding the potential public health implications of 24 

revising the existing primary PM2.5 standards. Given this uncertainty, and noting the advice from 25 

some CASAC members, he concluded that the primary PM2.5 standards, including the indicators 26 

(PM2.5), averaging times (annual and 24-hour), forms (arithmetic mean and 98th percentile, 27 

averaged over three years) and levels (12.0 g/m3, 35 g/m3), when taken together, remained 28 

requisite to protect the public health. Therefore, in the 2020 review, the Administrator reached 29 

the conclusion that the primary 24-hour and annual PM2.5 standards, together, were requisite to 30 

protect public health from fine particles with an adequate margin of safety, including the health 31 

of at-risk populations, and retained the standards, without revision (85 FR 82718, December 18, 32 

2020).  33 
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3.2 GENERAL APPROACH AND KEY ISSUES IN THIS 1 

RECONSIDERATION OF THE 2020 FINAL DECISION 2 

As is the case for all such reviews, this reconsideration of the 2020 final decision on the 3 

primary PM2.5 standards is most fundamentally based on the Agency’s assessment of the 4 

scientific evidence and associated quantitative analyses to inform the Administrator’s judgments 5 

regarding primary standards that are requisite to protect public health with an adequate margin of 6 

safety. This draft PA is intended to help bridge the gap between the scientific evidence and 7 

information assessed in the 2019 ISA and draft ISA Supplement and the judgments required of 8 

the Administrator in determining whether it is appropriate to retain or revise the primary PM2.5 9 

NAAQS. The approach for this reconsideration builds on the substantial assessments and 10 

evaluations performed over the course of the prior reviews (U.S. EPA, 2011; U.S. EPA, 2020), 11 

taking into account the more recent scientific information and air quality data now available to 12 

inform our understanding of the key policy issues relevant in this reconsideration. 13 

The evaluations in this draft PA of the scientific assessments in the 2019 ISA and the 14 

draft ISA Supplement,3 augmented by the quantitative risk analyses, are intended to inform the 15 

Administrator’s public health policy judgments and conclusions, including his decisions as to 16 

whether to retain or revise the primary PM2.5 standards. The draft PA evaluations consider the 17 

potential implications of various aspects of the scientific evidence, the risk-based information, 18 

and the associated uncertainties and limitations. In so doing, the approach for this draft PA 19 

involves evaluating the scientific and technical information to address a series of key policy-20 

relevant questions using both evidence- and risk-based considerations. Together, consideration of 21 

the full set of evidence and information available in this reconsideration will inform the answer 22 

to the following initial overarching question for the reconsideration: 23 

• Does the scientific evidence, air quality and quantitative risk information support or 24 

call into question the adequacy of the public health protection afforded by the 25 

current primary annual and 24-hour PM2.5 standards? 26 

In reflecting on this question, we will consider the body of scientific evidence, assessed 27 

in the 2019 ISA and draft ISA Supplement and used as a basis for developing or interpreting risk 28 

analyses, including whether it supports or calls into question the scientific conclusions reached in 29 

 
3 As described in detail in section 1.4.2, the draft ISA Supplement focuses on a thorough evaluation of some studies 

that became available after the literature cutoff date of the 2019 ISA that could either further inform the adequacy 

of the current PM NAAQS or address key scientific topics that have evolved since the literature cutoff date for 

the 2019 ISA (U.S. EPA, 2021a). The selection of the health effects to evaluate within the draft ISA Supplement 

were based on the causality determinations reported in the 2019 ISA and the subsequent use of scientific evidence 

in the 2020 PA. Specifically, for PM2.5-related health effects, the focus within the draft ISA Supplement is on 

mortality and cardiovascular effects. The draft ISA Supplement does not include an evaluation of studies for other 

PM2.5-related health effects (U.S. EPA, 2021a). 
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the 2020 review regarding health effects related to exposure to PM2.5 in ambient air. Information 1 

available in this reconsideration that may be informative to public health judgments regarding 2 

significance or adversity of key effects will also be considered. Additionally, the available risk 3 

information, whether newly developed for this reconsideration or predominantly developed in 4 

the past and interpreted in light of recent information, will be considered, including with regard 5 

to the extent to which it may continue to support judgments made in the 2020 review. Further, in 6 

considering this question with regard to the primary PM2.5 standards, as in all NAAQS reviews, 7 

we give particular attention to exposures and health risks to at-risk populations (including at-risk 8 

lifestages).4 9 

If the information available in this reconsideration suggests that revision of the current 10 

primary standards would be appropriate to consider, the draft PA will also evaluate how the 11 

standards might be revised based on the scientific information, air quality assessments, and risk 12 

information, and also considering what the information indicates as to the health protection 13 

expected to be afforded by the current or potential alternative standards. Such an evaluation may 14 

consider the effect of revising one or more elements of the standard (indicator, averaging time, 15 

level, and form), with the impact evaluated being on the resulting potential standard and all of its 16 

elements collectively. Based on such evaluations, the draft PA would then identify potential 17 

alternative standards (specified in terms of indicator, averaging time, level, and form) intended to 18 

reflect a range of alternative policy judgments as to the degree of protection that is requisite to 19 

protect public health with an adequate margin of safety, and options for standards to achieve it. 20 

The initial overarching policy-relevant question that frames such an evaluation of what revision 21 

of the standard might be appropriate to consider is: 22 

• What range of potential alternative standards could be supported by the available 23 

scientific evidence, air quality and risk information? 24 

The approach to reaching preliminary conclusions on the current primary PM2.5 standards 25 

and, as appropriate, on potential alternative standards is summarized in general terms in Figure 26 

3-1. 27 

 28 

 29 

  30 

 
4 As used here and similarly throughout this document, the term population refers to persons having a quality or 

characteristic in common, such as a specific pre-existing illness or a specific age or life stage. Identifying at-risk 

populations involves consideration of susceptibility and vulnerability. Susceptibility refers to innate (e.g., genetic 

or developmental aspects) or acquired (e.g., disease or smoking status) sensitivity that increases the risk of health 

effects occurring with exposure to PM2.5. Vulnerability refers to an increased risk of PM2.5-related health effects 

due to factors such as those related to socioeconomic status, reduced access to health care or exposure. 
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 1 

Figure 3-1.  Overview of general approach for the reconsideration of the 2020 final decision 2 

on the primary PM2.5 standards.  3 
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The Agency’s approach in reconsidering the primary standards is consistent with 1 

requirements of the provisions of the CAA related to the review of the NAAQS and with how the 2 

EPA and the courts have historically interpreted the CAA. As discussed in section 1.1 above, 3 

these provisions require the Administrator to establish primary standards that, in the 4 

Administrator’s judgment, are requisite (i.e., neither more nor less stringent than necessary) to 5 

protect public health with an adequate margin of safety. Consistent with the Agency’s approach 6 

across all NAAQS reviews, the approach of this draft PA to informing these judgments is based 7 

on a recognition that the available health effects evidence generally reflects continuums that 8 

include ambient air exposures for which scientists generally agree that health effects are likely to 9 

occur through lower levels at which the likelihood and magnitude of response become 10 

increasingly uncertain. The CAA does not require the Administrator to establish a primary 11 

standard at a zero-risk level or at background concentration levels, but rather at a level that 12 

reduces risk sufficiently so as to protect public health, including the health of sensitive groups,5 13 

with an adequate margin of safety. 14 

The decisions on the adequacy of the current primary PM2.5 standards and on any 15 

alternative standards considered in a reconsideration are largely public health policy judgments 16 

made by the Administrator. The four basic elements of the NAAQS (i.e., indicator, averaging 17 

time, form, and level) are generally considered collectively in evaluating the health protection 18 

afforded by the current standards, and by any alternatives considered. The Administrator’s final 19 

decisions draw upon the scientific evidence for health effects, quantitative analyses of population 20 

exposures and/or health risks, as available, and judgments about how to consider the 21 

uncertainties and limitations that are inherent in the scientific evidence and quantitative analyses. 22 

3.3 HEALTH EFFECTS EVIDENCE  23 

In this section, we draw from the EPA’s synthesis and assessment of the scientific 24 

evidence presented in the 2019 ISA (U.S. EPA, 2019) and the draft ISA Supplement (U.S. EPA, 25 

2021a) to consider the following policy-relevant question:  26 

 
5 More than one population group may be identified as sensitive or at-risk in a NAAQS review. Decisions on 

NAAQS reflect consideration of the degree to which protection is provided for these sensitive population groups. 

To the extent that any particular population group is not among the identified sensitive groups, a decision that 

provides protection for the sensitive groups would be expected to also provide protection for other population 

groups. 
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• To what extent does the currently available scientific evidence, as assessed in the 1 

2019 ISA and the draft ISA Supplement, support or call into question the public 2 

health protection afforded by the current suite of PM2.5 standards? 3 

The 2019 ISA uses a weight-of-evidence framework for characterizing the strength of the 4 

available scientific evidence for health effects attributable to PM exposures (U.S. EPA, 2015b, 5 

Preamble, section 5). This framework provides the basis for robust, consistent, and transparent 6 

evaluation of the scientific evidence, including its uncertainties, and for drawing conclusions on 7 

PM-related health effects. As in previous reviews, the 2019 ISA adopts a five-level hierarchy to 8 

classify the overall weight of evidence into one of the following categories: causal relationship; 9 

likely to be a causal relationship; suggestive of, but not sufficient to infer, a causal relationship; 10 

inadequate to infer a causal relationship; and not likely to be a causal relationship (U.S. EPA, 11 

2015b, Preamble Table II). In using the weight-of-evidence approach to inform judgments about 12 

the causal nature of relationships between PM exposure and health effects, evidence is evaluated 13 

for major outcome categories or groups of related outcomes (e.g., respiratory effects), integrating 14 

evidence from across disciplines, including epidemiologic, controlled human exposure, and 15 

animal toxicological studies and evaluating the coherence of evidence across a spectrum of 16 

related endpoints (U.S. EPA, 2015b, Preamble, section 5.c.). In this draft PA, we consider the 17 

full body of health evidence, including evidence from the 2019 ISA and draft ISA Supplement, 18 

placing the greatest emphasis on the health effects for which the evidence has been judged in the 19 

2019 ISA to demonstrate a “causal” or a “likely to be causal” relationship with PM exposures. 20 

The 2019 ISA defines these causality determinations as follows (U.S. EPA, 2019, p. p-20; U.S. 21 

EPA, 2015b):  22 

• Causal relationship: the pollutant has been shown to result in health effects at relevant 23 

exposures based on studies encompassing multiple lines of evidence and chance, 24 

confounding, and other biases can be ruled out with reasonable confidence.  25 

• Likely to be a causal relationship: there are studies in which results are not explained by 26 

chance, confounding, or other biases, but uncertainties remain in the health effects evidence 27 

overall. For example, the influence of co-occurring pollutants is difficult to address, or 28 

evidence across scientific disciplines may be limited or inconsistent. 29 

While the 2019 ISA provides the broad scientific foundation for this reconsideration, we 30 

recognize that additional literature has become available since the literature cutoff date of the 31 

2019 ISA that expands the body of evidence that can inform the Administrator’s judgments on 32 

the adequacy of the current primary PM2.5 standards. As such, the draft ISA Supplement builds 33 

on the information in the 2019 ISA with a targeted identification and evaluation of new scientific 34 

information (U.S. EPA, 2021a, section 1.2). The draft ISA Supplement focuses on PM2.5 health 35 

effects evidence where the 2019 ISA concludes a “causal relationship,” because such health 36 

effects are given the most weight in an Administrator’s decisions in a NAAQS review. The draft 37 
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ISA Supplement evaluates newly available evidence related to short- and long-term PM2.5 1 

exposure and mortality and cardiovascular effects given the strength of the evidence available in 2 

the 2019 ISA and past ISAs and AQCDs, as well as the clear adversity of these endpoints. 3 

Specifically, U.S. and Canadian epidemiologic studies for mortality and cardiovascular effects, 4 

along with experimental studies related to cardiovascular effects, were considered to be of 5 

greatest utility in informing the Administrator’s conclusions on the adequacy of the current 6 

primary PM2.5 standards. While the draft ISA Supplement does not include information for 7 

health effects other than mortality and cardiovascular effects, the evidence as it was assessed in 8 

the 2019 ISA is considered in this draft PA in reaching preliminary conclusions as a part of the 9 

reconsideration of the 2020 final decision. 10 

The draft ISA Supplement also assessed accountability studies because these types of 11 

epidemiologic studies were part of the body of evidence that was a focus of the 2020 review. 12 

Accountability studies inform our understanding of the potential for public health improvements 13 

as ambient PM2.5 concentrations have declined over time. Further, the draft ISA Supplement 14 

considered studies that employed causal modeling methods, given that such studies were 15 

highlighted by the CASAC and identified in public comments in the 2020 review. Since the 16 

literature cutoff date for the 2019 ISA, multiple accountability studies and studies that employ 17 

causal modeling have become available for consideration in the draft ISA Supplement and in this 18 

reconsideration. 19 

The draft ISA Supplement also considered recent health effects evidence that addresses 20 

key scientific issues where the literature has expanded since the completion of the 2019 ISA.6 21 

Given the importance of identifying the populations at increased risk of PM2.5-related effects, the 22 

draft ISA Supplement also included epidemiologic or exposure studies examining exposure or 23 

risk disparities by race/ethnicity or socioeconomic status. The draft ISA Supplement assessed 24 

studies that examined the relationship between PM2.5 exposures and COVID-19 infection and/or 25 

death, as these studies are a new area of research and were raised by a number of public 26 

commenters in the 2020 review. These types of studies provide additional information related to 27 

factors that may increase risk of PM2.5-related health effects and provide additional evidence for 28 

consideration by the Administrator in reaching conclusions regarding the adequacy of the current 29 

standards. 30 

The evidence presented within the 2019 ISA, along with the targeted identification and 31 

evaluation of new scientific information in the draft ISA Supplement, provides the scientific 32 

basis for the reconsideration of the 2020 final decision on the primary PM2.5 standards. In the 33 

 
6 As with the epidemiologic studies for long- and short-term PM2.5 exposure and mortality and cardiovascular 

effects, epidemiologic studies of exposure or risk disparities and COVID-19 infection and/or death were limited 

to those conducted in the U.S. and Canada. 
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sections below, we consider the nature of the health effects attributable to long- and short-term 1 

fine particle exposures (section 3.3.1), the public health implications and populations potentially 2 

at increased risk for PM-related effects (section 3.3.2), and the PM2.5 concentrations at which 3 

effects have been shown to occur (section 3.3.3).  4 

3.3.1 Nature of Effects  5 

In considering the available evidence for health effects attributable to PM2.5 exposures 6 

presented in the 2019 ISA and the draft ISA Supplement, this section poses the following policy-7 

relevant questions:  8 

• To what extent does the currently available scientific evidence strengthen, or 9 

otherwise alter, our preliminary conclusions regarding health effects attributable to 10 

long- or short-term fine particle exposures? Have previously identified uncertainties 11 

been reduced? What important uncertainties remain and have new uncertainties 12 

been identified? 13 

In answering these questions, as noted above, we consider the full body of evidence assessed in 14 

the 2019 ISA, along with the targeted evaluation of recent evidence in the draft ISA Supplement. 15 

In so doing, we place particular emphasis on health outcomes for which the evidence in the 2019 16 

ISA supports either a “causal” or a “likely to be causal” relationship. While the strongest 17 

evidence focuses on PM2.5, the 2019 ISA also assesses the evidence for the ultrafine fraction of 18 

PM2.5 (ultrafine particles or UFP), generally considered as particulates with a diameter less than 19 

or equal to 0.1 μm7 (typically based on physical size, thermal diffusivity or electrical mobility) 20 

(U.S. EPA, 2019, Preface, p. 11). Table 3-1 lists causality determinations for all of the health 21 

effect categories and exposure durations for both PM2.5 and UFP, which we consider within this 22 

chapter (adapted from U.S. EPA, 2019, Table 1-4).  23 

  24 

 
7 Definitions of UFP vary across the scientific literature and, as discussed in sections 3.3.1.5 and 3.3.1.6, UFP 

exposures in animal toxicological and controlled human exposure studies typically use a particle concentrator, 

which can result in exposures to particles > 0.1 μm in diameter in some studies of UFP-related health effects.  
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Table 3-1. Key causality determinations for PM2.5 and UFP exposures.  1 

Health Outcome 
Size 

Fraction 
Exposure 
Duration 

2009 ISA 2019 ISA 

Mortality PM2.5 
Long-term 

Causal Causal 
Short-term 

Cardiovascular 
effects 

PM2.5 
Long-term 

Causal Causal 
Short-term 

UFP Short-term 
Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer 

Respiratory 
effects 

PM2.5 
Long-term 

Likely to be causal Likely to be causal 
Short-term 

UFP 
Short-term 

Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer 

Cancer PM2.5 
Long-term Suggestive of, but not 

sufficient to infer 
Likely to be causal 

Nervous System 
effects 

PM2.5 

Long-term --- Likely to be causal 

Short-term Inadequate 
Suggestive of, but not 
sufficient to infer 

UFP 

Long-term --- 
Suggestive of, but not 
sufficient to infer 

Short-term Inadequate 
Suggestive of, but not 
sufficient to infer 

Metabolic effects PM2.5 

Long-term --- 
Suggestive of, but not 
sufficient to infer 

Short-term --- 
Suggestive of, but not 
sufficient to infer 

Reproduction 
and Fertility  

PM2.5 
Long-, 

Short-term 
Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer Pregnancy and 

Birth Outcomes 

Table 3-1 lists the health outcomes for which the 2019 ISA concludes the evidence supports either a causal, a likely to 
be causal, or a suggestive relationship. For other health outcomes, the 2019 ISA concludes the evidence is inadequate 
to infer a causal relationship (U.S. EPA, 2019, Table 1-4). 

The 2009 ISA (U.S. EPA, 2009) made causality determinations for the broad category of “Reproductive and 
Developmental Effects.” Causality determinations for 2009 represent this broad category and not specifically for “Male 
and Female Reproduction and Fertility” and “Pregnancy and Birth Outcomes”. 

For reproductive and developmental effects, the 2019 ISA’s causality determinations reflect the combined evidence for 
both short- and long-term exposures (U.S. EPA, 2019, Chapter 9). 
 

 2 
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Sections 3.3.1.1 to 3.3.1.5 summarize the evidence supporting the 2019 ISA’s “causal” and 1 

“likely to be causal” determinations for PM2.5 (italics in Table 3-1) and integrates the recent 2 

evidence assessed in the draft ISA Supplement, where available. Section 3.3.1.6 briefly 3 

summarizes the evidence supporting the 2019 ISA’s “suggestive” determinations, as well as 4 

emerging evidence related to COVID-19 infection and death detailed in the draft ISA 5 

Supplement. Each of these sections focuses on addressing the policy-relevant questions posed 6 

above. Section 3.3.1.7 summarizes the evidence in preceding sections and revisits the policy-7 

relevant questions posed above. Section 3.3.2 describes the public health implications and at-risk 8 

populations. In section 3.3.3, we present the PM2.5 concentrations in key studies reporting PM2.5-9 

related health effects, and section 3.3.4 summarizes the key uncertainties and limitations 10 

associated with the health effects evidence. 11 

 Mortality  12 

Long-term PM2.5 exposures 13 

The 2009 ISA reported that the evidence was “sufficient to conclude that the relationship 14 

between long-term PM2.5 exposures and mortality is causal” (U.S. EPA, 2009, p. 7-96). The 15 

strongest evidence supporting this conclusion was provided by epidemiologic studies, 16 

particularly those examining two seminal cohorts, the American Cancer Society (ACS) and the 17 

Harvard Six Cities cohorts. Analyses of the Harvard Six Cities cohort included demonstrations 18 

that reductions in ambient PM2.5 concentrations are associated with reduced mortality risk 19 

(Laden et al., 2006) and with increases in life expectancy (Pope et al., 2009). Further support was 20 

provided by other cohort studies conducted in North America and Europe that also reported 21 

positive associations between long-term PM2.5 exposures and risk of mortality (U.S. EPA, 2009).  22 

 Cohort studies, assessed in the 2019 ISA, continue to provide consistent evidence of 23 

positive associations between long-term PM2.5 exposures and mortality. These studies add 24 

support for associations with total and non-accidental mortality,8 as well as with specific causes 25 

of death, including cardiovascular disease and respiratory disease (U.S. EPA, 2019, section 26 

11.2.2). Many of these studies have extended the follow-up periods originally evaluated in the 27 

ACS and Harvard Six Cities cohorts and continue to observe positive associations between long-28 

term PM2.5 exposures and mortality (U.S. EPA, 2019, section 11.2.2.1; Figures 11-18 and 11-29 

19). Adding to the evaluations of the ACS and Six Cities cohorts, studies conducted in other 30 

cohorts also demonstrate consistent, positive associations between long-term PM2.5 exposure and 31 

mortality across various demographic groups (e.g., age, sex, occupation), spatial and temporal 32 

extents, exposure assessment metrics, and statistical techniques (U.S. EPA, 2019, sections 33 

 
8 The majority of these studies examined non-accidental mortality outcomes, though some Medicare studies lack 

cause-specific death information and, therefore, examine total mortality.  
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11.2.2.1, 11.2.5; U.S. EPA, 2021a, Table 11-8). This includes some of the largest cohort studies 1 

conducted to date, with analyses of the U.S. Medicare cohort that include nearly 61 million 2 

enrollees (Di et al., 2017b) and studies that control for a range of individual and ecological 3 

covariates, such as race, age, socioeconomic status, smoking status, body mass index, and annual 4 

weather variables (e.g., temperature, humidity).  5 

Many recent North American cohort studies evaluated in the draft ISA Supplement 6 

continue to examine the relationship between long-term PM2.5 exposure and mortality and report 7 

positive and statistically significant associations. Recent studies continue to utilize large and 8 

demographically diverse cohorts that are generally representative of the national populations in 9 

both the U.S. and Canada, as well as focus on occupation-based specific cohorts. These “studies 10 

published since the 2019  ISA support and extend the evidence base that contributed to the 11 

conclusion of a causal relationship between long-term PM2.5 exposure and mortality” (U.S. 12 

EPA, 2021a, section 3.2.2.2.1, Figure 3-19, Figure 3-20)  13 

  Furthermore, studies in the 2019 ISA and the draft ISA Supplement evaluating cause-14 

specific mortality build on previous research that found consistent, positive associations between 15 

cardiovascular and respiratory mortality, as well as other mortality outcomes. For 16 

cardiovascular-related mortality, the evidence assessed in the draft ISA Supplement is consistent 17 

with the evidence assessed in the 2019 ISA with recent studies reporting positive associations 18 

with long-term PM2.5 exposure. When evaluating cause-specific cardiovascular mortality, recent 19 

studies report positive associations for a number of outcomes including ischemic heart disease 20 

(IHD) and stroke mortality (U.S. EPA, 2021a, Figure 3-23). Recent studies also provide some 21 

initial evidence that people with pre-existing health issues (such as heart failure and diabetes) are 22 

at an increased risk of PM2.5-related effects (U.S. EPA, 2021a, section 3.2.2.4) and suggest that 23 

these individuals have a higher risk of mortality overall, which was previously only examined in 24 

studies that used stratified analyses rather than a cohort of people with an underlying health 25 

condition (U.S. EPA, 2021a, section 3.2.2.4). With regard to respiratory mortality, epidemiologic 26 

studies assessed in the 2019 ISA and draft ISA Supplement provide continued support for 27 

associations between long-term PM2.5 exposure and respiratory mortality (U.S. EPA, 2019, 28 

section 5.2.10; U.S. EPA, 2021a, Table 3-2). 29 

 A series of epidemiologic studies evaluated in the 2019 ISA tested the hypothesis that 30 

past reductions in ambient PM2.5 concentrations have been associated with increased life 31 

expectancy or a decreased mortality rate (U.S. EPA, 2019, section 11.2.2.5). In their original 32 

study, Pope et al. (2009) used air quality data in a cross-sectional analysis from 51 metropolitan 33 

areas across the U.S., beginning in the 1970s through the early 2000s, to demonstrate that a 34 

10 µg/m3 decrease in long-term PM2.5 concentration was associated with a 0.61-year increase in 35 

life expectancy. In a subsequent analysis, these authors extended the period of analysis to include 36 
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2000 to 2007 (Correia et al., 2013), a time period with lower ambient PM2.5 concentrations. In 1 

this follow-up study, a decrease in long-term PM2.5 concentration continued to be associated with 2 

an increase in life expectancy, though the magnitude of the increase was smaller than during the 3 

earlier time period (i.e., a 10 µg/m3 decrease in long-term PM2.5 concentration was associated 4 

with a 0.35-year increase in life expectancy). Additional studies conducted in the U.S. or Europe 5 

similarly report that reductions in ambient PM2.5 are associated with improvements in longevity 6 

(U.S. EPA, 2019, section 11.2.2.5). Multiple epidemiologic studies that conducted accountability 7 

analyses and were published after the literature cutoff date for the 2019 ISA were evaluated in 8 

the draft ISA Supplement (U.S. EPA, 2021a, section 3.2.1.3). These studies are consistent with 9 

and expand upon the body of evidence from the 2019 ISA. For example, Bennett et al. (2019) 10 

reported that PM2.5 concentrations above the lowest observed concentration (2.8 µg/m3) were 11 

associated with a 0.15 year decrease in national life expectancy for women and 0.13 year 12 

decrease in national life expectancy for men (U.S. EPA, 2021a, section 3.2.2.2.4, Figure 3-25). 13 

Another study compared participants living in areas with PM2.5 concentrations >12 µg/m3 to 14 

participants living in areas with PM2.5 concentrations < 12 µg/m3 and reported that the number of 15 

years of life lost due to living in areas with higher PM2.5 concentrations was 0.84 years over a 5-16 

year period (Ward-Caviness et al., 2020; U.S. EPA, 2021a, section 3.2.2.2.4). 17 

Since the 2009  ISA there is an emerging group of studies that used causal modeling 18 

statistical methods to further assess relationship between long-term PM2.5 exposure and mortality 19 

(U.S. EPA, 2019, section 11.2.2.4). The goal of causal modeling methods is to “estimate the 20 

difference (or ratio) in the expected value of [an] outcome in the population under the exposure 21 

they received versus what it would have been had they received an alternative exposure” 22 

(Schwartz et al., 2015). Multiple epidemiologic studies that implemented causal modeling 23 

methods and were published since the literature cutoff date of the 2019 ISA were evaluated in 24 

the draft ISA Supplement (U.S. EPA, 2021a, section 3.2.2.3). These studies use a variety of 25 

statistical methods including generalized propensity score (GPS), inverse probability weighting 26 

(IPW), and difference-in-difference (DID) to reduce uncertainties related to confounding bias in 27 

the association between long-term PM2.5 exposure and mortality. Studies that employed these 28 

causal modeling methods reported consistent positive associations that further inform the 29 

relationship between long-term PM2.5 exposure and total mortality (U.S. EPA, 2021a, section 30 

3.2.2.3). These studies provide further support of associations seen in cohort studies and 31 

referenced just above.  32 

The 2019 ISA and draft ISA Supplement also evaluate the degree to which recent studies 33 

that examine the relationship between long-term PM2.5 exposure and mortality have addressed 34 

key policy-relevant issues and/or previously identified data gaps in the scientific evidence, 35 

including methods to estimate exposure, methods to control for confounding, like copollutant 36 
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confounding, and the shape of the concentration-response curve. For example, based on its 1 

assessment of the evidence, the 2019 ISA concludes that positive associations between long-term 2 

PM2.5 exposures and mortality are robust across recent analyses using various approaches to 3 

estimate PM2.5 exposures (e.g., based on monitors, modeling, satellites, or hybrid methods that 4 

combine information from multiple sources) (U.S. EPA, 2019, section 11.2.5.1). This includes a 5 

study Hart et al. (2015) reporting that correction for bias due to exposure measurement error 6 

increases the magnitude of the hazard ratios (confidence intervals widen but the association 7 

remains statistically significant), suggesting that failure to correct for exposure measurement 8 

error could result in attenuation or underestimation of risk estimates.  9 

The 2019 ISA additionally concludes that positive associations between long-term PM2.5 10 

exposures and mortality are robust across statistical models that use different approaches to 11 

control for confounders or different sets of confounders (U.S. EPA, 2019, sections 11.2.3 and 12 

11.2.5), across diverse geographic regions and populations, and across a range of temporal 13 

periods including the periods of declining PM concentrations (U.S. EPA, 2019, sections 11.2.2.5 14 

and 11.2.5.3). Additional evidence further demonstrates that associations with mortality remain 15 

robust in copollutants analyses (U.S. EPA, 2019, section 11.2.3), and that associations persist in 16 

analyses restricted to long-term exposures below 12 g/m3 (Di et al., 2017b) or 10 g/m3 (Shi et 17 

al., 2016) (i.e., indicating that risks are not disproportionately driven by the upper portions of the 18 

air quality distribution). Recent studies further assess potential copollutant confounding as 19 

reflected in the studies evaluated in the draft ISA Supplement that indicate while there is some 20 

evidence of potential confounding of the PM2.5-mortality association by copollutants in the some 21 

of the studies (i.e., those studies of the MAPLE cohort), this result is inconsistent with other 22 

recent studies evaluated in the 2019 ISA that were conducted in the U.S. and Canada that found 23 

associations in both single and copollutant models (U.S. EPA, 2019; U.S. EPA, 2021a, section 24 

3.2.2.4 and 3.1.2.2.8). Additionally, a few studies use statistical techniques to reduce 25 

uncertainties related to potential confounding in order to further inform conclusions on causality 26 

for long-term PM2.5 exposure and mortality. For example, studies by Greven et al. (2011), Pun et 27 

al. (2017), and Eum et al. (2018) decompose ambient PM2.5 into “spatial” and “spatiotemporal” 28 

components in order to evaluate the potential for bias due to unmeasured spatial confounding. 29 

Eum et al. (2018) and Wu et al. (2020a) also attempted to address long-term trends and 30 

meteorological variables as potential confounders and found that not adjusting for temporal 31 

trends could overestimate the association, while effect estimates in analyses that excluded 32 

meteorological variables remained unchanged compared to main analyses. The results of these 33 
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analyses suggest the presence of unmeasured confounding, though they do not indicate the 1 

direction or magnitude of the bias that could result.9 2 

An additional important consideration in characterizing the public health impacts 3 

associated with PM2.5 exposure is whether concentration-response relationships are linear across 4 

the range of concentrations or if nonlinear relationships exist along any part of this range. Studies 5 

evaluated in the 2019 ISA and draft ISA Supplement examine this issue, and continue to provide 6 

evidence of linear, no-threshold relationships between long-term PM2.5 exposures and all-cause 7 

and cause-specific mortality (U.S. EPA, 2019, section 11.2.4; U.S. EPA, 2021a, section 8 

3.2.2.2.7, Table 3-6). Across the studies evaluated in the 2019 ISA and draft ISA Supplement, a 9 

variety of statistical methods have been used to assess whether there is evidence of deviations in 10 

linearity (U.S. EPA, 2019, Table 11-7; U.S. EPA, 2021a, section 2.2.3.2). Studies have also 11 

conducted cut-point analyses that focus on examining risk at specific ambient PM2.5 12 

concentrations. These studies reported results that generally support a linear, no-threshold 13 

relationships between long-term PM2.5 exposures and total (nonaccidental) mortality, especially 14 

at lower ambient PM2.5 concentration, with confidence in the linear relationship as low as 5 to 8 15 

µg/m3 in some studies (U.S. EPA, 2019, section 11.2.4; U.S. EPA, 2021a, section 2.2.3.2). There 16 

was also some limited evidence indicating that the slope of the concentration-response (C-R) 17 

function may be steeper (supralinear) at lower concentrations for cardiovascular mortality (U.S. 18 

EPA, 2021a, section 2.2.3.2).  19 

The biological plausibility of PM2.5-attributable mortality is supported by the coherence 20 

of effects across scientific disciplines (i.e., animal toxicological, controlled human exposure 21 

studies, and epidemiologic) when evaluating respiratory and cardiovascular morbidity effects, 22 

which are some of the largest contributors to total (nonaccidental) mortality. The 2019 ISA 23 

outlines the available evidence for biologically plausible pathways by which inhalation exposure 24 

to PM2.5 could progress from initial events (e.g., pulmonary inflammation, autonomic nervous 25 

system activation) to endpoints relevant to population outcomes, particularly those related to 26 

cardiovascular diseases such as coronary heart disease (CHD), stroke and atherosclerosis (U.S. 27 

EPA, 2019, section 6.2.1, Table 11-8), and metabolic effects, including diabetes (U.S. EPA, 28 

2019, section 7.3.1). The 2019 ISA notes “more limited evidence from respiratory morbidity” 29 

(U.S. EPA, 2019, p. 11-101) such as development of chronic obstructive pulmonary disease 30 

 
9 In public comments on the 2019 draft PA, the authors of the Pun et al. study further note that “the presence of 

unmeasured confounding…was expected given that we did not control for several potential confounders that may 

impact PM2.5-mortality associations, such as smoking, socio-economic status (SES), gaseous pollutants, PM2.5 

components, and long-term time trends in PM2.5” and that “spatial confounding may bias mortality risks both 

towards and away from the null” (Docket ID EPA-HQ-OAR-2015-0072-0065; accessible in 

https://www.regulations.gov/) 
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(COPD) (U.S. EPA, 2019, section 5.2.1) to support the biological plausibility of mortality due to 1 

long-term PM2.5 exposures (U.S. EPA, 2019, section 11.2.1).  2 

Taken together, recent studies, i.e., those evaluated in the 2019 ISA and in the draft ISA 3 

Supplement, reaffirm and further strengthen the body of evidence from the 2009 ISA for the 4 

relationship between long-term PM2.5 exposure and mortality. Epidemiologic studies evaluated 5 

in the 2019 ISA, including recent studies evaluated in the draft ISA Supplement, consistently 6 

report positive associations between long-term PM2.5 exposure and mortality across different 7 

geographic locations, populations, and analytic approaches (U.S. EPA, 2019; U.S. EPA, 2021a, 8 

section 3.2.2.4).   9 

 As such, these studies reduce key uncertainties identified in the previous review, 10 

including those related to potential copollutant confounding, and provide additional information 11 

on the shape of the concentration-response curve. As assessed in the 2019 ISA, experimental and 12 

epidemiologic evidence for cardiovascular effects, and respiratory effects to a more limited 13 

degree, supports the plausibility of mortality due to long-term PM2.5 exposures. The 2019 ISA 14 

concludes that, “collectively, this body of evidence is sufficient to conclude that a causal 15 

relationship exists between long-term PM2.5 exposure and total mortality” (U.S. EPA, 2019, 16 

section 11.2.7; p. 11-102) which is supported and extended by recent evidence evaluated in the 17 

draft Supplement (U.S. EPA, 2021a, section 3.2.2.4).  18 

Short-term PM2.5 exposures 19 

The 2009 ISA concluded that “a causal relationship exists between short-term exposure 20 

to PM2.5 and mortality” (U.S. EPA, 2009). This conclusion was based on the evaluation of both 21 

multi- and single-city epidemiologic studies that consistently reported positive associations 22 

between short-term PM2.5 exposure and non-accidental mortality. These associations were 23 

strongest, in terms of magnitude and precision, primarily at lags of 0 to 1 days. Examination of 24 

the potential confounding effects of gaseous copollutants was limited, though evidence from 25 

single-city studies indicated that gaseous copollutants have minimal effect on the PM2.5-mortality 26 

relationship (i.e., associations remain robust to inclusion of other pollutants in copollutant 27 

models). The evaluation of cause-specific mortality found that effect estimates were larger in 28 

magnitude, but also had larger confidence intervals, for respiratory mortality compared to 29 

cardiovascular mortality. Although the largest mortality risk estimates were for respiratory 30 

mortality, the interpretation of the results was complicated by the limited coherence from studies 31 

of respiratory morbidity. However, the evidence from studies of cardiovascular morbidity 32 

provided both coherence and biological plausibility for the relationship between short-term PM2.5 33 

exposure and cardiovascular mortality.  34 

Multicity studies evaluated in the 2019 ISA and draft ISA Supplement provide evidence 35 

of primarily positive associations between daily PM2.5 exposures and mortality, with percent 36 
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increases in total mortality ranging from 0.19% (Lippmann et al., 2013) to 2.80% (Kloog et al., 1 

2013)10 at lags of 0 to 1 days in single pollutant-models. Whereas most studies rely on assigning 2 

exposures using data from ambient monitors, associations are also reported in studies that 3 

employ hybrid modeling approaches using additional PM2.5 data (i.e., from satellites, land use 4 

information, and air quality modeling, in addition to monitors), allowing for the inclusion of 5 

more rural locations in analyses (Kloog et al., 2013, Shi et al., 2016). Consistent with the 6 

evidence assessed in previous ISAs, recent studies report more variable results with wider 7 

confidence intervals for respiratory mortality (Lavigne et al., 2018; Shin et al., 2021).   8 

Some studies have expanded the examination of potential confounders, including long-9 

term temporal trends, weather, and co-occurring pollutants. Mortality associations were found to 10 

remain positive, although in some cases were attenuated, when using different approaches to 11 

account for temporal trends or weather covariates (U.S. EPA, 2019, section 11.1.5.1). For 12 

example, Sacks et al. (2012) examined the influence of model specification using the approaches 13 

for confounder adjustment from models employed in several multicity studies within the context 14 

of a common data set (U.S. EPA, 2019, section 11.1.5.1). These models use different approaches 15 

to control for long-term temporal trends and the potential confounding effects of weather. The 16 

authors report that associations between daily PM2.5 and cardiovascular mortality were similar 17 

across models, with the percent increase in mortality ranging from 1.5−2.0% (U.S. EPA, 2019, 18 

Figure 11-4). Thus, alternative approaches to controlling for long-term temporal trends and for 19 

the potential confounding effects of weather may influence the magnitude of the association 20 

between PM2.5 exposures and mortality but have not been found to influence the direction of the 21 

observed association (U.S. EPA, 2019, section 11.1.5.1). Taken together, the 2019 ISA and the 22 

draft ISA Supplement conclude that recent multicity studies conducted in the U.S., Canada, 23 

Europe, and Asia continue to provide consistent evidence of positive associations between 24 

short-term PM2.5 exposures and total mortality across studies that use different approaches to 25 

control for the potential confounding effects of weather (e.g., temperature) (U.S. EPA, 2019, 26 

section 1.4.1.5.1; U.S. EPA, 2021a, section 2.1.1.5.1).  27 

With regard to copollutants, studies evaluated in the 2019 ISA provide additional 28 

evidence that associations between short-term PM2.5 exposures and mortality remain positive and 29 

relatively unchanged in copollutant models with both gaseous pollutants and PM10-2.5 (U.S. EPA, 30 

2019, Section 11.1.4). Additionally, the low (r < 0.4) to moderate correlations (r = 0.4-0.7) 31 

between PM2.5 and gaseous pollutants and PM10−2.5 increase the confidence in PM2.5 having an 32 

independent effect on mortality (U.S. EPA, 2019, section 11.1.4). Consistent with the studies 33 

 
10 As detailed in the Preface to the ISA, risk estimates are for a 10 µg/m3 increase in 24-hour avg PM2.5 

concentrations, unless otherwise noted (U.S. EPA, 2019). 
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evaluated in the 2019 ISA, studies evaluated in the draft ISA Supplement that used data from 1 

more recent years also indicate that associations between short-term PM2.5 exposure and 2 

mortality remain unchanged in copollutant models. However, the evidence indicates that the 3 

association could be larger in magnitude in the presence of some co-occuring pollutants such as 4 

oxidant gases (Lavigne et al., 2018; Shin et al., 2021).     5 

 The generally positive associations reported with mortality are supported by a small group 6 

of studies employing causal modeling methods or quasi-experimental statistical approaches (U.S. 7 

EPA, 2019, section 11.1.2.1). For example, two studies by Schwartz et al. (Schwartz et al., 2015; 8 

Schwartz et al., 2017) report associations between PM2.5 instrumental variables and mortality 9 

(U.S. EPA, 2019, Table 11-2), including in an analysis limited to days with 24-hour average 10 

PM2.5 concentrations <30 μg/m3 (Schwartz et al., 2017). In addition to the main analyses, these 11 

studies conducted Granger-like causality tests as sensitivity analyses to examine whether there 12 

was evidence of an association between mortality and PM2.5 after the day of death, which would 13 

support the possibility that unmeasured confounders were not accounted for in the statistical 14 

model. Neither study reports evidence of an association with PM2.5 after death (i.e., they do not 15 

indicate unmeasured confounding). A quasi-experimental study examines whether a specific 16 

regulatory action in Tokyo, Japan (i.e., a diesel emission control ordinance) resulted in a 17 

subsequent reduction in daily mortality (Yorifuji et al., 2016). The authors report a reduction in 18 

mortality in Tokyo due to the ordinance, compared to Osaka, which did not have a similar diesel 19 

emission control ordinance in place. In another study, Schwartz et al. (2018b) utilized three 20 

causal methods including instrumental variable analysis, a negative exposure control, and 21 

marginal structural models to estimate the association between PM2.5 and daily mortality 22 

(Schwartz et al., 2018b). Results from this study continue to support a relationship between 23 

short-term PM2.5 exposure and mortality. Additional epidemiologic studies evaluated in the draft 24 

ISA Supplement that employed causal modeling methods to examine the association between 25 

short-term PM2.5 exposure and mortality also report consistent positive associations in studies 26 

that examine effects across multiple cities in the U.S. (U.S. EPA, 2021a). 27 

The positive associations for total mortality reported across the majority of studies 28 

evaluated are further supported by analyses reporting generally consistent, positive associations 29 

with both cardiovascular and respiratory mortality (U.S. EPA, 2019, section 11.1.3). Recent 30 

multicity studies evaluated in the draft ISA Supplement add to the body of evidence indicating a 31 

relationship between short-term PM2.5 exposure and cause-specific mortality, with more 32 

variability in the magnitude and precision of associations for respiratory mortality (U.S. EPA, 33 

2021a; Figure 3-14).  For both cardiovascular and respiratory mortality, there has been a limited 34 

assessment of potential copollutant confounding, though initial evidence indicates that 35 

associations remain positive and relatively unchanged in models with gaseous pollutants and 36 
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PM10-2.5. This evidence further supports the copollutant analyses conducted for total mortality. 1 

The strong evidence for ischemic events and heart failure, as detailed in the assessment of 2 

cardiovascular morbidity (U.S. EPA, 2019, Chapter 6), provides biological plausibility for 3 

PM2.5-related cardiovascular mortality, which comprises the largest percentage of total mortality 4 

(i.e., ~33%) (NHLBI, 2017). Although there is evidence for exacerbations of COPD and asthma, 5 

the collective body of respiratory morbidity evidence provides limited biological plausibility for 6 

PM2.5-related respiratory mortality (U.S. EPA, 2019, Chapter 5).  7 

In the 2009 ISA, one of the main uncertainties identified was the regional and city-to-city 8 

heterogeneity in PM2.5-mortality associations. Recent studies examine both city-specific as well 9 

as regional characteristics to identify the underlying contextual factors that could contribute to 10 

this heterogeneity (U.S. EPA, 2019, section 11.1.6.3). Analyses focusing on effect modification 11 

of the PM2.5-mortality relationship by PM2.5 components, regional patterns in PM2.5 components 12 

and city-specific differences in composition and sources indicate some differences in the PM2.5 13 

composition and sources across cities and regions, but these differences do not fully explain the 14 

observed heterogeneity. Additional studies find that factors related to potential exposure 15 

differences, such housing stock and commuting, as well as city-specific factors (e.g., land-use, 16 

port volume, and traffic information), may explain some of the observed heterogeneity (U.S. 17 

EPA, 2019, section 11.1.6.3). Collectively, studies evaluated in the 2019 ISA and the draft ISA 18 

Supplement indicate that the heterogeneity in PM2.5-mortality risk estimates cannot be attributed 19 

to one factor, but instead a combination of factors including, but not limited to, PM composition 20 

and sources as well as community characteristics that could influence exposures (U.S. EPA, 21 

2019, section 11.1.12; U.S. EPA, 2021a, section 3.2.1.2.1)).  22 

A number of studies conducted systematic evaluations of the lag structure of associations 23 

for the PM2.5-mortality relationship by examining either a series of single-day or multiday lags 24 

and these studies continue to support an immediate effect (i.e., lag 0 to 1 days) of short-term 25 

PM2.5 exposures on mortality (U.S. EPA, 2019, section 11.1.8.1; U.S. EPA, 2021a, section 26 

3.2.1.1). Recent studies also conducted analyses comparing the traditional 24-hour average 27 

exposure metric with a sub-daily metric (i.e., 1-hour max). These initial studies provide evidence 28 

of a similar pattern of associations for both the 24-hour average and 1-hour max metric, with the 29 

association larger in magnitude for the 24-hour average metric.  30 

Multicity studies indicate that positive and statistically significant associations with 31 

mortality persist in analyses restricted to short-term PM2.5 exposures below 35 g/m3 (Lee et al., 32 

2015),11 below 30 g/m3 (Shi et al., 2016), and below 25 g/m3 (Di et al., 2017a), indicating that 33 

 
11 Lee et al. (2015) also report that positive and statistically significant associations between short-term PM2.5 

exposures and mortality persist in analyses restricted to areas with long-term concentrations below 12 g/m3.  
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risks associated with short-term PM2.5 exposures are not disproportionately driven by the peaks 1 

of the air quality distribution. Additional studies examine the shape of the C-R relationship and 2 

whether a threshold exists specifically for PM2.5 (U.S. EPA, 2019, section 11.1.10). These 3 

studies have used various statistical approaches and consistently demonstrate a linear 4 

relationship with no evidence of a threshold. Moreover, recent studies evaluated in the draft ISA 5 

Supplement provide additional support for a linear, no-threshold C-R relationship between short-6 

term PM2.5 exposure and mortality, with confidence in the shape decreasing at concentrations 7 

below 5 µg/m3 (Liu et al., 2019; Lavigne et al., 2018).  Recent analyses provide initial evidence 8 

indicating that PM2.5-mortality associations persist and may be stronger (i.e., a steeper slope) at 9 

lower concentrations (e.g., Di et al., 2017a; Figure 11-12 in U.S. EPA, 2019). However, given 10 

the limited data available at the lower end of the distribution of ambient PM2.5 concentrations, 11 

the shape of the C-R curve remains uncertain at these low concentrations. Although difficulties 12 

remain in assessing the shape of the PM2.5-mortality C-R relationship, to date, studies have not 13 

conducted systematic evaluations  of alternatives to linearity, and recent studies continue to 14 

provide evidence of a no-threshold linear relationship, with less confidence at concentrations 15 

lower than 5 µg/m3.  16 

Overall, recent epidemiologic studies build upon and extend the conclusions of the 2009 17 

ISA for the relationship between short-term PM2.5 exposures and total mortality. Supporting 18 

evidence for PM2.5-related cardiovascular morbidity, and more limited evidence from respiratory 19 

morbidity, provides biological plausibility for mortality due to short-term PM2.5 exposures. The 20 

primarily positive associations observed across studies conducted in diverse geographic locations 21 

is further supported by the results from co-pollutant analyses indicating robust associations, 22 

along with evidence from analyses of the concentration-response relationship. The 2019 ISA 23 

states that, collectively, “this body of evidence is sufficient to conclude that a causal relationship 24 

exists between short-term PM2.5 exposure and total mortality” (U.S. EPA, 2019, pp. 11-58). 25 

Recent evidence evaluated in the draft ISA Supplement provides “additional support to the 26 

evidence base that contributed to the conclusion of a causal relationship between short-term 27 

PM2.5 exposure and mortality” (U.S. EPA, 2021a, section 3.2.1.4, pp 3-69).  28 

 Cardiovascular Effects 29 

Long-term PM2.5 exposures 30 

The scientific evidence reviewed in the 2009 ISA was “sufficient to infer a causal 31 

relationship between long-term PM2.5 exposure and cardiovascular effects” (U.S. EPA, 2009). 32 

The strongest line of evidence comprised findings from several large epidemiologic studies of 33 

U.S. and Canadian cohorts that consistently showed positive associations between long-term 34 

PM2.5 exposure and cardiovascular mortality (Krewski et al., 2009, Miller et al., 2007,  et al., ). 35 
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Studies of long-term PM2.5 exposure and cardiovascular morbidity were limited in number. 1 

Biological plausibility and coherence with the epidemiologic findings were provided by studies 2 

using genetic mouse models of atherosclerosis demonstrating enhanced atherosclerotic plaque 3 

development and inflammation, as well as changes in measures of impaired heart function, 4 

following 4- to 6-month exposures to PM2.5 concentrated ambient particles (CAPs), and by a 5 

limited number of studies reporting CAPs-induced effects on coagulation factors, vascular 6 

reactivity, and worsening of experimentally induced hypertension in mice (U.S. EPA, 2009).  7 

Consistent with the evidence assessed in the 2009 ISA, the 2019 ISA concludes that 8 

recent studies, together with the evidence available in previous reviews, support a causal 9 

relationship between long-term exposure to PM2.5 and cardiovascular effects. Additionally, 10 

recent epidemiologic studies published since the completion of the 2019 ISA and evaluated in 11 

the draft ISA Supplement expands the body of evidence and further supports such a conclusion 12 

(U.S. EPA, 2021a). As discussed above (section 3.3.1.1), results from U.S. and Canadian cohort 13 

studies evaluated in the 2019 ISA consistently report positive associations between long-term 14 

PM2.5 exposure and cardiovascular mortality (U.S. EPA, 2019, Figure 6-19) in evaluations 15 

conducted at varying spatial scales and employing a variety of exposure assessment and 16 

statistical methods (U.S. EPA, 2019, section 6.2.10). Positive associations between long-term 17 

PM2.5 exposures and cardiovascular mortality are generally robust in copollutant models adjusted 18 

for ozone, NO2, PM10-2.5, or SO2. In addition, most of the results from analyses examining the 19 

shape of the concentration-response relationship for cardiovascular mortality support a linear 20 

relationship with long-term PM2.5 exposures and do not identify a threshold below which effects 21 

do not occur (U.S. EPA, 2019, section 6.2.16; Table 6-52).  22 

The body of literature examining the relationship between long-term PM2.5 exposure and 23 

cardiovascular morbidity has greatly expanded since the 2009 ISA, with positive associations 24 

reported in several cohorts (U.S. EPA, 2019, section 6.2). Though results for cardiovascular 25 

morbidity are less consistent than those for cardiovascular mortality (U.S. EPA, 2019, section 26 

6.2), studies in the 2019 ISA and draft ISA Supplement provide some evidence for associations 27 

between long-term PM2.5 exposures and the progression of cardiovascular disease. Positive 28 

associations with cardiovascular morbidity (e.g., coronary heart disease, stroke, arrhythmias, 29 

myocardial infarction (MI), and atherosclerosis progression) are observed in several 30 

epidemiologic studies (U.S. EPA, 2019, sections 6.2.2. to 6.2.9; U.S. EPA, 2021a, section 31 

3.1.1.4). Associations in such studies are supported by toxicological evidence for increased 32 

plaque progression in mice following long-term exposure to PM2.5 collected from multiple 33 

locations across the U.S. (U.S. EPA, 2019, section 6.2.4.2). A small number of epidemiologic 34 

studies also report positive associations between long-term PM2.5 exposure and heart failure, 35 

changes in blood pressure, and hypertension (U.S. EPA, 2019, sections 6.2.5 and 6.2.7). 36 
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Associations with heart failure are supported by animal toxicological studies demonstrating 1 

decreased cardiac contractility and function, and increased coronary artery wall thickness 2 

following long-term PM2.5 exposure (U.S. EPA, 2019, section 6.2.5.2). Similarly, a limited 3 

number of animal toxicological studies demonstrating a relationship between long-term exposure 4 

to PM2.5 and consistent increases in blood pressure in rats and mice are coherent with 5 

epidemiologic studies reporting positive associations between long-term exposure to PM2.5 and 6 

hypertension. Moreover, a number of studies assessed in the draft ISA Supplement focusing on 7 

morbidity outcomes, including those that focused on incidence of MI, atrial fibrillation (AF), 8 

stroke, and congestive heart failure (CHF), expand the evidence pertaining to the shape of the C-9 

R relationship between long-term PM2.5 exposure and cardiovascular effects. Additionally, 10 

studies evaluated in the draft ISA Supplement report positive associations among those with pre-11 

existing conditions, among patients followed after a cardiac event procedure, and among those 12 

with a first hospital admission for heart attacks among older adults enrolled in Medicare (U.S. 13 

EPA, 2021a, sections 3.1.1 and 3.1.2). A number of these studies use statistical techniques that 14 

allow for departures from linearity (U.S. EPA, 2021a, Table 3-3, and generally support the 15 

evidence characterized in the 2019 ISA showing linear, no-threshold C-R relationship for most 16 

CVD outcomes. However, there is some evidence for a sublinear or supralinear C-R relationship 17 

for some outcomes (U.S. EPA, 2021a, section 3.1.2.2.9).12 Moreover, several recent 18 

epidemiologic studies evaluated in the draft ISA Supplement reported that the association 19 

between long-term PM2.5 exposure with stroke persisted after adjustment for NO2 but was 20 

attenuated in the model with O3 and oxidant gases represented by the redox weighted average of 21 

NO2 and O3 (U.S. EPA, 2021a, section 3.1.2.2.8). 22 

Longitudinal epidemiologic analyses also report positive associations with markers of 23 

systemic inflammation (U.S. EPA, 2019, section 6.2.11), coagulation (U.S. EPA, 2019, section 24 

6.2.12), and endothelial dysfunction (U.S. EPA, 2019, section 6.2.13). These results are coherent 25 

with animal toxicological studies generally reporting increased markers of systemic 26 

inflammation, oxidative stress, and endothelial dysfunction (U.S. EPA, 2019, section 6.2.12.2 27 

and 6.2.14). 28 

 The 2019 ISA concludes that there is consistent evidence from multiple epidemiologic 29 

studies illustrating that long-term exposure to PM2.5 is associated with mortality from 30 

cardiovascular causes. Epidemiologic studies in the draft ISA Supplement support and extend the 31 

findings characterized in the 2019 ISA, providing additional evidence of positive associations 32 

between long-term PM2.5 exposure and cardiovascular morbidity (U.S. EPA, 2021a section 33 

 
12 As noted above for mortality, uncertainty in the shape of the C-R relationship increases near the upper and lower 

ends of the distribution due to limited data.  
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3.1.1.4). Associations with CHD, stroke and atherosclerosis progression were observed in several 1 

additional epidemiologic studies, providing coherence with the mortality findings.  2 

Results from copollutant models generally support the independence of the PM2.5 3 

associations (U.S. EPA, 2019, Table 3-2; U.S. EPA, 2021a). Additional evidence of the 4 

independent effect of PM2.5 on the cardiovascular system is provided by experimental studies in 5 

animals, which demonstrate biologically plausible pathways by which long-term inhalation 6 

exposure to PM2.5 could potentially result in outcomes such as CHD, stroke, CHF and 7 

cardiovascular mortality. The combination of epidemiologic and experimental evidence results in 8 

the 2019 ISA conclusion that “a causal relationship exists between long-term exposure to PM2.5 9 

and cardiovascular effects” (U.S. EPA, 2019, section 6.2.18). Studies evaluated in the draft ISA 10 

Supplement support and extend the evidence that contributed to the conclusion of a causal 11 

relationship between long-term PM2.5 exposure and cardiovascular effects (U.S. EPA, 2021a, 12 

section 3.1.2.4).  13 

Short-term PM2.5 exposures 14 

The 2009 ISA concluded that “a causal relationship exists between short-term exposure 15 

to PM2.5 and cardiovascular effects” (U.S. EPA, 2009). The strongest evidence in the 2009 ISA 16 

was from epidemiologic studies of emergency department (ED) visits and hospital admissions 17 

for IHD and HF, with supporting evidence from epidemiologic studies of cardiovascular 18 

mortality (U.S. EPA, 2009). Animal toxicological studies provided coherence and biological 19 

plausibility for the positive associations reported with myocardial ischemia ED visit and hospital 20 

admissions. These included studies reporting reduced myocardial blood flow during ischemia 21 

and studies indicating altered vascular reactivity. In addition, effects of PM2.5 exposure on a 22 

potential indicator of ischemia (i.e., ST segment depression on an electrocardiogram) were 23 

reported in both animal toxicological and epidemiologic panel studies.13 Key uncertainties from 24 

the 2009 ISA resulted from inconsistent results across disciplines with respect to the relationship 25 

between short-term exposure to PM2.5 and changes in blood pressure, blood coagulation markers, 26 

and markers of systemic inflammation. In addition, while the 2009 ISA identified a growing 27 

body of evidence from controlled human exposure and animal toxicological studies, uncertainties 28 

remained with respect to biological plausibility.   29 

Recent evidence assessed in the 2019 ISA and the draft ISA Supplement supports and 30 

extends the evidence from the 2009 ISA indicating that there is a causal relationship between 31 

short-term PM2.5 exposure and cardiovascular effects. This includes generally positive 32 

associations observed in multicity epidemiologic studies of emergency department visits and 33 

 
13 Some animal studies included in the 2009 ISA examined exposures to mixtures, such as motor vehicle exhaust or 

woodsmoke. In these studies, it was unclear if the resulting cardiovascular effects could be attributed specifically 

to the particulate components of the mixture. 
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hospital admissions for IHD, heart failure (HF), and combined cardiovascular-related endpoints. 1 

In particular, nationwide studies of older adults (65 years and older) using Medicare records 2 

report positive associations between PM2.5 exposures and hospital admissions for HF (U.S. EPA, 3 

2019, section 6.1.3.1). Moreover, recent multicity studies, published after the literature cutoff 4 

date of the 2019 ISA, are coherent with studies evaluated in the 2019 ISA that report positive 5 

association between short-term PM2.5 exposure and ED visits and hospital admission for IHD, 6 

heart attacks, and HF (U.S. EPA, 2021a, section 3.1).  Epidemiologic studies conducted in single 7 

cities contribute some support, though associations reported in single-city studies are less 8 

consistently positive than in multicity studies, and include a number of studies reporting null 9 

associations (U.S. EPA, 2019, sections 6.1.2 and 6.1.3). When considered as a whole; however, 10 

the recent body of IHD and HF epidemiologic evidence supports the evidence from previous 11 

ISAs reporting mainly positive associations between short-term PM2.5 concentrations and 12 

emergency department visits and hospital admissions.  13 

Consistent with the evidence assessed in the 2019 ISA, some studies evaluated in the 14 

draft ISA Supplement report no evidence of an association with stroke, regardless of stroke 15 

subtype. Additionally, as in the 2019 ISA, evidence evaluated in the draft ISA Supplement 16 

continues to indicate an immediate effect of PM2.5 on cardiovascular-related outcomes primarily 17 

within the first few days after exposure, and that associations generally persisted in models 18 

adjusted for copollutants (U.S. EPA, 2021a, section 3.1.1.2).  19 

 A number of controlled human exposure, animal toxicological, and epidemiologic panel 20 

studies provide evidence that PM2.5 exposure could plausibly result in IHD or HF through 21 

pathways that include endothelial dysfunction, arterial thrombosis, and arrhythmia (U.S. EPA, 22 

2019, section 6.1.1). The most consistent evidence from recent controlled human exposure 23 

studies is for endothelial dysfunction, as measured by changes in brachial artery diameter or flow 24 

mediated dilation. All but one of the available controlled human exposure studies examining the 25 

potential for endothelial dysfunction report an effect of PM2.5 exposure on measures of blood 26 

flow (U.S. EPA, 2019, section 6.1.13.2). These studies report variable results regarding the 27 

timing of the effect and the mechanism by which reduced blood flow occurs (i.e., availability vs 28 

sensitivity to nitric oxide). Some controlled human exposure studies using CAPs report evidence 29 

for small increases in blood pressure (U.S. EPA, 2019, section 6.1.6.3). In addition, although not 30 

entirely consistent, there is also some evidence across controlled human exposure studies for 31 

conduction abnormalities/arrhythmia (U.S. EPA, 2019, section 6.1.4.3), changes in heart rate 32 

variability (HRV) (U.S. EPA, 2019, section 6.1.10.2), changes in hemostasis that could promote 33 

clot formation (U.S. EPA, 2019, section 6.1.12.2), and increases in inflammatory cells and 34 

markers (U.S. EPA, 2019, section 6.1.11.2). A recent study by Wyatt et al. (2020a) adds to the 35 

limited evidence base of controlled human exposure studies conducted at near ambient PM2.5 36 
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concentrations. The study, completed in healthy young adults subject to intermittent exercise, 1 

found some significant cardiovascular effects (e.g., systematic inflammation markers, including 2 

C-reactive protein (CRP), and cardiac repolarization). 3 

 Thus, when taken as a whole, controlled human exposure studies are coherent with 4 

epidemiologic studies in that they demonstrate short-term exposures to PM2.5 may result in the 5 

types of cardiovascular endpoints that could lead to emergency department visits and hospital 6 

admissions in some people.  7 

Animal toxicological studies published since the 2009 ISA also support a relationship 8 

between short-term PM2.5 exposure and cardiovascular effects. A study demonstrating decreased 9 

cardiac contractility and left ventricular pressure in mice is coherent with the results of 10 

epidemiologic studies reporting associations between short-term PM2.5 exposure and heart failure 11 

(U.S. EPA, 2019, section 6.1.3.3). In addition, and as with controlled human exposure studies, 12 

there is generally consistent evidence in animal toxicological studies for indicators of endothelial 13 

dysfunction (U.S. EPA, 2019, section 6.1.13.3). Studies in animals also provide evidence for 14 

changes in a number of other cardiovascular endpoints following short-term PM2.5 exposure. 15 

Although not entirely consistent, these studies provide some evidence of conduction 16 

abnormalities and arrhythmia (U.S. EPA, 2019, section 6.1.4.4), changes in HRV (U.S. EPA, 17 

2019, section 6.1.10.3), changes in blood pressure (U.S. EPA, 2019, section 6.1.6.4), and 18 

evidence for systemic inflammation and oxidative stress (U.S. EPA, 2019, section 6.1.11.3).  19 

In summary, recent evidence evaluated in the 2019 ISA and the draft ISA Supplement 20 

further supports and extends the conclusions of the evidence base reported in the 2009 ISA. In 21 

support of epidemiologic studies reporting robust associations in copollutant models, direct 22 

evidence for an independent effect of PM2.5 on cardiovascular effects can be found in a number 23 

of controlled human exposure and animal toxicological studies. Coherent with these results are 24 

epidemiologic panel studies reporting that PM2.5 exposure is associated with some of the same 25 

cardiovascular endpoints reported in experimental studies. For these effects, there are 26 

inconsistencies in results across some animal toxicological, controlled human exposure, and 27 

epidemiologic panel studies, though this may be due to substantial differences in study design 28 

and/or study populations. Overall, the results from epidemiologic panel, controlled human 29 

exposure, and animal toxicological studies, in particular those related to endothelial dysfunction, 30 

impaired cardiac function, ST segment depression, thrombosis, conduction abnormalities, and 31 

changes in blood pressure provide coherence and biological plausibility for the consistent results 32 

from epidemiologic studies observing positive associations between short-term PM2.5 33 

concentrations and IHD and HF, and ultimately cardiovascular mortality. The 2019 ISA 34 

concludes that, overall, “there continues to be sufficient evidence to conclude that a causal 35 

relationship exists between short-term PM2.5 exposure and cardiovascular effects” (U.S. EPA, 36 
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2019, p. 6-138), which is further supported by recent studies evaluated in the draft ISA 1 

Supplement (U.S. EPA, 2021a section 3.1.1.4 ).  2 

 Respiratory Effects 3 

Long-term PM2.5 exposures 4 

The 2009 ISA concluded that “a causal relationship is likely to exist between long-term 5 

PM2.5 exposure and respiratory effects” (U.S. EPA, 2009). This conclusion was based mainly on 6 

epidemiologic evidence demonstrating associations between long-term PM2.5 exposure and 7 

changes in lung function or lung function growth in children. Biological plausibility was 8 

provided by a single animal toxicological study examining pre- and post-natal exposure to PM2.5 9 

CAPs, which found impaired lung development. Epidemiologic evidence for associations 10 

between long-term PM2.5 exposure and other respiratory outcomes, such as the development of 11 

asthma, allergic disease, and COPD; respiratory infection; and the severity of disease was 12 

limited, both in the number of studies available and the consistency of the results. Experimental 13 

evidence for other outcomes was also limited, with one animal toxicological study reporting that 14 

long-term exposure to PM2.5 CAPs results in morphological changes in nasal airways of healthy 15 

animals. Other animal studies examined exposure to mixtures, such as motor vehicle exhaust and 16 

woodsmoke, and effects were not attributed specifically to the particulate components of the 17 

mixture.  18 

Cohort studies evaluated in the 2019 ISA provided additional support for the relationship 19 

between long-term PM2.5 exposure and decrements in lung function growth (as a measure of lung 20 

development), indicating a robust and consistent association across study locations, exposure 21 

assessment methods, and time periods (U.S. EPA, 2019, section 5.2.13). This relationship was  22 

further supported by a retrospective study that reports an association between declining PM2.5 23 

concentrations and improvements in lung function growth in children (U.S. EPA, 2019, 24 

section 5.2.11). Epidemiologic studies also examine asthma development in children (U.S. EPA, 25 

2019, section 5.2.3), with prospective cohort studies reporting generally positive associations, 26 

though several are imprecise (i.e., they report wide confidence intervals). Supporting evidence is 27 

provided by studies reporting associations with asthma prevalence in children, with childhood 28 

wheeze, and with exhaled nitric oxide, a marker of pulmonary inflammation (U.S. EPA, 2019, 29 

section 5.2.13). Additionally,  animal toxicological study showing the development of an allergic 30 

phenotype and an increase in a marker of airway responsiveness provides biological plausibility 31 

for allergic asthma (U.S. EPA, 2019, section 5.2.13). Other epidemiologic studies report a 32 

PM2.5-related acceleration of lung function decline in adults, while improvement in lung function 33 

was observed with declining PM2.5 concentrations (U.S. EPA, 2019, section 5.2.11). A  34 

longitudinal study found declining PM2.5 concentrations are also associated with an improvement 35 
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in chronic bronchitis symptoms in children, strengthening evidence reported in the 2009 ISA for 1 

a relationship between increased chronic bronchitis symptoms and long-term PM2.5 exposure 2 

(U.S. EPA, 2019, section 5.2.11). A common uncertainty across the epidemiologic evidence is 3 

the lack of examination of copollutants to assess the potential for confounding. While there is 4 

some evidence that associations remain robust in models with gaseous pollutants, a number of 5 

these studies examining copollutant confounding were conducted in Asia, and thus have limited 6 

generalizability due to high annual pollutant concentrations.  7 

When taken together, the 2019 ISA concludes that the “epidemiologic evidence strongly 8 

supports a relationship with decrements in lung function growth in children” and “with asthma 9 

development in children, with increased bronchitis symptoms in children with asthma, with an 10 

acceleration of lung function decline in adults, and with respiratory mortality and cause-specific 11 

respiratory mortality for COPD and respiratory infection” (U.S. EPA, 2019, p. 1-34). In support 12 

of the biological plausibility of such associations reported in epidemiologic studies of respiratory 13 

health effects, animal toxicological studies continue to provide direct evidence that long-term 14 

exposure to PM2.5 results in a variety of respiratory effects. Animal studies in the 2019 ISA show 15 

pulmonary oxidative stress, inflammation, and morphologic changes in the upper (nasal) and 16 

lower airways. Other results show that changes are consistent with the development of allergy 17 

and asthma, and with impaired lung development. Overall, the 2019 ISA concludes that “the 18 

collective evidence is sufficient to conclude that a causal relationship is likely to exist between 19 

long-term PM2.5 exposure and respiratory effects” (U.S. EPA, 2019, section 5.2.13).  20 

Short-term PM2.5 exposures 21 

The 2009 ISA (U.S. EPA, 2009) concluded that a “causal relationship is likely to exist” 22 

between short-term PM2.5 exposure and respiratory effects. This conclusion was based mainly on 23 

the epidemiologic evidence demonstrating positive associations with various respiratory effects. 24 

Specifically, the 2009 ISA described epidemiologic evidence as consistently showing 25 

PM2.5-associated increases in hospital admissions and emergency department visits for chronic 26 

obstructive pulmonary disease (COPD) and respiratory infection among adults or people of all 27 

ages, as well as increases in respiratory mortality. These results were supported by studies 28 

reporting associations with increased respiratory symptoms and decreases in lung function in 29 

children with asthma, though the epidemiologic evidence was inconsistent for hospital 30 

admissions or emergency department visits for asthma. Studies examining copollutants models 31 

showed that PM2.5 associations with respiratory effects were robust to inclusion of CO or SO2 in 32 

the model, but often were attenuated (though still positive) with inclusion of O3 or NO2. In 33 

addition to the copollutants models, evidence supporting an independent effect of PM2.5 exposure 34 

on the respiratory system was provided by animal toxicological studies of PM2.5 CAPs 35 

demonstrating changes in some pulmonary function parameters, as well as inflammation, 36 
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oxidative stress, injury, enhanced allergic responses, and reduced host defenses. Many of these 1 

effects have been implicated in the pathophysiology for asthma exacerbation, COPD 2 

exacerbation, or respiratory infection. In the few controlled human exposure studies conducted in 3 

individuals with asthma or COPD, PM2.5 exposure mostly had no effect on respiratory 4 

symptoms, lung function, or pulmonary inflammation. Available studies in healthy people also 5 

did not clearly demonstrate respiratory effects following short-term PM2.5 exposures.  6 

 Epidemiologic studies evaluated in the 2019 ISA continue to provide strong evidence for 7 

a relationship between short-term PM2.5 exposure and several respiratory-related endpoints, 8 

including asthma exacerbation (U.S. EPA, 2019, section 5.1.2.1), COPD exacerbation (U.S. 9 

EPA, 2019, section 5.1.4.1), and combined respiratory-related diseases (U.S. EPA, 2019, section 10 

5.1.6), particularly from studies examining emergency department visits and hospital admissions. 11 

The generally positive associations between short-term PM2.5 exposure and asthma and COPD 12 

emergency department visits and hospital admissions are supported by epidemiologic studies 13 

demonstrating associations with other respiratory-related effects such as symptoms and 14 

medication use that are indicative of asthma and COPD exacerbations (U.S. EPA, 2019, sections 15 

5.1.2.2 and 5.4.1.2). The collective body of epidemiologic evidence for asthma exacerbation is 16 

more consistent in children than in adults. Additionally, epidemiologic studies examining the 17 

relationship between short-term PM2.5 exposure and respiratory mortality provide evidence of 18 

consistent positive associations, demonstrating a continuum of effects (U.S. EPA, 2019, section 19 

5.1.9).  20 

Building off the studies evaluated in the 2009 and 2019 ISA, epidemiologic studies 21 

expand the assessment of potential copollutant confounding. There is some evidence that PM2.5 22 

associations with asthma exacerbation, combined respiratory-related diseases, and respiratory 23 

mortality remain relatively unchanged in copollutant models with gaseous pollutants (i.e., O3, 24 

NO2, SO2, with more limited evidence for CO) and other particle sizes (i.e., PM10−2.5) (U.S. EPA, 25 

2019, section 5.1.10.1).  26 

In the 2019 ISA, the uncertainty related to whether there is an independent effect of PM2.5 27 

on respiratory health is also partially addressed by findings from animal toxicological studies. 28 

Specifically, short-term exposure to PM2.5 enhanced asthma-related responses in an animal 29 

model of allergic airways disease and enhanced lung injury and inflammation in an animal model 30 

of COPD (U.S. EPA, 2019, sections 5.1.2.4.4 and 5.1.4.4.3). The experimental evidence 31 

provides biological plausibility for some respiratory-related endpoints, including limited 32 

evidence of altered host defense and greater susceptibility to bacterial infection as well as 33 

consistent evidence of respiratory irritant effects. Animal toxicological evidence for other 34 

respiratory effects is inconsistent. A recent study by Wyatt et al. (2020a) was conducted at near 35 

ambient PM2.5 concentrations and adds to the limited evidence base of controlled human 36 
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exposure studies. The study, completed in healthy young adults subject to intermittent exercise, 1 

found some significant respiratory effects (e.g., decrease in lung function).    2 

 The 2019 ISA concludes that “[t]he strongest evidence of an effect of short-term PM2.5 3 

exposure on respiratory effects is provided by epidemiologic studies of asthma and COPD 4 

exacerbation. While animal toxicological studies provide biological plausibility for these 5 

findings, some uncertainty remains with respect to the independence of PM2.5 effects” (U.S. 6 

EPA, 2019, p. 5-155). When taken together, the 2019 ISA concludes that this evidence “is 7 

sufficient to conclude that a causal relationship is likely to exist between short-term PM2.5 8 

exposure and respiratory effects” (U.S. EPA, 2019, p. 5-155).  9 

 Cancer – Long-term PM2.5 Exposures 10 

The 2009 ISA concluded that the overall body of evidence was “suggestive of a causal 11 

relationship between relevant PM2.5 exposures and cancer” (U.S. EPA, 2009). This conclusion 12 

was based primarily on positive associations observed in a limited number of epidemiologic 13 

studies of lung cancer mortality. The few epidemiologic studies that had evaluated PM2.5 14 

exposure and lung cancer incidence or cancers of other organs and systems generally did not 15 

show evidence of an association. Toxicological studies did not focus on exposures to specific 16 

PM size fractions, but rather investigated the effects of exposures to total ambient PM, or other 17 

source-based PM such as wood smoke. Collectively, results of in vitro studies were consistent 18 

with the larger body of evidence demonstrating that ambient PM and PM from specific 19 

combustion sources are mutagenic and genotoxic. However, animal inhalation studies found 20 

little evidence of tumor formation in response to chronic exposures. A small number of studies 21 

provided preliminary evidence that PM exposure can lead to changes in methylation of DNA, 22 

which may contribute to biological events related to cancer.  23 

Since the 2009 ISA, additional cohort studies provide evidence that long-term PM2.5 24 

exposure is positively associated with lung cancer mortality and with lung cancer incidence, and 25 

provide initial evidence for an association with reduced cancer survival (U.S. EPA, 2019, section 26 

10.2.5). Re-analyses of the ACS cohort using different years of PM2.5 data and follow-up, along 27 

with various exposure assignment approaches, provide consistent evidence of positive 28 

associations between long-term PM2.5 exposure and lung cancer mortality (U.S. EPA, 2019, 29 

Figure 10-3). Additional support for positive associations with lung cancer mortality is provided 30 

by epidemiologic studies using individual-level data to control for smoking status, by studies of 31 

people who have never smoked (though such studies generally report wide confidence intervals 32 

due to the small number of lung cancer mortality cases within this population), and in analyses of 33 

cohorts that relied upon proxy measures to account for smoking status (U.S. EPA, 2019, section 34 

10.2.5.1.1). Although studies that have evaluated lung cancer incidence, including studies of 35 
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people who have never smoked, are limited in number, studies in the 2019 ISA generally report 1 

positive associations with long-term PM2.5 exposures (U.S. EPA, 2019, section 10.2.5.1.2). A 2 

subset of the studies focusing on lung cancer incidence also examined histological subtype, 3 

providing some evidence of positive associations for adenocarcinomas, the predominate subtype 4 

of lung cancer observed in people who have never smoked (U.S. EPA, 2019, section 10.2.5.1.2). 5 

Associations between long-term PM2.5 exposure and lung cancer incidence were found to remain 6 

relatively unchanged, though in some cases confidence intervals widened, in analyses that 7 

attempted to reduce exposure measurement error by accounting for length of time at residential 8 

address or by examining different exposure assignment approaches (U.S. EPA, 2019, section 9 

10.2.5.1.2).  10 

The 2019 ISA evaluates the degree to which epidemiologic studies have addressed the 11 

potential for confounding by copollutants and the shape of the concentration-response 12 

relationship. To date, relatively few studies have evaluated the potential for copollutant 13 

confounding of the relationship between long-term PM2.5 exposure and lung cancer mortality or 14 

incidence. The small number of such studies have generally focused on O3 and report that PM2.5 15 

associations remain relatively unchanged in copollutant models (U.S. EPA, 2019, section 16 

10.2.5.1.3). However, available studies have not systematically evaluated the potential for 17 

copollutant confounding by other gaseous pollutants or by other particle size fractions (U.S. 18 

EPA, 2019, section 10.2.5.1.3). Compared to total (non-accidental) mortality (U.S. EPA, 2019, 19 

section 10.2.4.1.4), fewer studies have examined the shape of the concentration-response curve 20 

for cause-specific mortality outcomes, including lung cancer. Several studies of lung cancer 21 

mortality and incidence have reported no evidence of deviations from linearity in the shape of 22 

the concentration-response relationship (Lepeule et al., 2012; Raaschou-Nielsen et al., 2013; 23 

Puett et al., 2014), though authors provided only limited discussions of results (U.S. EPA, 2019, 24 

section 10.2.5.1.4).  25 

In support of the biological plausibility of an independent effect of PM2.5 on lung cancer, 26 

the 2019 ISA notes evidence from recent experimental and epidemiologic studies demonstrating 27 

that PM2.5 exposure can lead to a range of effects indicative of mutagenicity, genotoxicity, and 28 

carcinogenicity, as well as epigenetic effects (U.S. EPA, 2019, section 10.2.7). For example, 29 

both in vitro and in vivo toxicological studies have shown that PM2.5 exposure can result in DNA 30 

damage (U.S. EPA, 2019, section 10.2.2). Although such effects do not necessarily equate to 31 

carcinogenicity, the evidence that PM exposure can damage DNA, and elicit mutations, provides 32 

support for the plausibility of epidemiologic associations with lung cancer mortality and 33 

incidence. Additional supporting studies indicate the occurrence of micronuclei formation and 34 

chromosomal abnormalities (U.S. EPA, 2019, section 10.2.2.3), and differential expression of 35 

genes that may be relevant to cancer pathogenesis, following PM exposures. Experimental and 36 
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epidemiologic studies that examine epigenetic effects indicate changes in DNA methylation, 1 

providing some support for PM2.5 exposure contributing to genomic instability (U.S. EPA, 2019, 2 

section 10.2.3). Overall, there is limited evidence that long-term PM2.5 exposure is associated 3 

with cancers in other organ systems, but there is some evidence that PM2.5 exposure may reduce 4 

survival in individuals with cancer (U.S. EPA, 2019 section 10.2.7; U.S. EPA, 2021a, section 5 

2.1.1.4.1).  6 

Epidemiologic evidence for associations between PM2.5 and lung cancer mortality and 7 

incidence, together with evidence supporting the biological plausibility of such associations, 8 

contributes to the 2019 ISA’s conclusion that the evidence “is sufficient to conclude that a causal 9 

relationship is likely to exist between long-term PM2.5 exposure and cancer” (U.S. EPA, 2019, 10 

section 10.2.7).  11 

 Nervous System Effects 12 

Long-term PM2.5 exposures 13 

Reflecting the very limited evidence available in the 2012 review, the 2009 ISA did not 14 

make a causality determination for long-term PM2.5 exposures and nervous system effects (U.S. 15 

EPA, 2009). Since the last review, this body of evidence has grown substantially (U.S. EPA, 16 

2019, section 8.2). Animal toxicology studies assessed in the 2019 ISA report that long-term 17 

PM2.5 exposures can lead to morphologic changes in the hippocampus and to impaired learning 18 

and memory. This evidence is consistent with epidemiologic studies reporting that long-term 19 

PM2.5 exposure is associated with reduced cognitive function (U.S. EPA, 2019, section 8.2.5). 20 

Further, while the evidence is limited, the presence of early markers of Alzheimer’s disease 21 

pathology has been demonstrated in rodents following long-term exposure to PM2.5 CAPs. These 22 

findings support reported associations with neurodegenerative changes in the brain 23 

(i.e., decreased brain volume), all-cause dementia, or hospitalization for Alzheimer’s disease in a 24 

small number of epidemiologic studies (U.S. EPA, 2019, section 8.2.6). Additionally, loss of 25 

dopaminergic neurons in the substantia nigra, a hallmark of Parkinson disease, has been reported 26 

in mice (U.S. EPA, 2019, section 8.2.4), though epidemiologic studies provide only limited 27 

support for associations with Parkinson’s disease (U.S. EPA, 2019, section 8.2.6). Overall, the 28 

lack of consideration of copollutant confounding introduces some uncertainty in the 29 

interpretation of epidemiologic studies of nervous system effects, but this uncertainty is partly 30 

addressed by the evidence for an independent effect of PM2.5 exposures provided by 31 

experimental animal studies. 32 

In addition to the findings described above, which are most relevant to older adults, 33 

several studies of neurodevelopmental effects in children have also been conducted. Positive 34 

associations between long-term exposure to PM2.5 during the prenatal period and autism 35 
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spectrum disorder (ASD) are observed in multiple epidemiologic studies (U.S. EPA, 2019, 1 

section 8.2.7.2), while studies of cognitive function provide little support for an association (U.S. 2 

EPA, 2019, section 8.2.5.2). Interpretation of these epidemiologic studies is limited due to the 3 

small number of studies, their lack of control for potential confounding by copollutants, and 4 

uncertainty regarding the critical exposure windows. Biological plausibility is provided for the 5 

ASD findings by a study in mice that found inflammatory and morphologic changes in the 6 

corpus collosum and hippocampus, as well as ventriculomegaly (i.e., enlarged lateral ventricles) 7 

in young mice following prenatal exposure to PM2.5 CAPs. 8 

Taken together, the 2019 ISA concludes that studies indicate long-term PM2.5 exposures 9 

can lead to effects on the brain associated with neurodegeneration (i.e., neuroinflammation and 10 

reductions in brain volume), as well as cognitive effects in older adults (U.S. EPA, 2019, Table 11 

1-2). Animal toxicology studies provide evidence for a range of nervous system effects in adult 12 

animals, including neuroinflammation and oxidative stress, neurodegeneration, and cognitive 13 

effects, and effects on neurodevelopment in young animals. The epidemiologic evidence is more 14 

limited, but studies generally support associations between long-term PM2.5 exposure and 15 

changes in brain morphology, cognitive decrements and dementia. There is also initial, and 16 

limited, evidence for neurodevelopmental effects, particularly ASD. The consistency and 17 

coherence of the evidence supports the 2019 ISA’s conclusion that “the collective evidence is 18 

sufficient to conclude that a causal relationship is likely to exist between long-term PM2.5 19 

exposure and nervous system effects” (U.S. EPA, 2019, section 8.2.9).  20 

 Other Effects 21 

Compared to the health outcomes discussed above, the 2019 ISA concludes that there is 22 

greater uncertainty in the evidence linking PM2.5, or UFP, exposures with other health outcomes, 23 

reflected in conclusions that the evidence is “suggestive of, but not sufficient to infer, a causal 24 

relationship.” The sections below summarize the 2019 ISA conclusions for these outcomes for 25 

long-term (section 3.3.1.6.1) and short-term (section 3.3.1.6.2) PM2.5 and UFP exposures. 26 

Section 3.3.1.6.3 summarizes information assessed in the draft ISA Supplement related to the 27 

emerging area of COVID-19 infection and death. 28 

3.3.1.6.1 Long-term Exposures 29 

As indicated in Table 3-1 above, the 2019 ISA concludes that the evidence is “suggestive 30 

of, but not sufficient to infer, a causal relationship” between long-term PM2.5 exposures and 31 

metabolic effects and reproductive and developmental effects (reproduction and fertility; 32 

pregnancy and birth outcomes). These conclusions reflect evidence that is “generally supportive 33 

but not entirely consistent or is limited overall” where “[c]hance, confounding, and other biases 34 
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cannot be ruled out” (U.S. EPA, 2019, Preface, p. P-20). The basis for these causality 1 

determinations is summarized briefly below.  2 

PM2.5 – Metabolic effects 3 

There were no causality determinations for long-term PM2.5 exposure and metabolic 4 

effects in the 2009 ISA (U.S. EPA, 2009). However, the literature pertaining to the effect of 5 

long-term exposure to PM2.5 and metabolic effects has expanded substantially since the 2009 6 

ISA, and consists of both epidemiologic and experimental evidence (U.S. EPA, 2019, section 7 

7.2). Epidemiologic studies report positive associations between long-term PM2.5 exposure and 8 

diabetes-related mortality. In addition, although results were not consistent across cohorts, there 9 

is some evidence from epidemiologic studies for positive associations with incident diabetes, 10 

metabolic syndrome, and alterations in glucose and insulin homeostasis. Consideration of 11 

copollutant confounding was limited. In animal toxicologic studies, there is some support for a 12 

relationship between long-term PM2.5 exposure and metabolic effects from experimental studies 13 

demonstrating increased blood glucose, insulin resistance, and inflammation and visceral 14 

adiposity but the experimental evidence was not entirely consistent. Based on this evidence, the 15 

2019 ISA concludes that, “[o]verall, the collective evidence is suggestive of, but is not sufficient 16 

to infer, a causal relationship between long-term PM2.5 exposure and metabolic effects” (U.S. 17 

EPA, 2019, p. 7-52). 18 

PM2.5 – Reproductive and developmental effects 19 

The 2009 ISA determined that the evidence was “suggestive of a causal relationship” for 20 

the association between long-term PM2.5 exposure and reproductive and developmental 21 

outcomes. The body of literature characterizing these relationships has grown since the 2009 22 

ISA, with much of the evidence focusing on reproduction and fertility or pregnancy and birth 23 

outcomes, though important uncertainties persist (U.S. EPA, 2019, sections 9.1.1, 9.1.2, 9.1.5).  24 

Effects of PM2.5 exposure on sperm have been studied in both epidemiology and 25 

toxicology studies and shows the strongest evidence in epidemiologic studies for impaired sperm 26 

motility and in animal toxicological studies for impaired spermiation. Epidemiologic evidence on 27 

sperm morphology have reported inconsistent results. Evidence for effects of PM2.5 exposure on 28 

female reproduction also comes from both epidemiology and toxicology studies. In the 29 

epidemiologic literature, results on human fertility and fecundity are limited, but the evidence on 30 

in vitro fertilization indicates a modest association of PM2.5 exposures with decreased odds of 31 

becoming pregnant. Studies in rodents have shown ovulation and estrus are affected by PM2.5 32 

exposure. Biological plausibility for outcomes related to male and female fertility and 33 

reproduction comes from laboratory animal studies demonstrating genetic and epigenetic 34 

changes in germ cells with PM2.5 exposure. The 2019 ISA concludes that, “[c]ollectively, the 35 
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evidence is suggestive of, but not sufficient to infer, a causal relationship between PM2.5 1 

exposure and male and female reproduction and fertility” (U.S. EPA, 2019, p. 9-43). 2 

With regard to pregnancy and birth outcomes, while the collective evidence for many of 3 

the outcomes examined is not consistent, there are some animal toxicology and epidemiologic 4 

studies that indicate an association between PM2.5 exposures and reduced fetal growth, low birth 5 

weight and preterm birth. Most of the epidemiologic studies do not control for co-pollutant 6 

confounding and do not identify a specific sensitive window of exposure, but results from animal 7 

toxicologic studies provide biological plausibility for these outcomes, as well as support for 8 

multiple sensitive windows for PM2.5 exposure-associated outcomes. There is also epidemiologic 9 

evidence for congenital heart defects of different types, as well as biological plausibility to 10 

support this outcome from the animal toxicology literature. However, evidence for a relationship 11 

between PM2.5 exposure and various pregnancy-related pathologies, including gestational 12 

hypertension, pre-eclampsia and gestational diabetes is inconsistent. Biological plausibility for 13 

effects of PM2.5 exposure and various pregnancy and birth outcomes is provided by studies 14 

showing that PM2.5 exposure in laboratory rodents resulted in impaired implantation and vascular 15 

endothelial dysfunction. Coherence with toxicological studies is provided by epidemiologic 16 

studies in humans reporting associations with epigenetic changes to the placenta and impaired 17 

fetal thyroid function. When taken together, the 2019 ISA concludes that the available evidence, 18 

including uncertainties that evidence, is “suggestive of, but not sufficient to infer, a causal 19 

relationship between exposure to PM2.5 and pregnancy and birth outcomes” (U.S. EPA, 2019, p. 20 

9-44).  21 

UFP – Nervous System Effects 22 

 The 2009 ISA reported limited animal toxicological evidence of a relationship between 23 

long-term exposure to UFP and nervous system effects, with no supporting epidemiologic 24 

studies. Animal toxicological studies evaluated in the 2019 ISA substantially add to this evidence 25 

base. Multiple toxicological studies of long-term UFP exposure conducted in adult mice provide 26 

consistent evidence of brain inflammation and oxidative stress in the whole brain, hippocampus, 27 

and cerebral cortex (U.S. EPA, 2019, section 8.6.3). Studies also found morphologic changes, 28 

specifically neurodegeneration in specific regions of the hippocampus and pathologic changes 29 

characteristic of Alzheimer's disease, and initial evidence of behavioral effects in adult mice 30 

(U.S. EPA, 2019, sections 8.6.4 and 8.6.5). Toxicological studies examining pre- and post-natal 31 

UFP exposures provide extensive evidence for behavioral effects, altered neurotransmitters, 32 

neuroinflammation, and morphologic changes (U.S. EPA, 2019, section 8.6.6.2). Persistent 33 

ventriculomegaly was observed in male, but not female, mice exposed postnatally to UFP (U.S. 34 

EPA, 2019, section 8.6.6). Epidemiologic evidence is limited to a single study of school children 35 

that provides support for the experimental results. This study, which did not consider copollutant 36 
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confounding, reports an association between long-term exposure to UFP, which was measured at 1 

the school, and decrements on tests of attention and memory. However, uncertainties remain as a 2 

result of inadequate assessment of potential copollutant confounding, the spatial variation in UFP 3 

concentrations, and exposure measurement error. Based primarily on the animal toxicological 4 

evidence of neurotoxicity and altered neurodevelopment, the 2019 ISA concludes that the 5 

evidence is “suggestive of, but not sufficient to infer, a causal relationship” between long-term 6 

UFP exposure and nervous system effects (U.S. EPA, 2019, section 8.6.7).  7 

3.3.1.6.2 Short-term Exposures 8 

As indicated in Table 3-1 above, the 2019 ISA concludes that the evidence is “suggestive 9 

of, but not sufficient to infer, a causal relationship” between short-term PM2.5 exposures and 10 

metabolic effects and nervous system effects. Additionally, the 2019 ISA concludes that the 11 

evidence is “suggestive” for short-term UFP exposures and cardiovascular effects, respiratory 12 

effects, and nervous system effects. As for the outcomes related to long-term exposures, 13 

discussed above, these conclusions reflect evidence that is “generally supportive but not entirely 14 

consistent or is limited overall” where “[c]hance, confounding, and other biases cannot be ruled 15 

out” (U.S. EPA, 2019, Preface, p.P-20). The basis for these causality determinations is 16 

summarized briefly below.  17 

PM2.5 – Metabolic effects 18 

There were no studies of the effect of short-term PM2.5 exposure and metabolic effects 19 

reviewed in the 2009 ISA (U.S. EPA, 2009). New evidence for a relationship between short-term 20 

PM2.5 exposure and metabolic effects is based on a small number of epidemiologic and animal 21 

toxicological studies reporting effects on glucose and insulin homeostasis and other indicators of 22 

metabolic function such as inflammation in the visceral adipose tissue and liver (U.S. EPA, 23 

2019, section 7.1). The 2019 ISA concludes that, overall, the collective evidence “is suggestive 24 

of, but not sufficient to infer, a causal relationship between short-term PM2.5 exposure and 25 

metabolic effects” (U.S. EPA, 2019, p. 7-11).  26 

PM2.5 – Nervous system effects  27 

The evidence reviewed in the 2009 ISA was characterized as "inadequate to infer" a 28 

causal relationship between short-term PM2.5 exposure and nervous system effects (U.S. EPA, 29 

2009), based on a small number of experimental animal studies. Studies assessed in the 2019 30 

ISA provide additional evidence that short-term exposure to PM2.5 can affect the nervous system 31 

(U.S. EPA, 2019, section 8.1). The strongest evidence is provided by experimental studies in 32 

mice that show effects on the brain. These toxicological studies demonstrate changes in 33 

neurotransmitters in the hypothalamus that are linked to sympathetic nervous system and 34 

hypothalamic-pituitary-adrenal (HPA) stress axis activation, as well as upregulation of 35 
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inflammation-related genes, changes in cytokine levels, and other changes that are indicative of 1 

brain inflammation. In addition, an association of short-term PM2.5 exposure with hospital 2 

admissions for Parkinson’s disease was observed indicating the potential for exacerbation of 3 

neurological diseases. The 2019 ISA concludes that, overall, the collective evidence “is 4 

suggestive of, but not sufficient to infer, a causal relationship between short-term exposure to 5 

PM2.5 and nervous system effects” (U.S. EPA, 2019, p. 8-15). 6 

UFP – Cardiovascular effects 7 

In the 2009 ISA, the evidence from toxicological studies, many of which examined 8 

exposures to whole diesel exhaust or wood smoke rather than UFP alone, was suggestive of a 9 

causal relationship between short-term UFP exposure and cardiovascular effects. Since the 2009 10 

ISA, there have been only a limited number of studies published describing the relationship 11 

between short-term UFP exposure and cardiovascular effects. This includes a small number of 12 

epidemiologic panel studies that have observed positive associations between short-term 13 

exposure to UFPs and measures of HRV (U.S. EPA, 2019, section 6.5.9.1) and markers of 14 

coagulation (U.S. EPA, 2019, section 6.5.11.1) although there are also studies that did not report 15 

such UFP-related effects. In addition, there is evidence from a single controlled human exposure 16 

study indicating decreases in the anticoagulant proteins plasminogen and thrombomodulin in 17 

individuals with metabolic syndrome (U.S. EPA, 2019, section 6.5.11.2). There is inconsistent 18 

evidence from controlled human exposure and epidemiologic panel studies for endothelial 19 

dysfunction, changes in blood pressure, and systemic inflammation following short-term 20 

exposure to UFPs. Notably, there is little evidence of an effect when considering short-term UFP 21 

exposure on other cardiovascular endpoints as well as cardiovascular-disease emergency 22 

department visits or hospital admissions. The assessment of study results across experimental 23 

and epidemiologic studies is complicated by differences in the size distributions examined 24 

between disciplines and by the nonuniformity in the exposure metrics examined (e.g., particle 25 

number concentration, surface area concentration, and mass concentration) (U.S. EPA, 2019, 26 

section 1.4.3). When considered as a whole, the 2019 ISA concludes that the evidence is 27 

“suggestive of, but not sufficient to infer, a causal relationship between short-term exposure UFP 28 

exposure and cardiovascular effects” (U.S. EPA, 2019, p. 6-304).  29 

UFP – Respiratory effects 30 

A limited number of studies examining short-term exposure to UFPs and respiratory 31 

effects were reported in the 2009 ISA, which concluded that the relationship between short-term 32 

exposure to UFP and respiratory effects is “suggestive of a causal relationship.” This conclusion 33 

was based on epidemiologic evidence indicating associations with combined respiratory-related 34 

diseases, respiratory infection, and asthma exacerbation. In addition, personal exposures to 35 
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ambient UFP were associated with lung function decrements in adults with asthma. The few 1 

available experimental studies provided limited coherence with epidemiologic findings for 2 

asthma exacerbation. Studies assessed in the 2019 ISA add to this evidence base and support 3 

epidemiologic evidence for asthma exacerbation and combined respiratory-related diseases but 4 

do not rule out chance, confounding, and other biases (U.S. EPA, 2019, section 5.5). For 5 

example, associations persist in one epidemiologic study with adjustment for NO2, but not in 6 

another. Additional supporting evidence, showing decrements in lung function and enhancement 7 

of allergic inflammation and other allergic responses, is provided by a controlled human 8 

exposure study in adults with asthma and by animal toxicological studies in an animal model of 9 

allergic airway disease. For combined respiratory-related diseases, recent findings add 10 

consistency for hospital admissions and emergency department visits and indicate lung function 11 

changes among adults with asthma or COPD. Uncertainty remains regarding the characterization 12 

of UFP exposures and the potential for copollutant confounding in epidemiologic studies, which 13 

limits inference about an independent effect of UFP exposures (U.S. EPA, 2019, section 5.5). 14 

The 2019 ISA concludes that, overall, the evidence is “suggestive of, but not sufficient to infer, a 15 

causal relationship between short-term UFP exposure and respiratory effects” (U.S. EPA, 2019, 16 

p. 5-303).  17 

UFP- Nervous system effects 18 

The 2009 ISA reported limited animal toxicological evidence of a relationship between 19 

short-term exposure to UFP and nervous system effects, without supporting epidemiologic 20 

studies. Several experimental studies evaluated in the 2019 ISA add to this evidence base. In the 21 

2019 ISA, the strongest evidence for a relationship between short-term UFP exposure and 22 

nervous system effects is provided by animal toxicological studies that show inflammation and 23 

oxidative stress in multiple brain regions following exposure to UFP. There is a lack of evidence 24 

from epidemiologic studies (U.S. EPA, 2019, section 8.5). The 2019 ISA concludes that, overall, 25 

the collective evidence is “suggestive of, but not sufficient to infer, a causal relationship between 26 

short-term UFP exposure and nervous system effects” (U.S. EPA, 2019, p. 8-86).  27 

3.3.1.6.3 COVID-19 Infection and Death 28 

 With the advent of the global COVID-19 pandemic, a number of recent studies evaluated 29 

in the draft ISA Supplement examined the role of ambient air pollution, specifically PM2.5, on 30 

COVID-19 infections and deaths, including a few studies within the U.S. and Canada (U.S. EPA, 31 

2021a; section 3.3.2). While there is no exact corollary within the 2019 ISA for these types of 32 

studies, the 2019 ISA presented evidence that evaluates the potential relationship between short- 33 

and long-term PM2.5 exposure and respiratory infection (U.S. EPA, 2019, section 5.1.5 and 34 

5.2.6). Studies assessed in the 2019 ISA report that some evidence of positive associations 35 
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between short-term PM2.5 and hospital admissions and emergency department visits for 1 

respiratory infections, however the interpretation of these studies is complicated by the 2 

variability in the type of respiratory infection outcome examined (U.S. EPA, 2019, Figure 5-7). 3 

In the 2019 ISA, studies of long-term PM2.5 exposure were limited and while there were some 4 

positive associations reported, there was minimal overlap in respiratory infection outcomes 5 

examined across studies. Exposure to PM2.5 has been shown to impair host defense, specifically 6 

altering macrophage function, providing a biological pathway by which PM2.5 exposure could 7 

lead to respiratory infection (U.S. EPA, 2019, sections 5.1.1 and 5.1.5.) There is some additional 8 

evidence that PM2.5 exposure can lead to decreases in an individual’s immune response, which 9 

can subsequently facilitate replication of respiratory viruses (Bourdrel et al., 2021). 10 

 As assessed in the draft ISA Supplement, a number of studies examined whether daily 11 

changes in PM2.5 can influence COVID-19 outcomes (ISA Supplement, section 3.3.2.1). 12 

Additionally, several studies assessed in the draft ISA Supplement evaluates whether long-term 13 

PM2.5 exposure is related to increased susceptibility to COVID-19 outcomes in North America 14 

(U.S. EPA, 2021a, section 3.3.2.2). While some of the studies report positive associations, 15 

overall, they were subjected to methodological issues that may influence the results, including: 16 

(1) the use of ecological study design; (2) some of the studies were conducted during the ongoing 17 

pandemic when the etiology of COVID-19 was still not well understood (e.g., specifically, there 18 

are important differences in COVID-19 related outcomes by a variety of factors such as race and 19 

socioeconomic status); and (3) studies did not account for crucial factors that could influence 20 

results (e.g., stay-at-home orders, social distancing, use of masks, and testing capacity) (U.S. 21 

EPA, 2021a, chapter 5). Taken together, there is limited evidence at this point in the COVID-19 22 

pandemic to determine if short- or long-term exposure to air pollutants, such as PM2.5, influence 23 

the spread or susceptibility of COVID-19 in the population.  24 

  Summary 25 

Based on the evidence assessed in the 2019 ISA and the draft ISA Supplement (U.S. 26 

EPA, 2019, U.S. EPA, ), and summarized in sections 3.3.1.1 to 3.3.1.6 above, we revisit the 27 

policy-relevant questions posed at the beginning of this section:  28 

• To what extent does the scientific evidence strengthen, or otherwise alter, our 29 

preliminary conclusions regarding health effects attributable to long- or short-term 30 

fine particle exposures? Have previously identified uncertainties been reduced? 31 

What important uncertainties remain and have new uncertainties been identified? 32 

 We consider these questions in the context of the evidence for effects of long- and short-33 

term PM2.5 exposures. Studies reviewed in the 2019 ISA and the draft ISA Supplement expand 34 

our understanding of the PM2.5-related health effects from long- and short- term exposures, as 35 

well as reduced important uncertainties identified in prior reviews. Epidemiologic studies 36 
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consistently report positive associations between PM2.5 exposures and a wide range of health 1 

outcomes, including total and cause-specific mortality (e.g., cardiovascular and respiratory 2 

mortality), cardiovascular and respiratory morbidity, lung cancer, and nervous system effects. 3 

Such associations have been reported in analyses employing a variety of study designs, 4 

approaches to estimating PM2.5 exposures, statistical models, and long-term exposure windows 5 

(i.e., the exposure period that is associated with the health outcome). Recent U.S. and Canadian 6 

epidemiologic studies evaluated in the draft ISA Supplement provide additional support for the 7 

conclusions of the 2019 ISA. Overall, these studies support, and in some instances strengthen, 8 

the evidence presented in the 2019 ISA of long-term PM2.5 exposures and health effects. Cohort 9 

studies assessed in the draft ISA Supplement add to the large body of evidence exhibiting 10 

consistent, positive associations between long-term PM2.5 exposure and mortality detailed in the 11 

2019 ISA. While relatively fewer recent U.S. and Canadian epidemiologic studies examined 12 

short-term PM2.5 exposure and mortality, these studies continue to provide evidence of positive 13 

associations with all-cause and total (nonaccidental) mortality, in addition to cause-specific 14 

mortality outcomes. Further, the 2019 ISA and draft ISA Supplement include retrospective 15 

studies that demonstrate improvements in health outcomes, including increased life expectancy, 16 

decreasing mortality, or decreasing respiratory effects, as a result of decreases in ambient PM2.5 17 

concentrations over time. Lastly, the biological plausibility of PM2.5-attributable mortality is 18 

supported by the coherence of effects across scientific disciplines (i.e., animal toxicological, 19 

controlled human exposure studies, and epidemiologic) when evaluating respiratory and 20 

cardiovascular morbidity effects, which are some of the largest contributors to total 21 

(nonaccidental) mortality.  22 

Epidemiologic studies (for short-term and long-term exposure) evaluated in the 2019 ISA 23 

and the draft ISA Supplement assessed the role potential uncertainties may have on the health-24 

effect associations, and examined various exposure windows, approaches to adjust for 25 

confounding variables, and exposure assessment methods that used different sources of data and 26 

were conducted at different spatial resolutions. These evaluations increased confidence in the 27 

causal relationship between long-term PM2.5 exposure and mortality. Moreover, this evidence 28 

further informs whether there is evidence of copollutant confounding, and although there were 29 

some differences across studies, generally positive associations persisted in copollutant models. 30 

Some studies reported that associations persisted in analyses that exclude PM2.5 exposures near 31 

the upper end of the air quality distribution. Overall, the assessment of the C-R relationship 32 

continues to generally support a linear, no-threshold relationship with some recent studies 33 

providing evidence for either a sublinear, linear, or supralinear relationship at these lower 34 

concentrations.  35 



October 2021 3-49  Draft – Do Not Quote or Cite 

 Building on the evidence presented in the 2019 ISA, the evidence assessed in the draft 1 

ISA Supplement provides additional information to address key uncertainties associated with the 2 

health effects evidence. The draft ISA Supplement examined an expanded body of evidence 3 

related to causal modeling methods, to further evaluate the causal nature of associations between 4 

exposure to PM2.5 and mortality. Consistent with the 2019 ISA, this expanded body of evidence 5 

reduces uncertainties related to confounding and provides robust support for positive and 6 

significant associations seen in cohort studies of long-term exposure to PM2.5. Although there 7 

were fewer more recent multicity studies conducted in the U.S. and Canada examining the 8 

relationship between short-term exposure and mortality than for long-term exposure, the studies 9 

assessed in the draft ISA Supplement add to the extensive evidence evaluated in the 2019 ISA. 10 

Furthermore, these studies report consistent positive associations across studies that are using 11 

different exposure assessment methods, statistical models, as well as different methods to control 12 

for confounding effects. 13 

 Recent U.S. and Canadian epidemiologic studies examining short- and long-term PM2.5 14 

exposure and cardiovascular effects provide evidence that is consistent with the evidence 15 

evaluated in the 2019 ISA. Studies examining short-term PM2.5 exposure report consistent 16 

positive associations for cardiovascular-related emergency department visits and hospital 17 

admissions, specifically for ischemic heart disease, myocardial infarction, and heart failure. In 18 

studies evaluating long-term exposures there remains strong evidence for cardiovascular-related 19 

mortality with support from studies of cardiovascular morbidity outcomes, including coronary 20 

heart disease, stroke, and atherosclerosis progression, among individuals with preexisting 21 

diseases or patients followed after a cardiac event or procedure. In addition, the studies provide 22 

evidence of an immediate effect of short-term-related PM2.5 exposure on cardiovascular-related 23 

outcomes, especially during the first few days following exposure. 24 

With respect to long-term PM2.5 exposure, the strongest evidence associated with 25 

cardiovascular mortality is exhibited in studies that report positive associations with ischemic 26 

heart disease and stroke mortality. Furthermore, recent studies examining association between 27 

long-term PM2.5 exposure and cardiovascular morbidity, specifically coronary heart disease, 28 

stroke, and atherosclerosis progression, most consistently report positive associations when 29 

focusing on individuals with pre-existing diseases and patients followed after a cardiac event or 30 

procedure, and not the general population as a whole, supporting and extending the evidence 31 

presented in 2019 ISA. The 2019 ISA also assessed controlled human exposure studies that were 32 

conducted in Europe at near-ambient PM2.5 concentrations and provide initial evidence of 33 

vascular changes and reductions in heart rate as well as changes in cardiac and lung function as 34 

well as inflammation. 35 
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 The draft ISA Supplement also evaluates epidemiologic studies that examine the 1 

relationship between PM2.5 exposure and COVID-19 infection and mortality. While these studies 2 

report positive associations, there a number of methodological limitations which include: (1) 3 

employing an ecological study design, (2) conducting research while COVID-19 etiology was 4 

poorly understood, and (3) the lack of accounting for key factors in disease transmission such as 5 

use of mask, stay home orders, and testing capacity.           6 

 Thus, when taken together, the evidence available in the draft ISA Supplement reaffirms, 7 

and in some cases strengthens, the conclusions from the 2019 ISA regarding long- and short-8 

term PM2.5 exposures and mortality and cardiovascular effects. 9 

3.3.2 Public Health Implications and At-Risk Populations  10 

The public health implications of the evidence regarding PM2.5 health effects, as for other 11 

effects, are dependent on the type and severity of the effects, as well as the size of the population 12 

affected. Such factors are discussed here in the context of our consideration of the health effects 13 

evidence related to PM2.5 in ambient air. Additionally, we summarize the information on 14 

population groups at risk of the effects of PM2.5 in ambient air. 15 

• Does the evidence alter our understanding of populations that are particularly at 16 

risk from PM2.5 exposures? What are important uncertainties in that evidence? 17 

The information available in this reconsideration has not altered our understanding of 18 

human populations at risk of health effects from PM2.5 exposures. As recognized in the 2020 19 

review, the 2019 ISA cites extensive evidence indicating that “both the general population as 20 

well as specific populations and lifestages are at risk for PM2.5-related health effects” (U.S. EPA, 21 

2019, p. 12-1). Factors that may contribute to increased risk of PM2.5-related health effects 22 

include lifestage (children and older adults), pre-existing diseases (cardiovascular disease and 23 

respiratory disease), race/ethnicity, and socioeconomic status.14 24 

Children make up a substantial fraction of the U.S. population and often have unique 25 

factors that contribute to their risk of experiencing a health effect due to exposures to ambient air 26 

pollutants because of their continuous growth and development.15 There is strong evidence that 27 

demonstrates PM2.5 associated health effects in children, particularly from epidemiologic studies 28 

of long-term PM2.5 exposure and impaired lung function growth, decrements in lung function, 29 

and asthma development. However, there is limited evidence from stratified analyses that 30 

children are at increased risk of PM2.5-related health effects compared to adults. Additionally, 31 

 
14 As described in the 2019 ISA, other factors that have the potential to contribute to increased risk include obesity, 

diabetes, genetic factors, smoking status, sex, diet, and residential location (U.S. EPA, 2019, chapter 12). 

15 Children, as used throughout this draft PA, generally refers to those younger than 18 years old. 
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there is some evidence that indicates that children receive higher PM2.5 exposures than adults, 1 

and dosimetric differences in children compared to adults can contribute to higher doses (U.S. 2 

EPA, 2019, section 12.5.1.1). 3 

In the U.S., older adults, often defined as adults 65 years of age and older, represent an 4 

increasing portion of the population and often have pre-existing diseases or conditions that may 5 

compromise biological function. While there is limited evidence to indicate that older adults 6 

have higher exposures than younger adults, older adults may receive higher doses of PM2.5 due to 7 

dosimetric differences. There is consistent evidence from studies of older adults demonstrating 8 

generally consistent, positive associations in studies examining health effects from short- and 9 

long-term PM2.5 exposure and cardiovascular or respiratory hospital admissions, emergency 10 

department visits, or mortality (U.S. EPA, 2019, sections 6.1, 6.2, 11.1, 11.2, 12.5.1.2). 11 

Additionally, several animal toxicological, controlled human exposure, and epidemiologic 12 

studies did not stratify results by lifestage, but instead focused the analyses on older individuals, 13 

and can provide coherence and biological plausibility for the occurrence among this lifestage 14 

(U.S. EPA, 2019, section 12.5.1.2). 15 

Individuals with pre-existing disease may be considered at greater risk of an air pollution-16 

related health effect than those without disease because they are likely in a compromised 17 

biological state that can vary depending on the disease and severity. With regard to 18 

cardiovascular disease, we first note that cardiovascular disease is the leading cause of death in 19 

the U.S., accounting for one in four deaths, and approximately 12% of the adult population in the 20 

U.S. has a cardiovascular disease (U.S. EPA, 2019, section 12.3.1). Strong evidence 21 

demonstrates that there is a causal relationship between cardiovascular effects and long- and 22 

short-term exposures to PM2.5. Some of the evidence supporting this conclusion is from studies 23 

of panels or cohorts with pre-existing cardiovascular disease, which provide supporting evidence 24 

but do not directly demonstrate an increase in risk (U.S. EPA, 2019, section 12.3.1). 25 

Epidemiologic evidence indicates that individuals with pre-existing cardiovascular disease may 26 

be at increased risk for PM2.5-associated health effects compared to those without pre-existing 27 

cardiovascular disease. While the evidence does not consistently support increased risk for all 28 

pre-existing cardiovascular diseases, there is evidence that certain pre-existing cardiovascular 29 

diseases (e.g., hypertension) may be a factor that increases PM2.5-related risk. Furthermore, there 30 

is strong evidence supporting a causal relationship for long- and short-term PM2.5 exposure and 31 

cardiovascular effects, particularly for IHD (U.S. EPA, 2019, chapter 6, section 12.3.1). 32 

With regard to respiratory disease, we first note that the most chronic respiratory diseases 33 

in the U.S. are asthma and COPD. Asthma affects a substantial fraction of the U.S. population 34 

and is the leading chronic disease among children. COPD primarily affects older adults and 35 

contributes to compromised respiratory function and underlying pulmonary inflammation. The 36 
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body of evidence indicates that individuals with pre-existing respiratory diseases, particularly 1 

asthma and COPD, may be at increased risk for PM2.5-related health effects compared to those 2 

without pre-existing respiratory diseases (U.S. EPA, 2019, section 12.3.5). There is strong 3 

evidence indicating PM2.5-associated respiratory effects among those with asthma, which forms 4 

the primary evidence base for the likely to be causal relationship between short-term exposures 5 

to PM2.5 and respiratory health effects (U.S. EPA, 2019, section 12.3.5). For asthma, 6 

epidemiologic evidence demonstrates associations between short-term PM2.5 exposures and 7 

respiratory effects, particularly evidence for asthma exacerbation, and controlled human 8 

exposure and animal toxicological studies demonstrate biological plausibility for asthma 9 

exacerbation with PM2.5 exposures (U.S. EPA, 2019, section 12.3.5.1). For COPD, 10 

epidemiologic studies report positive associations between short-term PM2.5 exposures and 11 

hospital admissions and emergency department visits for COPD, with supporting evidence from 12 

panel studies demonstration COPD exacerbation. Epidemiologic evidence is supported by some 13 

experimental evidence of COPD-related effects, which provides support for the biological 14 

plausibility for COPD in response to PM2.5 exposures (U.S. EPA, 2019, section 12.3.5.2).  15 

There is strong evidence for racial and ethnic disparities in PM2.5 exposures and PM2.5-16 

related health risk, as assessed in the 2019 ISA and with even more evidence available since the 17 

literature cutoff date for the 2019 ISA and evaluated in the draft ISA Supplement. There is strong 18 

evidence demonstrating that Black and Hispanic populations, in particular, have higher PM2.5 19 

exposures than non-Hispanic White populations (U.S. EPA, 2019, Figure 12-2; U.S. EPA, 20 

2021a, Figure 3-38). Black populations or individuals that live in predominantly Black 21 

neighborhoods experience higher PM2.5 exposures, in comparison to non-Hispanic White 22 

populations. There is also consistent evidence across multiple studies that demonstrate increased 23 

risk of PM2.5-related health effects, with the strongest evidence for health risk disparities for 24 

mortality (U.S. EPA, 2019, section 12.5.4). There is also evidence of health risk disparities for 25 

both Hispanic and non-Hispanic Black populations compared to non-Hispanic White populations 26 

for cause-specific mortality and incident hypertension (U.S. EPA, 2021a, 3.3.3.2). 27 

Socioeconomic status (SES) is a composite measure that includes metrics such as 28 

income, occupation, or education, and can play a role in access to healthy environments as well 29 

as access to healthcare. SES may be a factor that contributes to differential risk from PM2.5-30 

related health effects. Studies assessed in the 2019 ISA and draft ISA Supplement provide 31 

evidence that lower SES communities are exposed to higher concentrations of PM2.5 compared to 32 

higher SES communities (U.S. EPA, 2019, section 12.5.3; U.S. EPA, 2021a, section 3.3.3.1.1). 33 

Studies using composite measures of neighborhood SES consistently demonstrated a disparity in 34 

both PM2.5 exposure and the risk of PM2.5-related health outcomes. There is some evidence that 35 

supports associations larger in magnitude between mortality and long-term PM2.5 exposures for 36 
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those with low income or living in lower income areas compared to those with higher income or 1 

living in higher income neighborhoods (U.S. EPA, 2019, section 12.5.3; U.S. EPA, 2021a, 2 

section 3.3.3.1.1).  Additionally, evidence supports conclusions that lower SES is associated with 3 

cause-specific mortality and certain health endpoints (i.e., HI and CHF), but less so for all-cause 4 

or total (non-accidental) mortality (U.S. EPA, 2021a, section 3.3.3.1). 5 

• What does the available information indicate with regard to the size of at-risk 6 

populations and their distribution in the U.S.? 7 

The magnitude and characterization of a public health impact is dependent upon the size 8 

and characteristics of the populations affected, as well as the type or severity of the effects. As 9 

summarized above, lifestage (children and older adults), race/ethnicity and socioeconomic status 10 

are factors that increase the risk of PM2.5-related health effects. The American Community 11 

Survey (ACS) for 2019 estimates that approximately 22% and 16% of the U.S. population are 12 

children (age <18) and older adults (age 65+), respectively. For all ages, non-Hispanic Black and 13 

Hispanic populations are approximately 12% and 18% of the overall U.S. population in 2019. 14 

Table 3-2 below considers the currently available information that helps to characterize key 15 

features of these populations. 16 

Table 3-2. National demographic information, 2019. 17 

Characteristic 1 Number Percent of Total 

Total 328,239,523  

Child (Age <18) 72,967,785 22.2 

Adult (Age 18+) 255,271,738 77.8 

All Age Groups   

0-4 years 19,404,835 5.9 

5-14 years 41,113,916 12.5 

15-19 years 21,353,524 6.5 

20-24 years 21,468,680 6.5 

25-34 years 45,578,475 13.9 

35-64 years 125,246,065 38.1 

65+ years 54,074,028 16.4 

Race/Ethnicity 328,239,523  

White NH 2 196,789,401 60 

Black NH 40,596,040 12.4 

American Indian or Alaska Native NH 2,236,348 0.7 

Asian NH 18,427,914 5.6 

Hispanic, all 60,481,746 18.4 

Other NH 9,708,074 3 

Household Income (past 12 months) 3   

Less than $10,000  5.8 
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$10,000 to $14,999  4.0 

$15,000 to $24,999  8.3 

$25,000 to $34,999  8.4 

$35,000 to $49,999  11.9 

$50,000 to $74,999  17.4 

$75,000 to $99,999  12.8 

$100,000 to $149,999  15.7 

$150,000 to $199,999  7.2 

$200,000 or more  8.5 

Educational Attainment 4   

Less than high school 25,618,541 11.4 

High school graduate (or equivalent) 60,482,353 26.9 

Some college, no degree 44,914,086 20 

Associate’s degree 19,381,937 8.6 

Bachelor’s degree 45,730,479 20.3 

Graduate or professional degree 28,771,172 12.8 

1 Numbers within selected characteristics may not sum to total due to rounding 
2 NH = non-Hispanic 
3 Household income in the past 12 months in 2019 inflation-adjusted dollars. 
4 Educational attainment for population aged 25 years and older. 
Adapted from the 2019 American Community Survey and Housing Survey. Available at: 
Demographics: https://data.census.gov/cedsci/table?q=United%20States&tid=ACSDP1Y2019.DP05 
Income: https://data.census.gov/cedsci/table?q=United%20States&t=Income%20and%20Poverty&tid=ACSST1Y2019.S1901 
Education: 
https://data.census.gov/cedsci/table?q=United%20States&t=Education%3AEducational%20Attainment&tid=ACSST1Y2019.S1501 

 1 

As noted above, individuals with pre-existing cardiovascular disease and pre-existing 2 

respiratory disease may also be at increased risk of PM2.5-related health effects. Table 3-3 below 3 

considers the currently available information that helps to characterize key features of 4 

populations with cardiovascular or respiratory diseases or conditions. The National Center for 5 

Health Statistics data for 2018 indicate that, for adult populations, older adults (e.g., those 65 6 

years and older) have a higher prevalence of cardiovascular diseases compared to younger adults 7 

(e.g., those 64 years and younger). For respiratory diseases, older adults also have a higher 8 

prevalence of emphysema than younger adults, and adults 44 years or older have a higher 9 

prevalence of chronic bronchitis. However, the prevalence for asthma is generally similar across 10 

all adult age groups. 11 

With respect to race, American Indians or Alaskan Natives have the highest prevalence of 12 

all heart disease and coronary heart disease, while Blacks have the highest prevalence of 13 

hypertension and stroke. Hypertension has the highest prevalence across all racial groups 14 

compared to other cardiovascular diseases or conditions, ranging from approximately 22% to 15 

32% of each racial group. Overall, the prevalence of cardiovascular diseases or conditions is 16 

lowest for Asians compared to Whites, Blacks, and American Indians or Alaskan Natives. 17 

https://data.census.gov/cedsci/table?q=United%20States&tid=ACSDP1Y2019.DP05
https://data.census.gov/cedsci/table?q=United%20States&t=Income%20and%20Poverty&tid=ACSST1Y2019.S1901
https://data.census.gov/cedsci/table?q=United%20States&t=Education%3AEducational%20Attainment&tid=ACSST1Y2019.S1501
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Asthma prevalence is highest among Black and American Indian or Alaska Native populations, 1 

while prevalence is generally similar across racial groups for chronic bronchitis and emphysema. 2 

Overall, the prevalence for respiratory diseases is lowest for Asians compared to Whites, Blacks, 3 

and American Indians or Alaskan Natives. With regard to ethnicity, cardiovascular and 4 

respiratory disease prevalence across all diseases or conditions is generally similar between 5 

Hispanic and non-Hispanic populations, although non-Hispanics have a slightly higher 6 

prevalence compared to Hispanics. 7 
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Table 3-3. Prevalence of cardiovascular and respiratory diseases among adults by age, race, and ethnicity in the U.S. in 2018. 1 

 Adults (18+) Age (%) 1 Race (%) 2 Ethnicity (%) 3 

Chronic 

Disease or 
Condition 

N (in 
thousands) 

18-44 44-64 65-74 75+ White Black 

American 
Indian or 
Alaska 
Native 

Asian Hispanic 
Non-

Hispanic 

All (N, in 
thousands) 

249,456 115,008 83,038 30,809 20,601 193,454 30,813 2,810 15,960 40,749 208,706 

Selected Cardiovascular Diseases/Conditions 

All heart disease 30,252 4.8 11.8 23.6 37.3 11.5 10.0 14.6 7.7 8.2 11.7 

Coronary heart 
disease 

15,780 1.0 6.0 15.5 23.9 5.7 5.4 8.6 4.4 5.1 5.7 

Hypertension 67,856 8.8 34.4 54.4 61.1 23.9 32.2 27.2 21.9 23.7 25.1 

Stroke 7,801 0.6 3.1 6.9 11.8 2.6 3.9 3.0 2.7 2.5 2.9 

Selected Respiratory Diseases 

Asthma 4 19,233 7.2 8.3 8.6 6.7 7.5 9.1 9.5 3.7 6.0 8.1 

COPD – chronic 
bronchitis 

9,003 2.2 4.5 5.1 5.6 3.6 3.4 * 1.1 2.7 3.6 

COPD – 
emphysema 

3,780 0.2 1.6 4.1 4.5 1.4 1.1 0.4 0.7 1.0 1.4 

1 Percentage of individual adults within each age group with disease, based on N (at the top of each age column). 
2 Percentage of individual adults within each race group with disease, based on N (at the top of each race column). 
3 Percentage of individual adults within each ethnic group with disease, based on N (at the top of each ethnic column). 
4 Asthma prevalence is reported for “still has asthma.” 
* Estimate does not meet NCHS standards of reliability. 
Source: (Insert cites); National Center for Health Statistics, Summary Health Statistics, National Health Interview Survey, 2018; Tables A-1 and A-2. 

 2 
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Taken together, this information indicates that the groups at increased risk of PM2.5-1 

related health effects represent a substantial portion of the total U.S. population. In evaluating the 2 

primary PM2.5 standards, an important consideration is the potential PM2.5-related public health 3 

impacts in these populations. 4 

3.3.3 PM2.5 Concentrations in Key Studies Reporting Health Effects 5 

To inform conclusions on the adequacy of the public health protection provided by the 6 

current primary PM2.5 standards, this section evaluates the PM2.5 exposures and ambient 7 

concentrations (i.e., used as surrogates for exposures in epidemiologic studies) in studies 8 

reporting PM2.5-related health effects. We specifically consider the following overarching 9 

questions: 10 

• What are the short- or long-term PM2.5 exposures that have been associated with 11 

health effects and to what extent does the evidence support the occurrence of such 12 

effects for air quality meeting the current primary PM2.5 standards?  13 

In addressing these questions, we emphasize health outcomes for which the 2019 ISA concludes 14 

that the evidence supports a “causal” or a “likely to be causal” relationship with PM2.5 exposures. 15 

As discussed above, this includes mortality, cardiovascular effects, and respiratory effects 16 

associated with short- or long-term PM2.5 exposures and cancer and nervous system effects 17 

associated with long-term PM2.5 exposures. While the causality determinations in the 2019 ISA 18 

are informed by studies evaluating a wide range of PM2.5 concentrations, this section considers 19 

the degree to which the evidence in the 2019 ISA and draft ISA Supplement supports the 20 

occurrence of PM-related effects at concentrations relevant to informing conclusions on the 21 

primary PM2.5 standards. Section 3.3.3.1 considers the exposure concentrations that have been 22 

evaluated in experimental studies and section 3.3.3.2 considers the ambient concentrations in 23 

locations evaluated by epidemiologic studies.  24 

 PM Exposure Concentrations Evaluated in Experimental Studies 25 

As stated in the 2019 ISA, the evidence for a particular PM2.5-related health outcome is 26 

strengthened when results from experimental studies demonstrate biologically plausible 27 

mechanisms through which adverse human health outcomes could occur (U.S. EPA, 2015b, 28 

Preamble p. 20). Two types of experimental studies are of particular importance in understanding 29 

the effects of PM exposures: controlled human exposure and animal toxicology studies. In such 30 

studies, investigators expose human volunteers or laboratory animals to known concentrations of 31 

air pollutants under carefully regulated environmental conditions and activity levels. Thus, 32 

controlled human exposure and animal toxicology studies can provide information on the health 33 

effects of experimentally administered pollutant exposures under highly controlled laboratory 34 

conditions (U.S. EPA, 2015b, Preamble, p. 11).  35 
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In this section, we consider the PM2.5 exposure concentrations shown to result effects in 1 

controlled human exposure studies and in animal toxicology studies. We particularly consider 2 

the consistency of specific PM2.5-related effects across studies, the potential adversity of such 3 

effects, and the degree to which exposures shown to cause effects are likely to occur in areas 4 

meeting the current primary standards. To address these issues, we consider the following 5 

question:  6 

• To what extent does the evidence from controlled human exposure or animal 7 

toxicology studies support the potential for adverse cardiovascular, respiratory, or 8 

other effects following PM2.5 exposures likely to occur in areas meeting the current 9 

or alternative primary standards?  10 

Controlled Human Exposure Studies 11 

As discussed in detail in the 2019 ISA (U.S. EPA, 2019, section 6.1), controlled human 12 

exposure studies have reported that PM2.5 exposures lasting from less than one hour up to five 13 

hours can impact cardiovascular function.16 The most consistent evidence from these studies is 14 

for impaired vascular function (U.S. EPA, 2019, section 6.1.13.2). In addition, although less 15 

consistent, the 2019 ISA notes that studies examining PM2.5 exposures also provide evidence for 16 

increased blood pressure (U.S. EPA, 2019, section 6.1.6.3), conduction abnormalities/arrhythmia 17 

(U.S. EPA, 2019, section 6.1.4.3), changes in heart rate variability (U.S. EPA, 2019, section 18 

6.1.10.2), changes in hemostasis that could promote clot formation (U.S. EPA, 2019, section 19 

6.1.12.2), and increases in inflammatory cells and markers (U.S. EPA, 2019, section 6.1.11.2). 20 

The 2019 ISA concludes that, when taken as a whole, controlled human exposure studies 21 

demonstrate that short-term exposure to PM2.5 may impact cardiovascular function in ways that 22 

could lead to more serious outcomes (U.S. EPA, 2019, section 6.1.16). Thus, such studies can 23 

provide insight into the potential for specific PM2.5 exposures to result in physiological changes 24 

that could increase the risk of more serious effects.  25 

Table 3-4 below summarizes information from the 2019 ISA and draft ISA Supplement 26 

on available controlled human exposure studies that evaluate effects on markers of 27 

cardiovascular function following exposures to PM2.5, either as concentrated ambient particles 28 

(CAP) or in unfiltered versus filtered air.17   29 

 
16 In contrast, controlled human exposure studies provide little evidence for respiratory effects following short-term 

PM2.5 exposures (U.S. EPA, 2019, section 5.1, Table 5-18). Therefore, this section focuses on cardiovascular 

effects evaluated in controlled human exposure studies of PM2.5 exposure.  

17 Table 3-4 identifies controlled human exposure studies included in the 2019 ISA and draft ISA Supplement that 

examine the potential for PM2.5 exposures to alter markers of cardiovascular function and is ordered by exposure 

concentration. Studies that focus on specific components of PM2.5 (e.g., endotoxin), or studies that evaluated 

PM2.5 exposures only in the presence of an intervention (e.g., dietary intervention) or other pollutant (e.g., ozone), 

are not included.  
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Table 3-4. Summary of information from PM2.5 controlled human exposure studies.  1 

Study Population 
Exposure Details 

(average concentration; 
duration) 

Results 

Bräuner et al., 
2008  

Healthy adults  
10.5 µg/m3 PM2.5 
(unfiltered) vs below 
detection (filtered); 24 h 

No significant effect on markers of vascular 
function  

Hemmingsen et 
al., 2015a, 
Hemmingsen et 
al., 2015b 

Healthy, 
overweight 
older adults  

24 µg/m3 (unfiltered) vs 
3.0 µg/m3 (filtered) 
Copenhagen PM; 5 h  

Impaired vascular function and altered heart rate 
variability; no significant changes in blood 
pressure or markers of inflammation or oxidative 
stress 

Wyatt et al., 
2020a * 

Healthy young 
adults (18-35) 

37.8 µg/m3 CAP vs 2.1 
µg/m3

 (filtered); 4h 
Increased blood inflammatory markers; 
Inconsistent changes in HRV 

Urch et al., 2010 

Non-asthmatic 
and mild 
asthmatic 
adults  

64 µg/m3 CAP (lower 
exposure); 2 h 

No significant change in blood markers of 
inflammation or oxidative stress  

Huang et al., 2012 Healthy adults  90 µg/m3 CAP; 2 h  No significant changes in heart rate variability 

Devlin et al., 2003 
Healthy older 
adults 

99 µg/m3 CAP 1; 2 h Decreased heart rate variability 

Hazucha et al., 
2013 

Adult current 
and former 
smokers  

109 µg/m3 CAP; 2 h 
No significant changes in markers of 
inflammation or coagulation 

Ghio et al., 2000 
Healthy young 
adults 

120 µg/m3 CAP; 2 h Increased fibrinogen (coagulation)  

Ghio et al., 2003  
Healthy young 
adults 

120 µg/m3 CAP; 2 h 
Increased fibrinogen; no significant effect on 
markers of inflammation  

Urch et al., 2010 

Non-asthmatic 
and mild 
asthmatic 
adults  

140 µg/m3 CAP (higher 
exposure); 2 h 

Increased blood inflammatory markers   

Brook et al., 2009  Healthy adults 149 µg/m3 CAP; 2 h 
Impaired vascular function, increased blood 
pressure; no significant change in markers of 
inflammation (compared to filtered air)  

Ramanathan et 
al., 2016 

Healthy adults  149 µg/m3 CAP; 2 h 
Decreased anti-oxidant/anti-inflammatory 
capacity when baseline capacity was low 

Sivagangabalan et 
al., 2011 

Healthy adults 150 µg/m3 CAP; 2 h 
Increase in indicator of possible arrhythmia; no 
significant effect on heart rate  
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 1 

Most of the controlled human exposure studies in Table 3-4 exposed participants to 2 

average PM2.5
 concentrations at or above about 100 µg/m3, with exposure durations typically up 3 

to about two hours. Statistically significant effects on one or more indicators of cardiovascular 4 

function are often, though not always, reported following 2-hour exposures to average PM2.5 5 

concentrations at and above about 120 µg/m3, with less consistent evidence for effects following 6 

exposures to concentrations lower than 120 µg/m3. Impaired vascular function, the effect 7 

Kusha et al., 2012  Healthy adults  154 µg/m3 CAP; 2 h 
No significant effect on indicator of possible 
arrhythmia  

Gong et al., 2003  
Adults with and 
without asthma  

174 µg/m3 CAP; 2 h 

Increased heart rate; No significant effect on 
indicators of arrhythmia, inflammation, 
coagulation; inconsistent effects on blood 
pressure 

Gong et al., 2004  
Older adults 
with and 
without COPD 

200 µg/m3 CAP; 2 h 

Decreased heart rate variability, increase in 
markers of inflammation (without COPD only); 
inconsistent effect on arrhythmia; no significant 
effect on markers of blood coagulation 

Liu et al., 2015 Healthy adults  238 µg/m3 CAP; 130 min 

Increase in urinary markers of oxidative stress 
and vascular dysfunction; no significant effect on 
blood markers of oxidative stress, vascular 
function, or inflammation  

Bellavia et al., 
2013 

Healthy adults  ~242 µg/m3 CAP; 130 min  Increased blood pressure   

Behbod et al., 
2013 

Healthy adults  ~250 µg/m3 CAP; 130 min  Increase in markers of inflammation  

Tong et al., 2015 
Healthy older 
adults  

253 µg/m3 CAP; 2 h  

 

Impaired vascular function and increased blood 
pressure; no significant change in markers of 
inflammation or coagulation  

Lucking et al., 
2011 

Healthy young 
men  

320 µg/m3 (unfiltered) vs 
7.2 µg/m3 (filtered); 1 h  

Impaired vascular function and increased 
potential for coagulation; no significant effect on 
blood pressure, markers of inflammation, or 
arterial stiffness  

Vieira et al., 
2016a, Vieira et 
al., 2016b 

Healthy adults; 
Heart failure 
patients   

325 µg/m3 (unfiltered) vs 
25 µg/m3 (filtered) diesel 
exhaust; 21-min  

Increase in marker of potential impairment in 
heart function, impaired vascular function (heart 
failure patients); no significant effect on blood 
pressure, heart rate or heart rate variability, 
markers of inflammation, markers of coagulation, 
or arterial stiffness 

* Study newly assessed in the draft ISA Supplement 
1 The published study reports an average CAP concentration of 41 µg/m3, but communication with the study authors revealed 
an error in that reported concentration (Jenkins, 2016). 
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identified in the 2019 ISA as the most consistent across studies (U.S. EPA, 2019, section 1 

6.1.13.2), is shown following 2-hour exposures to PM2.5 concentrations at and above 149 µg/m3. 2 

Mixed results are reported in the three studies that evaluated longer exposure durations (i.e., 3 

longer than 2 hours) and lower (i.e., near-ambient) PM2.5 concentrations, with significant effects  4 

for some outcomes reported following 5-hour exposures to 24 µg/m3 in Hemmingsen et al. 5 

(2015b), but not for other outcomes following 5-hour exposures in Hemmingsen et al. (2015a) 6 

and not following 24-hour exposures to 10.5 µg/m3 in Bräuner et al. (2008). Wyatt et al. (2020a) 7 

adds to this limited evidence base of controlled human exposure studies conducted at near 8 

ambient concentrations. This study was a randomized double-blind crossover study in healthy 9 

young participants (18-35 years, n=21) who were subject to intermittent moderate exercise and 10 

found significant effects for some cardiovascular and (e.g., systematic inflammation markers, 11 

cardiac repolarization, and decreased pulmonary function) following 4-hour exposures to 37.8 12 

µg/m3. The higher ventilation rate and longer exposure duration in this study compared to most 13 

controlled human exposure studies is roughly equivalent to a 2-hour exposure of 75-100 µg/m3 14 

of PM2.5. Therefore, dosimetric consideration may explain the observed changes in lung function 15 

and inflammation in young healthy individuals. While this study provides evidence of some 16 

effects at lower PM2.5 concentrations, overall there is inconsistent evidence for changes in lung 17 

function and inflammation in other controlled human exposure studies evaluated in the 2019 ISA 18 

(U.S. EPA, 2019, sections 5.1.7., 5.1.2.3.3, and 6.1.11.2.1; U.S. EPA, 2021a, section 3.3.1).  19 

Taken together, these controlled human exposure studies support biological plausibility 20 

for the serious cardiovascular and respiratory effects that have been linked with ambient PM2.5 21 

exposures and seen in epidemiologic studies (U.S. EPA, 2019, Chapter 6). However, while these 22 

studies are important in establishing biological plausibility, it is unclear how the results alone 23 

and the importance of the effects observed in these studies, particularly in studies conducted at 24 

near-ambient PM2.5 concentrations, should be interpreted with respect to adversity to public 25 

health. For example, impaired vascular function, the effect identified as most consistent across 26 

studies (U.S. EPA, 2019, section 6.1.13.2), can signal an intermediate effect along the potential 27 

biological pathways for cardiovascular effects following short-term exposure to PM2.5 and show 28 

a role for exposure to PM2.5 leading to potential worsening of IHD and heart failure followed 29 

potentially by ED visits, hospital admissions, or mortality (U.S. EPA, 2019, section 6.1 and 30 

Figure 6-1). However, just observing the occurrence of impaired vascular function alone does 31 

not clearly suggest an adverse health outcome. Additionally, associated judgments regarding 32 

adversity or health significance of measurable physiological responses to air pollutants have been 33 

informed by guidance, criteria or interpretative statements developed within the public health 34 

community, including the American Thoracic Society (ATS) and the European Respiratory 35 

Society (ERS), which cooperatively updated the ATS 2000 statement What Constitutes an 36 
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Adverse Health Effect of Air Pollution (ATS, 2000) with new scientific findings, including the 1 

evidence related to air pollution and the cardiovascular system (Thurston et al., 2017).18 With 2 

regard to vascular function, the ATS/ERS statement considers the adversity of both chronic and 3 

acute reductions in endothelial function. While the ATS/ERS statement concluded that chronic 4 

endothelial and vascular dysfunction can be judged to be a biomarker of an adverse health effect 5 

from air pollution, they also conclude that “The health relevance of acute reductions in 6 

endothelial function induced by air pollution is less certain” (Thurston et al., 2017). This is 7 

particularly informative to our consideration of the controlled human exposure studies which are 8 

short-term in nature (i.e., ranging from 2- to 5-hours), including those studies that are conducted 9 

at near-ambient PM2.5 concentrations. 10 

Nonetheless, we note the findings in several of these controlled human exposure studies 11 

conducted at near-ambient PM2.5 concentrations and the potential of these studies to provide 12 

some insight into what these controlled human exposure studies may indicate regarding short-13 

term exposure to peak PM2.5 concentrations and how those relate to ambient PM2.5 14 

concentrations in areas that meet the primary PM2.5 standards. As such, we focus on 2-hour 15 

exposures (the exposure window most often utilized) and consider the degree to which 2-hour 16 

ambient PM2.5 concentrations in locations meeting the current primary standards are likely to 17 

exceed the 2-hour exposure concentrations at which statistically significant effects are reported 18 

in multiple studies for one or more indicators of cardiovascular function. To this end, we refer to 19 

Figure 2-19 (Chapter 2, section 2.3.2.2.3), which presents the frequency distribution of 2-hour 20 

average PM2.5 concentrations from all FEM PM2.5 monitors in the U.S. for 2017-2019. At sites 21 

meeting the current primary PM2.5 standards, most 2-hour concentrations are below 10 μg/m3, 22 

and almost never exceed 30 μg/m3. The extreme upper end of the distribution of 2-hour PM2.5 23 

concentrations is shifted higher during the warmer months (April to September, denoted by red 24 

bars in Figure 2-19), generally corresponding to the period of peak wildfire frequency in the U.S. 25 

At sites meeting the current primary standards, the highest 2-hour concentrations measured 26 

almost never occur outside of the period of peak wildfire frequency (i.e., 99.9th percentile of 2-27 

hour concentrations is 62 μg/m3 during the warm season). Most of the sites measuring these very 28 

 
18 The ATS/ERS described its 2017 statement as one “intended to provide guidance to policymakers, clinicians and 

public health professionals, as well as others who interpret the scientific evidence on the health effects of air 

pollution for risk management purposes” and further notes that “considerations as to what constitutes an adverse 

health effect, in order to provide guidance to researchers and policymakers when new health effects markers or 

health outcome associations might be reported in future.” The most recent policy statement by the ATS, which 

once again broadens its discussion of effects, responses and biomarkers to reflect the expansion of scientific 

research in these areas, reiterates that concept, conveying that it does not offer “strict rules or numerical criteria, 

but rather proposes considerations to be weighed in setting boundaries between adverse and nonadverse health 

effects,” providing a general framework for interpreting evidence that proposes a “set of considerations that can 

be applied in forming judgments” for this context (Thurston et al., 2017). 
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high concentrations are in the northwestern U.S. and California (see Appendix A, Figure A-1), 1 

where wildfires have been relatively common in recent years. When the typical fire season is 2 

excluded from the analysis (blue in Figure 2-19), the extreme upper end of the distribution is 3 

reduced (i.e., 99.9th percentile of 2-hour concentrations is 55 μg/m3).19 Given these results, we 4 

conclude that PM2.5 exposure concentrations evaluated in most of these controlled human 5 

exposure studies are well-above the 2-hour ambient PM2.5 concentrations typically measured in 6 

locations meeting the current primary standards. 7 

Animal Toxicology Studies 8 

The 2019 ISA relies on animal toxicology studies to support the plausibility of a wide 9 

range of PM2.5-related health effects. While animal toxicology studies often examine more 10 

severe health outcomes and longer exposure durations than controlled human exposure studies, 11 

there is uncertainty in extrapolating the effects seen in animals, and the PM2.5 exposures and 12 

doses that cause those effects, to human populations. We consider these uncertainties when 13 

evaluating what the available animal toxicology studies may indicate with regard to the current 14 

primary PM2.5 standards.  15 

Most of the animal toxicology studies assessed in the 2019 ISA have generally examined 16 

short-term exposures to PM2.5 concentrations from 100 to >1,000 g/m3 and long-term exposures 17 

to concentrations from 66 to >400 g/m3 (e.g., see U.S. EPA, 2019, Table 1-2). Two exceptions 18 

are a study reporting impaired lung development following long-term exposures (i.e., 24 hours 19 

per day for several months prenatally and postnatally) to an average PM2.5 concentration of 16.8 20 

g/m3 (Mauad et al., 2008) and a study reporting increased carcinogenic potential following 21 

long-term exposures (i.e., 2 months) to an average PM2.5 concentration of 17.7 g/m3 (Cangerana 22 

Pereira et al., 2011). These two studies demonstrate serious effects following long-term 23 

exposures to PM2.5 concentrations similar to the ambient concentrations reported in some PM2.5 24 

epidemiologic studies (U.S. EPA, 2019, Table 1-2), though still above the ambient 25 

concentrations likely to occur in areas meeting the current primary standards. However, noting 26 

uncertainty in extrapolating the effects seen in animals, and the PM2.5 exposures and doses that 27 

cause those effects to human populations, animal toxicology studies are of limited utility in 28 

informing decisions on the public health protection provided by the current or alternative 29 

primary PM2.5 standards. As such, the animal toxicological studies are most useful in providing 30 

further evidence to support the biological mechanisms and plausibility of various adverse effects. 31 

 
19 Similar analyses of 4-hour and 5-hour PM2.5 concentrations are presented in Appendix A, Figure A-2 and Figure 

A-3, respectively.  
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 Ambient PM Concentrations in Locations of Epidemiologic Studies 1 

As summarized in section 3.1.1 above, epidemiologic studies examining associations 2 

between daily or annual average PM2.5 exposures and mortality or morbidity represent a large 3 

part of the evidence base supporting several of the 2019 ISA’s “causal” and “likely to be causal” 4 

determinations and provide further support for these associations as assessed in the draft  5 

ISA Supplement. In this section, we consider the ambient PM2.5 concentrations present in areas 6 

where epidemiologic studies have evaluated associations with mortality or morbidity, and what 7 

such concentrations may indicate regarding the primary PM2.5 standards. As noted in section 3.2, 8 

the use of information from epidemiologic studies to inform conclusions on the primary PM2.5 9 

standards is complicated by the fact that such studies evaluate associations between distributions 10 

of ambient PM2.5 and health outcomes, and do not identify the specific exposures that can lead to 11 

the reported effects. Rather, health effects can occur over the entire distribution of ambient PM2.5 12 

concentrations evaluated, and epidemiologic studies do not identify a population-level threshold 13 

below which it can be concluded with confidence that PM-associated health effects do not occur 14 

(U.S. EPA, 2019, section 1.5.3). To address these issues, we consider the following question: 15 

• To what extent does the evidence from epidemiologic studies that have evaluated 16 

associations with mortality or morbidity provide support for adverse effects 17 

occurring following PM2.5 exposures?  18 

 In the absence of discernible thresholds, we consider what information can be provided 19 

from epidemiologic studies. In particular, to address the question above, we consider the study-20 

reported ambient PM2.5 concentrations reflecting estimated exposure with a focus on the middle 21 

portion of the PM2.5 air quality distribution, which provides the strongest support for reported 22 

health effect associations. The section below discusses the key epidemiologic studies available in 23 

this reconsideration and observations from these studies to inform preliminary conclusions on the 24 

primary PM2.5 standards. 25 

3.3.3.2.1 PM2.5 Air Quality Distributions Associated with Mortality or Morbidity in Key 26 

Epidemiologic Studies  27 

 In this section, we consider the PM2.5 air quality distributions associated with mortality or 28 

morbidity in key epidemiologic studies. In previous reviews, the decision framework used to 29 

judge adequacy of the existing PM2.5 standards, and what levels of any potential alternative 30 

standards should be considered, placed significant weight on epidemiologic studies that assessed 31 

associations between PM2.5 exposure and health outcomes that were most strongly supported by 32 

the body of scientific evidence. In doing so, the decision framework recognized that while there 33 

is no specific point in the air quality distribution of any epidemiologic study that represents a 34 

“bright line” at and above which effects have been observed and below which effects have not 35 

been observed, there is significantly greater confidence in the magnitude and significance of 36 
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observed associations for the part of the air quality distribution corresponding to where the bulk 1 

of the health events in each study have been observed, generally at or around the mean 2 

concentration. This is the case both for studies of daily PM2.5 exposures and for studies of annual 3 

average PM2.5 exposures.  4 

 Studies of daily PM2.5 exposures examine associations between day-to-day variation in 5 

PM2.5 concentrations and health outcomes, often over several years. While there can be 6 

considerable variability in daily exposures over a multi-year study period, most of the estimated 7 

exposures reflect days with ambient PM2.5 concentrations around the middle of the air quality 8 

distributions examined (i.e., “typical” days rather than days with extremely high or extremely 9 

low concentrations). Similarly, for studies of annual PM2.5 exposures, most of the estimated 10 

exposures reflect annual average PM2.5 concentrations around the middle of the air quality 11 

distributions examined. In both cases, epidemiologic studies provide the strongest support for 12 

reported health effect associations for this middle portion of the PM2.5 air quality distribution, 13 

which corresponds to the bulk of the underlying data, rather than the extreme upper or lower 14 

ends of the distribution. Consistent with this, as noted above in section 3.3.1.1, several 15 

epidemiologic studies report that associations persist in analyses that exclude the upper portions 16 

of the distributions of estimated PM2.5 exposures, indicating that “peak” PM2.5 exposures are not 17 

disproportionately responsible for reported health effect associations.  18 

 An example of the relationship between data density and reported health effect 19 

associations is illustrated in Figure 3-2 below (from Lepeule et al., 2012, Figure 1 in 20 

supplemental material; U.S. EPA, 2019, Figure 6-26). For the years 1974 to 2009, Lepeule et al. 21 

(2012) report a positive and statistically significant association between estimated long-term 22 

PM2.5 exposures and cardiovascular mortality in six U.S. cities. Based on a visual inspection of 23 

the concentration-response function reported in this study (i.e., presented in Figure 3-2), 95% 24 

confidence intervals are narrowest for long-term PM2.5 concentrations near the overall mean 25 

concentration reported in the study (i.e., 15.9 g/m3). Confidence intervals widen at lower and 26 

higher long-term PM2.5 concentrations, particularly at concentrations ≤ ~10 g/m3 and ≥ ~20 27 

g/m3. This widening in the confidence intervals is likely due in part to the comparative lack of 28 

data at concentrations approaching the lower and upper ends of the air quality distribution (i.e., 29 

exposure estimates are indicated by hash marks on the horizontal axis).  30 



October 2021 3-66  Draft – Do Not Quote or Cite 

 1 

Figure 3-2. Estimated concentration-response function and 95% confidence intervals 2 

between PM2.5 and cardiovascular mortality in the Six Cities Study (1974-2009) (from 3 

Lepeule et al., 2012, supplemental material, figure 1; Figure 6-26 in U.S. EPA, 2019).  4 

 5 

Similar to the information presented in Figure 3-2, other studies have also reported that 6 

confidence intervals around concentration-response functions are relatively narrow at PM2.5 7 

concentrations around the overall mean concentrations reported by those studies, likely reflecting 8 

high data density in the middle portions of the distributions (e.g., Crouse et al., 2015; Villeneuve 9 

et al., 2015; Shi et al., 2016 as discussed in U.S. EPA, 2019, section 11.2.4). Thus, consistent 10 

with the approaches in the 2012 and 2020 reviews (78 FR 3161, January 15, 2013; U.S. EPA, 11 

2011, sections 2.1.3 and 2.3.4.1; 85 FR 82716-82717, December 18, 2020; U.S. EPA, 2020, 12 

sections 3.1.2 and 3.2.3), in this reconsideration, we use study-reported means (or medians) of 13 

daily and annual average PM2.5 concentrations over the entire study period as proxies for the 14 

middle portions of the air quality distributions, over which studies generally provide strong 15 

support for reported associations. As described further below, when considering the PM2.5 air 16 

quality distributions in epidemiologic studies in this section, we focus on PM2.5 concentrations 17 

around these overall means (including concentrations somewhat below the means (e.g., 25th and 18 

10th percentiles)).  19 

In evaluating the overall study-reported means, the focus is on the form, averaging time 20 

and level of the current annual PM2.5 standard. Consistent with the approaches used in the 2012 21 

and 2020 reviews (78 FR 3161-3162, January 15, 2013; 85 FR 82716-82717, December 18, 22 

2020), this is because the annual standard has been utilized as the primary means of providing 23 
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public health protection against the bulk of the distribution of short- and long-term PM2.5 1 

exposures. Thus, the evaluation of the study-reported mean concentrations from key 2 

epidemiologic studies lends itself best to evaluating the adequacy of the annual PM2.5 standard 3 

(rather than the 24-hour standard with its 98th percentile form). This is true for the study-reported 4 

means from both long-term and short-term epidemiologic studies, recognizing that the overall 5 

mean PM2.5 concentrations reported in studies of short-term (24-hour) exposures reflect averages 6 

across the study population and over the years of the study. Thus, mean concentrations from 7 

short-term studies reflect long-term averages of 24-hour PM2.5 exposure estimates. In this way, 8 

our examination aims to evaluate the protection provided by the annual PM2.5 standard against 9 

the exposures that provide strong support for associations with mortality and morbidity in key 10 

epidemiologic studies. We note that the protection provided by the annual standard is evaluated 11 

in partnership with that provided by the 24-hour standard, with its 98th percentile form, which 12 

aims to provide supplemental protection against the short-term exposures to peak PM2.5 13 

concentrations that can occur in areas with strong contributions from local or seasonal sources, 14 

even when overall mean PM2.5 concentrations remain relatively low.  15 

As in past reviews, application of a decision framework based on assessing means of key 16 

epidemiologic studies must also consider how the study means were computed and how these 17 

values compare to the annual standard metric (including the level, averaging time and form) and 18 

the use of the monitor with the highest PM2.5 design value in an area for compliance. In the 2012 19 

review, it was recognized that the key epidemiologic studies computed the study mean using an 20 

average across monitor-based PM2.5 concentrations. As such, the Agency noted that this decision 21 

framework applied an approach of using maximum monitor concentrations to determine 22 

compliance with the standard, while selecting the standard level based on consideration of 23 

composite monitor concentrations. Further, the Agency included analyses (Hassett-Sipple et al., 24 

2010; Frank, 2012) that examined the differences in these two metrics (i.e., maximum monitor 25 

concentrations and composite monitor concentrations) across the U.S. and in areas included in 26 

the key epidemiologic studies and found that the maximum design value in an area was generally 27 

higher than the monitor average across that area, with that amount varying based on location and 28 

concentration. This information was taken into account in the Administrator’s final decision in 29 

selecting a level for the primary annual PM2.5 standard the 2012 review and discussed more 30 

specifically in her considerations on adequate margin of safety.  31 

As an initial matter, in this reconsideration, we note that there are a substantial number of 32 

different types of studies available since the 2012 review, included in both the 2019 ISA and the 33 

draft ISA Supplement. While the key epidemiologic studies in the 2012 review were all monitor-34 

based studies, the newer studies include hybrid modeling approaches which have emerged in the 35 

epidemiologic literature as an alternative to approaches that only use ground-based monitors to 36 
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estimate exposure. As assessed in the 2019 ISA and draft ISA Supplement, a substantial number 1 

of epidemiologic studies used hybrid model-based methods in evaluating associations between 2 

PM2.5 exposure and health effects. Hybrid model-based studies employ various fusion techniques 3 

that combine ground-based monitored data with air quality modeled estimates and/or information 4 

from satellites to estimate PM2.5 exposures. While these studies provide a broader estimation of 5 

PM2.5 exposures compared to monitor-based studies (i.e., PM2.5 concentrations are estimated in 6 

areas without monitors), the hybrid modeling approaches result in study-reported means that are 7 

more difficult to relate to the annual standard metric and to the use of maximum monitor design 8 

values to assess compliance. In addition, to further complicate the comparison, when looking 9 

across these studies, we find variations in how exposure is estimated between such studies, and 10 

thus, how the study means are calculated. Two important variations across studies include: (1) 11 

variability in spatial scale used (i.e., averages computed across the national (or large portions of 12 

the country) versus a focus on only CBSAs) and (2) variability in exposure assignment methods 13 

(i.e., averaging across all grid cells, averaging across a scaled up area like a ZIP code, and 14 

population weighting). Because of these differences, the application of any decision framework 15 

in considering the study-reported mean PM2.5 concentrations, given the current state of the 16 

science, is more complicated than the approaches used in past reviews. In the sections that 17 

follow, we provide detailed analyses of the different air quality and exposure estimation methods 18 

in the used in the key epidemiologic studies and consider how those differences translate into 19 

comparisons between the mean PM2.5 concentrations reported in the studies and the level of the 20 

primary annual PM2.5 standard. 21 

• What are the epidemiologic studies assessed in the 2019 ISA and draft ISA 22 

Supplement that have the potential to be most informative in reaching preliminary 23 

conclusions on the primary PM2.5 standards? 24 

To evaluate the PM2.5 air quality distributions in key studies in this draft PA 25 

reconsideration, we first identify the epidemiologic studies assessed in the 2019 ISA and draft 26 

ISA Supplement that have the potential to be most informative in reaching preliminary 27 

conclusions on the primary PM2.5 standards. As with the experimental studies discussed above, 28 

we focus on epidemiologic studies that provide strong support for “causal” or “likely to be 29 

causal” relationships with PM2.5 exposures in the 2019 ISA. We focus on the health effect 30 

associations that are determined in the 2019 ISA and draft ISA Supplement to be consistent 31 

across studies, coherent with the broader body of evidence (e.g., including animal and controlled 32 

human exposure studies), and robust to potential confounding by co-occurring pollutants and 33 

other factors. We emphasize multicity/multistate studies that examine health effect associations 34 

in the U.S. or Canada, as such studies examine potential associations over large geographic areas 35 

with diverse atmospheric conditions and population demographics. Additionally, studies 36 
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examining associations outside the U.S. or Canada reflect air quality and exposure patterns that 1 

may be less typical of the U.S., and thus less likely to be informative for purposes of reviewing 2 

the NAAQS.20 We note that, while we consider studies from Canada in our evaluation of the 3 

epidemiologic evidence,  there are considerable differences between studies conducted in the 4 

U.S. and in Canada, particularly those related to population densities, PM2.5 concentration 5 

gradients, and source distributions in the two countries. As a result, while we consider the 6 

information from studies conducted in Canada, we generally place a greater emphasis on U.S.-7 

based studies.  8 

Figure 3-3 to Figure 3-6 below summarize information from U.S. and Canadian studies 9 

that are assessed in the 2019 ISA and draft ISA Supplement and that meet these criteria. For each 10 

study, Figure 3-3 to Figure 3-6 present the cohort and/or geographic area examined, the approach 11 

used to estimate PM2.5 exposures (i.e., monitored or predicted with hybrid modeling methods21), 12 

the study years during which health events occurred, the years of PM2.5 air quality data used to 13 

estimate exposures, and the effect estimate22 with 95% confidence intervals (per 5 g/m3 for 14 

long-term exposures; 10 g/m3 for short-term exposures). When available, these figures also 15 

include the overall means (or medians if means are not available) of the short- or long-term 16 

PM2.5 exposure estimates reported by the study. Figure 3-3 and Figure 3-4 summarize 17 

information from studies of long-term PM2.5 exposures. Figure 3-5 and Figure 3-6 summarize 18 

information from studies of short-term PM2.5 exposures.  19 

 20 

 21 

 22 

 
20 This emphasis on studies conducted in the U.S. or Canada is consistent with the approach in the 2012 and 2020 

reviews of the PM NAAQS (U.S. EPA, 2011, section 2.1.3; U.S. EPA, 2020, section 3.2.3.2.1).  

21 As discussed further below, and in Chapter 2, hybrid methods incorporate data from several sources, often 

including satellites and models, in addition to ground-based monitors.  

22 The effect estimates presented in the forest plot figures (Figure 3-3 to Figure 3-6) show the associations of long- 

or short-term PM2.5 exposures with health endpoints presented either as hazard ratio or odds ratio or relative risk 

(for which the bold dotted vertical line is at 1), or as per unit or percent change (for which the bold dotted vertical 

line is at 0). 
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 2 

Figure 3-3. Epidemiologic studies examining associations between long-term PM2.5 3 

exposures and mortality.  4 

 5 

 6 

 7 
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 1 

 2 

 3 

Figure 3-4. Epidemiologic studies examining associations between long-term PM2.5 4 

exposures and morbidity.  5 

 6 
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 1 

Figure 3-5. Epidemiologic studies examining associations between short-term PM2.5 2 

exposures and mortality.23   3 

 
23 As noted above, the overall mean PM2.5 concentrations reported in studies of short-term (24-hour) exposures 

reflect averages across the study population and over the years of the study. Thus, mean concentrations reflect 

long-term averages of 24-hour PM2.5 exposure estimates.  
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 1 

 2 

Figure 3-6. Epidemiologic studies examining associations between short-term PM2.5 3 

exposures and morbidity.  4 

 5 

                                               6 

• What are the key epidemiologic studies on which the draft PA should focus for 7 

informing preliminary conclusions regarding the current and potential alternative 8 

primary PM2.5 standards? For these key epidemiologic studies, how were the mean 9 

PM2.5 concentrations calculated?  10 

  11 
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Based on the information in Figure 3-3 to Figure 3-6, key epidemiologic studies indicate 1 

generally positive and statistically significant associations between estimated PM2.5 exposures 2 

(short- or long-term) and mortality or morbidity across a range of ambient PM2.5 concentrations. 3 

Drawing from the multicity studies in Figure 3-3 to Figure 3-6, we identify the key 4 

epidemiologic studies most informative to our understanding to evaluate the PM2.5 air quality 5 

distributions in key studies in this reconsideration. Key epidemiologic studies are those that 6 

report overall mean (or median) PM2.5 concentrations and for which the years of PM2.5 air quality 7 

data used to estimate exposures overlap entirely with the years during which health events are 8 

reported. For some studies of long-term PM2.5 exposures, exposure is estimated from air quality 9 

data corresponding to only part of the study period, often including only the later years of the 10 

health data, and are not likely to reflect the full ranges of ambient PM2.5 concentrations that 11 

contributed to reported associations.24 While this approach can be reasonable in the context of an 12 

epidemiologic study that is evaluating health effect associations with long-term PM2.5 exposures, 13 

under the assumption that spatial patterns in PM2.5 concentrations are not appreciably different 14 

during time periods for which air quality information is not available (e.g., Chen et al., 2016), 15 

our interest is in understanding the distribution of ambient PM2.5 concentrations that could have 16 

contributed to reported health outcomes. Therefore, we identify studies as key epidemiologic 17 

studies when the years of air quality data and health data overlap in their entirety. 18 

 Additionally, for studies that estimate PM2.5 exposure using hybrid modeling approaches, 19 

we also consider the approach used to estimate PM2.5 concentrations and the approach used to 20 

validate hybrid model predictions when determining those studies that we identify as key 21 

epidemiologic studies. Such studies are identified as those that use hybrid modeling approaches 22 

for which recent methods and models were used (e.g., recent versions and configurations of the 23 

air quality models); studies that are fused with PM2.5 data from national monitoring networks 24 

(i.e., FRM/FEM data); and studies that reported a thorough model performance evaluation for 25 

core years of the study.25 While numerous approaches to estimating PM2.5 concentrations in 26 

hybrid modeling studies can be reasonable in the context of an epidemiologic study evaluating 27 

health effect associations with PM2.5 exposures (e.g., in studies that use satellite data in fused 28 

surfaces), our interest is in utilizing the most up to date methods based on surfaces fused with 29 

 
24 The following studies do not have an overlap between the years of PM2.5 air quality data and the years during 

which health effects are reported: Miller et al., 2007; Hart et al., 2011; Thurston et al., 2013; Weichenthal et al., 

2014;; Pope et al., 2015; Villeneuve et al., 2015; Turner et al., 2016; Weichenthal et al., 2016a; Pinault et al., 

2017; Parker et al., 2018; Pope et al., 2019; and Bevan et al., 2021.  

25 The following studies do not meet these criteria: Bravo et al., 2017, Crouse et al., 2015; Puett et al., 2009, Puett et 

al., 2011, Hystad et al., 2012; Hystad et al., 2013, Hayes et al., 2020; Elliott et al., 2020; Lefler et al., 2019;; 

Pappin et al., 2019; Cakmak et al., 2018; Fisher et al., 2019; Sun et al., 2019; McClure et al., 2017; Loop et al., 

2018 ; and Honda et al., 2017.  
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monitored PM2.5 data in order to inform the consideration of the PM NAAQS, as attainment of 1 

the standards is determined based on PM2.5 monitoring data.   2 

While all of the key epidemiologic studies in the 2012 review relied on ground-based 3 

monitoring information to characterize PM2.5 exposure concentrations, as at the time of the 2020 4 

review, a number of the more recent epidemiologic studies in Figure 3-3 to Figure 3-6 utilized 5 

various “hybrid modeling” approaches that include fusion techniques that combine ground-based 6 

monitored data with air quality modeled estimates and/or information from satellites to estimate 7 

PM2.5 exposures. Furthermore, some studies use various mathematical approaches (e.g., 8 

population weighting, trimmed mean26) to compute the study-reported mean from the estimated 9 

PM2.5 exposure concentrations. The fact that there are more and different techniques utilized to 10 

characterize exposure in the key epidemiologic studies in this reconsideration highlights the 11 

importance of understanding those techniques and how they compare to each other and to 12 

consider how those differences translate into comparisons between the mean PM2.5 13 

concentrations reported in the studies and the level of the primary annual PM2.5 standard.  14 

As noted above, study-reported mean concentrations in Figure 3-3 to Figure 3-6 were 15 

calculated using different methods. This is an important consideration when comparing mean 16 

concentrations across studies, as the methods used to estimate PM2.5 concentrations can vary 17 

from traditional methods using monitoring data from ground-based monitors to those using more 18 

complex hybrid modeling approaches. Studies using hybrid modeling approaches aim to broaden 19 

the spatial coverage of estimated PM2.5 concentrations by bringing in additional information to 20 

provide estimates in areas that do not have ground-based monitors (i.e., areas that are generally 21 

less densely populated and tend to have lower PM2.5 concentrations). As such, the hybrid 22 

modeling approaches tend to broaden the areas captured in the exposure assessment, and in 23 

doing so, the studies that utilize these methods tend to report lower mean PM2.5 concentrations 24 

than monitor-based approaches because they include more suburban and rural areas where 25 

concentrations are lower. Further, other aspects of the method used to calculate mean PM2.5 26 

concentrations can also have an impact on the study-reported mean concentration (i.e., 27 

population weighting, trim mean).  28 

 In those studies that use ground-based monitors alone to estimate long- or short-term 29 

PM2.5 concentrations, approaches include: (1) PM2.5 concentrations from a single monitor within 30 

a city/county; (2) average of PM2.5 concentrations across all monitors within a city/county or 31 

other defined study area (e.g., CBSA); or (3) population-weighted averages of exposures. Once 32 

the study location average PM2.5 concentration is calculated, the study-reported long-term 33 

 
26 A trimmed mean is a method of averaging that removes a small percentage of the largest and smallest values 

before calculating the mean. 
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average is derived by averaging daily/annual PM2.5 concentrations across all study locations over 1 

the entire study period. Table 3-5 and Table 3-6 list the key U.S. and Canadian epidemiologic 2 

studies, respectively, that use ground-based monitors to estimate exposure, gives the reported 3 

study mean, and describes the method used to calculate the mean. 4 



October 2021 3-82  Draft – Do Not Quote or Cite 

Table 3-5. Key U.S. Epidemiologic Studies: Monitor-Based Exposure  1 

Citation 
Health 

Endpoint 
Geographic Area 

Study 
Design 

Years and Method Used to Calculate Study-reported 
Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Short-term Exposure Studies 

Bell et al., 
2008 * 

CVD HA 
(65+) 

202 U.S. Counties 
(population ≥200,000) 

Time-series 
study 
(MEDICARE 
enrollees) 

Trimmed mean: 1999-2005 
Daily PM2.5 concentrations of 202 counties were averaged 

to calculate overall mean PM2.5 exposure for the study 
location (all and region specific) and study period 

12.9 
(10th: 9.8, 25th: 11.5) 

 

Bell et al., 
2014 

CVD, 
asthma, 
and 
COPD HA 
(65+) 

4 Counties in MA and CT 

Time-series 
study 
(MEDICARE 
enrollees) 

2000-2004 
Daily PM2.5 concentrations for all four counties (three with 

single monitor and one with two monitors that used 
population weighted approach) were used to calculate the 

overall mean PM2.5 for the study location and period 

14.0 

Bell et al., 
2015 

HF HA 
(65+) 

213 U.S. Counties 

Time-series 
study 
(MEDICARE 
enrollees) 

1999-2010 
Daily PM2.5 concentrations of 213 counties were averaged 

to calculate overall and region-specific mean 
PM2.5PM2.5for the study location and period. 

12.3 

Bravo et al., 
2017 

CVD HA 
(65+) 

418 U.S. Counties 
(population ≥50,000) 

Time-series 
study 
(MEDICARE 
enrollees) 

2002-2006 
Daily PM2.5 concentration of 418 counties were averaged 
to calculate overall mean PM2.5 for the study location and 

period. 

12.3 

Dai et al., 2014 

All-cause, 
CVD, and 
respiratory 
mortality 

75 U.S. Cities (available 
daily mortality data and 
PM2.5 data for at least 
400 days 2000-2006) 

Time-series 
study (NCHS) 

2000-2006 
Daily PM2.5 concentration of 75 cities were averaged to 
calculate overall mean PM2.5 for the study location and 

period 

13.3 

Dominici et al., 
2006 * 

HF and 
COPD HA 
(65+) 

204 Urban U.S. Counties 
(population >200,000) 

Time-series 
study 
(MEDICARE 
enrollees) 

Trimmed mean: 1999-2002 
Daily PM2.5 concentrations for 204 US counties were 

averaged to calculate overall mean PM2.5 concentration 
for the study regions and period. 

13.4 
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Citation 
Health 

Endpoint 
Geographic Area 

Study 
Design 

Years and Method Used to Calculate Study-reported 
Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Franklin et al., 
2007 * 

All-cause, 
CVD, and 
respiratory 
mortality 

27 U.S. Communities in 
Boston area (with PM2.5 
monitoring and daily 
mortality data for at least 
2 years of 6-year study 
period 1997-2000) 

Case-
crossover 
study (NCHS) 

1997-2000 
Daily PM2.5 concentrations (from monitors that are highly 
correlated in the counties and thus representing general 
population exposure) for 27 communities were averaged 

to calculate overall mean PM2.5 concentration for the 
study location and period. 

 

15.6 
(10th: 10.4, 25th: 12.9) 

Franklin et al., 
2008 * 

All-cause, 
CVD, and 
respiratory 
mortality 

25 U.S. Communities for 
Boston area (with PM2.5 
monitoring and daily 
mortality data for at least 
4 years of 6-year 
period 2000-2005) 

Case-
crossover 
study (NCHS) 

2000-2005 
Daily PM2.5 concentrations (from monitors that are highly 
correlated in the counties and thus representing general 
population exposure) for 25 communities were averaged 

to calculate overall mean PM2.5 concentration for the 
study location and period. 

 

14.8 

Klemm and 
Mason, 2003 * 

All-cause 
mortality 

Harvard Six-City study 
reanalysis 

Time-series 
study 

1979-1988 
Daily PM2.5 concentration of six cities were used to 
calculate overall mean PM2.5 exposure for the study 

location (all and by study center) and period. 

Median: 14.7: 
(25th: 9.0) 

Krall et al., 
2013 

All-cause 
mortality 

72 Urban U.S. 
Communities 

Time-series 
study (NCHS) 

2000-2005 
Daily PM2.5 concentration (including only the source-
oriented monitors representative of typical population 

exposures) of 72 urban communities were used to 
calculate overall mean PM2.5 exposure for the study 

location and period 

13.6 

Liu et al., 2019 
 

All-cause 
and 
cause-
specific 
mortality 

107 U.S. Cities 

Time-series 
study (MCC 
Collaborative 
Research 
Network) 

1987-2006 
Daily PM2.5 concentration averaged across stations within 
each city was used to calculate an average 2-day moving 

average PM2.5 concentrations for the city. These data 
were then used to calculate overall mean concentration 

for the study location and period. 

12.4 
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Citation 
Health 

Endpoint 
Geographic Area 

Study 
Design 

Years and Method Used to Calculate Study-reported 
Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Ostro et al., 
2016 

Asthma 
and 
COPD ED 

8 Metropolitan 
Areas/Counties in CA 

Case-
crossover 
study 

2005-2009 
Daily PM2.5 concentrations for eight metropolitan counties 

were used to calculate an overall mean PM2.5 
concentration for the study location and period. 

16.5 

Peng et al., 
2009b 

CVD HA 
(65+) 

119 U.S. Urban 
Counties>150,000 
populations 

Time-series 
study 
(MEDICARE 
enrollees) 

2000-2006 
 

Daily PM2.5 concentrations for 119 counties were used to 
calculate an overall median PM2.5 concentration for the 

study location and period. 

Median: 11.9 

Zanobetti et 
al., 2009 

CVD, HF, 
MI HA 
(65+) 

26 U.S. Cities 

Time-series 
study 
(MEDICARE 
enrollees) 

2000-2003 
Daily average PM2.5 data for each county was calculated 

using an algorithm that accounts for monitor-specific 
means and variances. Monitors that were not well 

correlated with other monitors were excluded.  
 

15.3 

Zanobetti and 
Schwartz, 
2009 * 

All-cause, 
CVD and 
respiratory 
mortality 

112 U.S. Cities 
Time-series 
study (NCHS) 

1999-2005 
Daily PM2.5 concentrations (from monitors that are highly 
correlated in the counties and thus representing general 

population exposure) for 112 cities were averaged to 
calculate overall mean PM2.5 concentration for the study 

location and period. 

13.2 
(10th: 10.3, 25th: 12.5) 

Long-term Exposure Studies 

Eum et al., 
2018 

All-cause 
mortality 

U.S. Geographic regions: 
“East” of the Mississippi 
River, “Center” between 
the Mississippi River and 
the Sierra Nevada 
mountain range, and 
“West” of the Sierra 
Nevada mountain range 

Cohort study 
(MEDICARE 
enrollees) 

2000-2012 
Annual average PM2.5 concentrations assigned to 

individuals living in zip codes with centroids within 6 miles 
of a valid monitor (monitors with daily measurements for 

at least 8 calendar years, with each year having 9+ 
months, and with 4+ daily measurements) were used to 
calculate overall mean PM2.5 concentration for the study 

location (all and by study region) and study period. 

Overall: 11.65 
Central: 9.9 

Eastern: 12.3 
West: 11.5 
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Citation 
Health 

Endpoint 
Geographic Area 

Study 
Design 

Years and Method Used to Calculate Study-reported 
Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Gharibvand et 
al., 2016 

Lung 
cancer 
incidence 

U.S. Nationwide  
Cohort study 
(AHSMOG-2 
study) 

2000-2001 
Monthly PM2.5 concentrations (calculated using at least 

75% valid daily data) assigned to study participants based 
on residential address were used to calculate overall 

mean PM2.5 for the study period. 

12.9 

Hart et al., 
2015  

All-cause 
mortality 

U.S. Nationwide  
Cohort study 
(Nurses’ 
Health study) 

2000-2012 
 

Monthly PM2.5 concentrations assigned to study 
participants based on the nearest monitor to residence 
locations were used to calculate overall mean for the 

study period 
 

12.7 

Kioumourtzogl
ou et al., 2016 

All-cause 
mortality 
(65+) 

207 U.S. cities 
Cohort study 
(MEDICARE 
enrollees) 

2000-2010 
Annual PM2.5 concentrations for 207 cities were averaged 

to calculate overall mean PM2.5 exposure for the study 
location (all and region specific) and study period. 

12.0 

McConnell et 
al., 2010 

Asthma 
Incidence 

13 CA Communities 
Cohort study 
(CHS) 

2003-2004 
Average annual PM2.5 concentrations assigned to study 
participants based on their community of residence were 

used to calculate overall mean PM2.5 exposure for the 
study location and period. 

13.9 

Zeger et al., 
2008 * 

All-cause 
mortality 
65+ 

668 U.S. Urban Counties 

Cohort Study 
of 
MEDICARE 
enrollees 
(MCAPS) 

2000-2005 
Average annual PM2.5 concentrations of ZIP codes (for zip 

code centroids within 6 miles of a monitor and with >10 
months of data per year) were used to calculate overall 
mean PM2.5 exposure for the study location (all and by 

region) and the study period. 

Central Region 
median: 10.7 

Eastern Region 
median: 14.0 

Western region 
median: 13.1 

* Evaluated in 2012 review 

 1 

 2 

  3 
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Table 3-6. Key Canadian Epidemiologic Studies: Monitor-Based Exposure  1 

Citation 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years and Method Used to Calculate Study-reported Mean 
PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Short-term Exposure Studies 

Burnett and 
Goldberg, 
2003 * 

All-cause 
mortality 

8 Canadian 
cities 

Time-series 
study 

1986-1996 
Daily PM2.5 concentrations (day before the death) for 8 Canadian 
cities were averaged to get overall mean for the study area and 

period 

13.3 

Burnett et al., 
2004 * 

All-cause 
mortality 

12 Canadian 
cities 

Time-series 
study (data from 

Statistics 
Canada) 

1981-1999 
PM2.5Daily PM2.5 concentrations for 12 cities (calculated by 

averaging all monitors within each city) were used along with 
population information to calculate an overall population weighted 

PM2.5 concentration for the study location and period 

12.8 

Lavigne et al., 
2018 

Non-
accidental, 
CVD, and 
respiratory 
mortality 

24 Canadian 
cities 

Case-crossover 
study 

1998-2011 
Daily average PM2.5 concentrations assigned to participants based 
on closest monitor(s) to participant’s city of residence. Daily PM2.5 

concentrations in 24 Canadian cities were used to calculate overall 
mean PM2.5 concentration over the study location and period. 

8.8 
(Median: 7.1) 

 
 

Liu et al., 2019 

All-cause 
and 

cause-
specific 
mortality 

25 Canadian 
cities 

Time-series 
Study (MCC 
Collaborative 

Research 
Network) 

1986-2011 
PM2.5 concentration averaged across stations within each city was 

used to calculate an average 2-day moving average PM2.5 
concentrations for the city. These data were then used to calculate 

overall mean concentration for the study location and period. 

9.3 

Stieb et al., 
2009 

Cardiac 
and 

respiratory 
ED visits 

7 Canadian 
cities 

Time-series 
study (Hospital 

cases) 

1992-2003 
Daily PM2.5 concentrations of the cities (calculated by averaging all 
monitors within city) were used to calculate the overall mean PM2.5 

exposure for the study location (by site) and study period. 

8.2 
(10th: 6.7, 25th: 6.8) 

Szyszkowicz, 
2009 

Angina ED 
7 Canadian 

cities 

Time-series 
study (Hospital 

cases) 

1992-2003 
Daily PM2.5 concentrations of the cities (calculated by averaging all 
monitors within city) were used to calculate the overall mean PM2.5 
exposure for the study location (all and by cities) and study period. 

8.3 
(10th: 6.4, 25th: 6.5) 
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Citation 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years and Method Used to Calculate Study-reported Mean 
PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Weichenthal et 
al., 2016b 

MI ED 
16 cities in 

Ontario 

Case-crossover 
Design (cases 
extracted from 

NACRS 
database) 

2004-2011 
Daily PM2.5 concentrations in Ontario were used to calculate the 
overall mean PM2.5 exposure for the study location and period 

6.9 

Weichenthal et 
al., 2016c 

Asthma 
and 

COPD ED 

15 cities in 
Ontario 

Case-crossover 
design (cases 
extracted from 

NACRS 
database) 

2004-2011 
Daily PM2.5 concentrations in Ontario were used to calculate the 
overall mean PM2.5 exposure for the study location and period. 

Asthma: 7.1 
COPD: 7.1 

Long-term Exposure Studies 

Crouse et al., 
2012 

All-cause 
mortality 

11 Canadian 
Cities 

Cohort study 

1987-2001 
Annual PM2.5 concentrations from monitors and assigned to 

study participants based on the census division of the residence 
were used to calculate overall mean PM2.5 for the study population 

and duration. 

8.7 

* Evaluated in 2012 review 

 1 

 2 

 3 

 4 

 5 

 6 



October 2021 3-88  Draft – Do Not Quote or Cite 

In the studies that use hybrid modeling approaches to estimate long- or short-term PM2.5 1 

concentrations, data can be incorporated from several different sources, including satellites and 2 

air quality models, in addition to ground-based monitors, as described in section 2.3.3 above. 3 

Compared to ground-based monitors alone, hybrid modeling methods have the potential to 4 

improve the characterization of PM2.5 concentrations in areas with relatively sparse monitoring 5 

networks. These approaches also tend to have lower study-reported mean PM2.5 concentrations 6 

since they often include estimates of PM2.5 concentrations in less populated areas compared to 7 

those methods using only ground-based monitored. Studies that use hybrid modeling approaches 8 

can estimate PM2.5 concentrations at different spatial resolutions, including at 1 km x 1 km grid 9 

cells (i.e., Di et al., 2017b and Di et al., 2017a), at 10 km x 10 km grid cells (i.e., Kloog et al., 10 

2014), or at the census tract level (i.e., Bravo et al., 2017). Estimated PM2.5 concentrations are 11 

then generally averaged up to a larger spatial resolution that corresponds to the spatial resolution 12 

for which health data exists (e.g., ZIP code level). These values are then averaged across all 13 

study locations at the larger spatial resolution (e.g., averaged across all ZIP codes in the study) 14 

over the study period, resulting in the study-reported mean 24-hour average or annual average 15 

PM2.5 concentration. Table 3-7 and Table 3-8 list the key U.S. and Canadian epidemiologic 16 

studies, respectively, that use hybrid modeling approaches to estimate exposure and give the 17 

reported study mean and describes the method used to calculate the mean. Studies included in 18 

these tables are those that report overall mean (or median) PM2.5 concentrations and for which 19 

the years of PM2.5 air quality data used to estimate exposures overlap entirely with the years 20 

during which health events are reported.  In addition, studies included in Table 3-7 and Table 3-8 21 

are those for which recent methods and models were used (e.g., recent versions and 22 

configurations of the air quality models); studies that are fused with PM2.5 data from national 23 

monitoring networks (i.e., FRM/FEM data); and studies that reported a thorough model 24 

performance evaluation for core years of the study. 25 
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Table 3-7. Key U.S. Epidemiologic Studies: Model-Based Exposure  1 

Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years, Model Type, and Method Used to Calculate 
Study-reported Mean PM2.5 Concentrations 

Reported 
Mean 
(other 

percentiles) 
µg/m3 

Short-term Exposure Studies 

deSouza et al., 2021 First CVD HA 
Continental 

U.S. 

Time-stratified 
case–

crossover 
design 

(Medicaid 
Adults) 

2000-2012 
Ensemble model (integrating machine learning 

algorithms) 
 

Daily PM2.5 estimates of all grid cells averaged at ZIP 
code were assigned to study participants based on the 
ZIP code of residence. Daily PM2.5 concentration from 

case days were used to calculate overall case day 
mean PM2.5 concentration for the study location and 

period. 

11.5 (case days 
mean) 

Di et al., 2017a 
All-cause 

mortality (65+) 
U.S. 

Nationwide 

Case-
crossover 

study 
(MEDICARE 

enrollees) 

2000-2012 
Artificial Neural Network (Hybrid method) 

 
Daily PM2.5 concentrations for case and control days 

assigned to participants based on ZIP code of 
residence were used to calculate overall mean PM2.5 

for the study location and period. 

11.6 
(10th: 4.7, 25th: 

6.7) 

Kloog et al., 2012 CVD HA (65+) 

New 
England 

Area with 6 
U.S. States 

Mixed study 
design (with 

time series and 
cohort 

components) 

2000-2006 
Spatiotemporal model 

 

Daily PM2.5 concentration of all grids within the NE 
area for acute exposure (0 day lag) were used 
to calculate overall mean for short-term PM2.5 
exposure, for the study location and period. 

9.6 
(25th: 6.4) 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years, Model Type, and Method Used to Calculate 
Study-reported Mean PM2.5 Concentrations 

Reported 
Mean 
(other 

percentiles) 
µg/m3 

Kloog et al., 2014 
CVD and 
COPD HA 

(65+) 

7 U.S. Mid-
Atlantic 

States and 
D.C. 

Case-
crossover 

design 
(MEDICARE 

enrollees) 

2000-2006 
Spatiotemporal model 

 
2-day moving average of PM2.5 concentration of all 

grids within the mid-Atlantic states were used 
to calculate overall mean (all area and rural/urban 
areas) PM2.5 exposure for the study location and 

period. 

11.9 
(25th: 7.9) 

Lee et al., 2015 

All-cause, 
cardiovascular

, respiratory 
mortality 

3 U.S. 
Southeast 

States 

Case-
crossover 

design (Dept. 
of Pub Health 

data) 

2007-2011 
Spatiotemporal model PM2.5 

 
Daily PM2.5 concentrations for ZIP codes (calculated 

as averages of all grids within ZIP code or the closest 
grid cell) within 3 SE states were averaged to 

calculate overall mean PM2.5 concentration (all and by 
state). 

11.1 

Qiu et al., 2020 CVD HA 

New 
England 
(VT, NH, 

CT, MA, RI 
and ME) 

Case-
crossover 

study applying 
causal 

modeling 
approach 

(MEDICARE) 

2000-2012 
Neural network (using machine learning algorithm) 

 
Daily PM2.5 concentration at grid cells were averaged 

to estimate exposure at ZIP code level and were 
assigned to study participants based on ZIP code of 

residence. Case and control days PM2.5 concentration 
were used to calculate overall mean PM2.5 

concentration (all, and separately for case and control 
days) for the study period. 

10.0                   
(AMI: 10.13 
CHF: 10.08 
IS: 10.10) 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years, Model Type, and Method Used to Calculate 
Study-reported Mean PM2.5 Concentrations 

Reported 
Mean 
(other 

percentiles) 
µg/m3 

Shi et al., 2016 
Total mortality 

(65+) 

New 
England 

Area with 6 
U.S. States 

Open Cohort 
study 

(MEDICARE 
enrollees) 

2003-2008 
Predicted from 3-stage statistical model 

 
Lag01 PM2.5 concentrations of all grid cells in the 

study area were used to calculate overall mean PM2.5 
exposure for the study location and period. 

8.2 
(25th: 4.6) 

Wyatt et al., 2020c 

All-cause, 
CVD, RD 30-
day hospital 
readmissions 

530 U.S. 
counties 

Cohort study 
(USRDS 

hemodialysis 
patients) 

2008-2014 
Spatiotemporal prediction model 

 
Daily PM2.5 concentrations for grid cells were 

converted to population-weighted county-level PM2.5 
estimates using 2010 census tract population 

estimates. Participants were assigned daily PM2.5 
based on the county of their last dialysis visit. Daily 

estimates at county-level were then used to calculate 
overall PM2.5 concentration for the study location and 

period. 

9.29 
 

Long-term Exposure Studies 

Di et al., 2017b 
All-cause 

mortality (65+) 
U.S. 

Nationwide 

Cohort study 
(MEDICARE 

enrollees) 

2000-2012 
Artificial Neural Network (Hybrid method) 

 
Daily PM2.5 concentrations for all ZIP codes were used 
to calculate overall mean PM2.5 for the study location 

and period. 

11.0 
(10th: 7.3, 25th: 

9.1) 

Dominici et al., 2019 
All-cause 

mortality (65+) 
U.S. 

Nationwide 

Cohort study 
(MEDICARE 

enrollees) 

2000-2012 
Artificial Neural Network (Hybrid method)  

 
Daily PM2.5 concentrations for all ZIP codes were used 
to calculate overall mean PM2.5 for the study location 

and period. 

11.0 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years, Model Type, and Method Used to Calculate 
Study-reported Mean PM2.5 Concentrations 

Reported 
Mean 
(other 

percentiles) 
µg/m3 

Hart et al., 2015  
All-cause 
mortality 

U.S. 
Nationwide 

Cohort study 
(Nurses’ Health 

study) 

2000-2012 
Spatiotemporal model 

 
Monthly PM2.5 concentrations assigned to study 
participants at residence locations were used to 

calculate overall mean for the study period. 

12.0 

Kloog et al., 2012 CVD HA (65+) 

New 
England 

Area with 6 
U.S. States 

Mixed study 
design (with 

time series and 
cohort 

components) 

2000-2006 
Spatiotemporal model 

 

Daily PM2.5 concentration of all grids within the NE 
area for chronic exposure (365 day moving average) 

were used to calculate overall mean for long-term 
PM2.5 exposure, for the study location and period. 

9.7 
(25th: 9.2) 

Shi et al., 2016 
Total mortality 

(65+) 

New 
England 

Area with 6 
U.S. States 

Open Cohort 
study 

(MEDICARE 
enrollees) 

2003-2008 
Predicted from 3-stage statistical model 

 
Average annual PM2.5 concentrations of all grid cells in 

the study area were used to calculate overall mean 
PM2.5 exposure for the study location and period. 

8.1 (25th: 6.2) 

Thurston et al., 2016 

All-cause, 
CVD and 

respiratory 
mortality 

6 U.S. 
States and 

2 MSAs 

Cohort study 
(NIH_AARP 

cohort) 

2000-2008 
Spatiotemporal model 

 
Average annual PM2.5 concentrations of census tract 

estimates assigned to participants based on the 
census tract of residence used to calculate overall 

mean PM2.5 exposure for the study location and 
period. 

12.2 
Mean range: 

2.9-28.0 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years, Model Type, and Method Used to Calculate 
Study-reported Mean PM2.5 Concentrations 

Reported 
Mean 
(other 

percentiles) 
µg/m3 

Wang et al., 2017 
Total mortality 

(65+) 

7 U.S. 
Southeast 

States 

Cohort study 
(MEDICARE 

enrollees) 

2000-2013 
Three stage Hybrid model PM2.5 

 
Average annual PM2.5 concentrations of ZIP code 

tabulation areas were calculated by averaging annual 
mean PM2.5 concentration of all grids in the ZCTA and 
then used to calculate overall median PM2.5 exposure 

for the study location (overall and by state), and period 
(overall and by year). 

Median: 10.7 
Range: 6.0-20.6 

(25th: 9.1) 

Wang et al., 2020 

Non-
accidental 

cause-specific 
(respiratory, 

CVD, cancer) 
mortality 

U.S. 
Nationwide 

Cohort study 
(MEDICARE) 

2000-2008 
Spatiotemporal prediction model 

 
Daily PM2.5 concentrations of grids were matched to 
study participants based on the grid point closest to 
their residential ZIP code centroid. The estimates 
were used to calculate overall annual mean PM2.5 

exposure for the study period. 

10.3 

Wu et al., 2019 
All-cause 
mortality 

New 
England 
(VT, NH, 

CT, MA, RI 
and ME); 
2202 ZIP 

codes 

Causal 
modeling study 
(MEDICARE) 

2000-2012 
Spatiotemporal Prediction model 

 
Daily PM2.5 exposures determined at grid cells were 
aggregated using area-weighted average of PM2.5 

concentrations of all grid cells within the ZIP code and 
assigned to individuals based on their ZIP code of 

residence. Annual concentrations were used to 
calculate overall mean PM2.5 concentration over the 

study period. 

9.3 
(Trimmed 

population: 9.4) 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study Design 

Years, Model Type, and Method Used to Calculate 
Study-reported Mean PM2.5 Concentrations 

Reported 
Mean 
(other 

percentiles) 
µg/m3 

Wu et al., 2020a 
All-cause 
mortality 

U.S. 
Nationwide 

Cohort study 
(MEDICARE) 

2000-2016 
Ensemble model (integrating machine learning 

algorithms) 
 

Daily PM2.5 concentration at grid cells whose centroids 
were inside the ZIP code boundary were averaged for 
each year and assigned to participants based on the 

ZIP code of residence. These data were used to 
calculate overall mean PM2.5 concentration for the 

study period.PM2.5PM2.5 

9.8 
(<12 ug/m3: 

8.4) 

1 None of the studies presented in this table were evaluated in the 2012 review. 

 1 

Table 3-8. Key Canadian Epidemiologic Studies: Model-Based Exposure  2 

Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study 

Design 
Years, Model Type, and Method Used to Calculate Study-reported 

Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Long-term Exposure Studies 

Bai et al., 
2019 

CHF and 
AMI 

incidence 
Ontario 

Cohort study 
(ONPHEC) 

1998-2012 
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual estimates of PM2.5 concentrations assigned to participants based on 

postal code of residence used to calculate 3-year moving average PM2.5 
concentration for each year of follow-up in the study. The 3-year moving 

averages for study participants at the baseline residence location was used 
to calculate overall mean PM2.5 concentration at the beginning of the follow-

up period in 2001. 

9.6 
(25th: 7.9) 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study 

Design 
Years, Model Type, and Method Used to Calculate Study-reported 

Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Chen et al., 
2020 

CVD 
mortality 

Ontario 
Cohort study 
(ONPHEC) 

2000-2016 
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual estimates of PM2.5 concentrations were assigned to participants 
based on postal code of residence. Annual PM2.5 concentrations in the 

Ontario region were then used to calculate overall mean PM2.5 
concentration for the study location and period. 

8.61 

Christidis et 
al., 2019 

Non-
accidental 
mortality 

Canada 
Nationwide 

Cohort study 
(mCHHS) 

1998-2015 
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual PM2.5 estimates from the postal code and assigned to study 

participants based on the postal code for residence were used to calculate 
3-year moving average based on the location and year of follow-up. The 
average PM2.5 concentrations were then used to calculate overall mean 

PM2.5 concentration for the study period. 

5.9 
(Median: 5.5; 25th: 

4.3) 

Crouse et al., 
2019 

Non-
accidental, 

CVD, 
respiratory 
mortality 
and lung 
cancer 

Canada 
Nationwide 

Cohort study 
(CanCHEC) 

1998-2010 
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual PM2.5 estimates from the postal code and assigned to study 

participants based on the postal code for residence were used to calculate 
moving average at various temporal and spatial scales based on the 

location and year of follow-up. The average PM2.5 concentrations were then 
used to calculate overall mean PM2.5 concentration for the study period at 

various temporal and spatial scales. 

1- year in 1 km: 
Mean: 7.2, 

 
3-year in 1 km: 

Mean: 7.4, 
 

8-year in 1 km: 
Mean: 8.0 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study 

Design 
Years, Model Type, and Method Used to Calculate Study-reported 

Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Erickson et 
al., 2020 

Non-
accidental, 
CVD, and 
respiratory 
mortality 

and 
cancer 

Canada 
Nationwide 

Cohort study 
(CanCHEC) 

1998-2016 
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual PM2.5 estimates from the postal code and assigned to study 

participants based on the postal code for residence were used to calculate 
3-year moving average based on the location and year of follow-up. The 
average PM2.5 concentrations were then used to calculate overall mean 

PM2.5 concentration for the study period by immigrant status and duration in 
Canada. 

Non-immigrant: 7.5 
Immigrant: 9.3 
Pre-1971: 9.1 

1971-1980: 9.3 
1981-1990: 9.5 
1991-2001: 9.7 

Erickson et 
al., 2020 

All-cause, 
CVD, 

respiratory
, and lung 

cancer 
mortality 

Canada 
Nationwide 

Cohort study 
(CCHS) 

1998-2012  
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual PM2.5 estimates from the postal code and assigned to study 

participants based on the postal code for residence were used to calculate 
3-year moving average based on the location and year of follow-up. The 
average PM2.5 concentrations were then used to calculate overall mean 

PM2.5 concentration for the study period. 

6.3 

Pinault et al., 
2018 

CVD 
mortality 

Canada 
Nationwide 

Cohort study 
(CanCHEC, 

mCHHS) 

1998-2012 
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual PM2.5 estimates from the postal code and assigned to study 

participants based on the postal code for residence were used to calculate 
3-year moving average based on the location and year of follow-up. The 
average PM2.5 concentrations were then used to calculate overall mean 

PM2.5 concentration for the study period. 

CanCHEC: 7.4 
 

mCHHS: 6.4 
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Citation 1 
Health 

Endpoint 
Geographic 

Area 
Study 

Design 
Years, Model Type, and Method Used to Calculate Study-reported 

Mean PM2.5 Concentrations 

Reported Mean 
(other percentiles) 

µg/m3 

Shin et al., 
2019 

AF and 
Stroke (1st 

HA) 
Ontario 

Cohort study 
(ONPHEC) 

1998-2012 
Fused surface (AOD, GEOS-Chem & geographically weighted regression) 

 
Annual PM2.5 estimates from the postal code and assigned to study 

participants based on the postal code for residence were used to calculate 
5-year moving average based on the location and year of follow-up. The 
average PM2.5 concentrations were then used to calculate overall mean 

PM2.5 concentration for the study period. 

9.8 
(25th: 8) 

Zhang et al., 
2021 

Non-
accidental, 
CVD, and 
respiratory 
mortality 

Ontario 

Cohort study 
(Ontario 
Health 
Study) 

Modeled from AOD satellite retrievals 
2000-2016 

 
Annual PM2.5 estimates from the postal code and assigned to study 

participants based on the postal code for residence was used to calculate 3-
year and 5-year moving averages based on the location and year of follow-
up. The 5-year average PM2.5 concentrations were then used to calculate 

overall mean PM2.5 concentration for the baseline year.  

Baseline: 7.8 
(Median: 8.0; 25th: 

6.7) 

1 None of the studies presented in this table were evaluated in the 2012 review. 

1 
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As noted above, the key epidemiologic studies use differing approaches to estimate mean 1 

PM2.5 concentrations. Approaches differ not only between monitor-based studies and model-2 

based studies, but also between studies using the same types of air quality information. It is 3 

important to recognize the differences between the techniques used for estimating mean PM2.5 4 

concentrations in epidemiologic studies, in particular when comparing the results across the 5 

studies and considering what the study reported means represent and how that information 6 

informs our consideration of the form, averaging time and level of the current annual PM2.5 7 

standard. To further understand these differences, we seek to answer the following question: 8 

• How can the approaches used in key epidemiologic studies to estimate exposure 9 

affect the study-reported mean PM2.5 concentrations? How do these approaches and 10 

the resulting means compare to one another? 11 

In answering this question, we first utilize a simplified example to show differences in 12 

the mean concentrations depending on the methods used to estimate exposure. In Figure 3-7 13 

below, we exhibit the state of Georgia and the CBSA of Atlanta-Sandy Springs-Roswell. In this 14 

Figure, the gradient of PM2.5 concentrations are shown for 1 km x 1 km grid cells using one of 15 

the hybrid approaches described in more detail in Chapter 2, referred to as the DI201927 hybrid 16 

approach, from 2014-2016, as well as the monitor locations within the Atlanta-Sandy Springs-17 

Roswell CBSA and their annual PM2.5 design values for 2016. Using these data, several metrics 18 

were calculated and shown in Table 3-9 below. For all monitors within the CBSA, the average 19 

PM2.5 concentration is 9.3 µg/m3, while the design value (based on the highest monitored PM2.5 20 

concentration in the area) is 10.4 µg/m3. This comparison helps to illustrate the fact that 21 

composite monitor values tend to be somewhat lower than the highest area monitor values, 22 

consistent with the key points made in the 2012 review. This example also communicates how 23 

monitors are sited to represent the higher concentrations within the area and that the area’s 24 

annual design value, which is used for compliance with the standard, is calculated based on the 25 

highest monitor in the area. 26 

 Next, we evaluate the average estimated PM2.5 concentrations from 2014-2016 using the 27 

DI2019 hybrid approach and calculate: (1) the average concentration across the entire state; (2) 28 

the population weighted average across the entire state; (3) average concentration across the 29 

CBSA; and (4) the population weighted average across the CBSA. In doing this, we have 30 

focused on using some of the main approaches used in epidemiologic studies to compute study 31 

means. At the urban level (e.g., Atlanta-Sandy Springs-Roswell CBSA), the average PM2.5 32 

concentration when taking the mean of all grid cells is 9.2 µg/m3, whereas the population-33 

 
27 As discussed above in section 2.3.3.2.4, DI2019 refers to estimated PM2.5 concentrations from a hybrid modeling 

approach developed by Di et al. (2019b), which estimates Nationwide PM2.5 concentrations from 2000-2016.  
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weighted mean is 9.6 µg/m3. Across Georgia, the average PM2.5 concentration using the hybrid 1 

approach is 8.3 µg/m3, lower than the population-weighted statewide average of 9.1 µg/m3. 2 

While this is a simple example evaluated in just one state and one CBSA, it suggests that the 3 

lowest mean values tend to result from the approaches that use concentrations from all or most 4 

grid cells, both urban and rural, across the study area to compute the mean. Higher mean values 5 

are observed when the approach focuses on the urban areas alone or when the approach 6 

incorporates population weighting. Overall, this example suggests that the means from studies 7 

using hybrid modeling approaches are generally lower than the means from monitor-based 8 

approaches, and both are lower than the annual design values for the same area. Population-9 

weighting tends to increase the calculated mean, likely because more densely populated areas 10 

also tend to have higher PM2.5 concentrations. Table 3-9shows how the different approaches 11 

affect mean concentration estimates for the example discussed above. Note that while the 12 

statewide average using the hybrid approach is quite a bit lower than the mean from either the 13 

monitor-based approach or the Atlanta-only hybrid approach, population-weighting the statewide 14 

average brings the value closer to the other approaches. 15 

 16 

Figure 3-7. Estimated PM2.5 concentrations using the DI2019 hybrid approach and 17 

monitoring locations and design values for the state of Georgia and the Atlanta-Sandy 18 

Springs-Roswell, Georgia CBSA. (Note: Additional information on the DI2019 hybrid 19 

approach is described in section 2.3.3.1.4 and in Di et al., 2019a.) 20 

 21 



October 2021 3-100  Draft – Do Not Quote or Cite 

Table 3-9. PM2.5 Concentrations Metrics from Monitor and Modeled Data28 1 

Description of Metric PM2.5 Concentrations (µg/m3) 

Atlanta highest monitor 10.4 

Atlanta monitored average 9.3 

Atlanta spatial average 9.2 

Atlanta population-weighted average 9.6 

Georgia spatial average 8.3 

Georgia population-weighted average 9.1 

 2 

To expand upon this example in answering our question, we look to the analyses in 3 

Chapter 2 which compared area annual design values, composite monitor PM2.5 concentrations 4 

and mean concentrations from two hybrid approaches. The analyses also included population-5 

weighted mean metrics. In the air quality analyses comparing composite monitored PM2.5 6 

concentrations with annual PM2.5 design values in U.S. CBSAs, maximum annual PM2.5 design 7 

values were approximately 10% to 20% higher than annual average concentrations (i.e., 8 

averaged across multiple monitors in the same CBSA) (section 2.3.3.1, Figure 2-28 and Table 2-9 

2). The difference between the maximum annual design value and average concentration in an 10 

area can be smaller or larger than this range, depending on factors such as the number of 11 

monitors, monitor siting characteristics, and the distribution of ambient PM2.5 concentrations.29 12 

Such ratios may also depend on how the average concentrations are calculated (i.e., averaged 13 

across monitors versus across modeled grid cells). Compared to annual design values, Figure 2-14 

29 indicates a more variable relationship between maximum 24-hour PM2.5 design values and 15 

annual average concentrations. 16 

In addition, the air quality analyses in Chapter 2 looked at data from two hybrid modeling 17 

approaches. While hybrid modeling approaches are not universal and the various hybrid 18 

approaches all have their different nuances, the analysis in Chapter 2 focused on the DI2019 and 19 

HA2020 approaches, which have been used in several of the key epidemiologic studies in Table 20 

3-7 and Table 3-8. Section 2.3.3.2.4 details a comparison of PM2.5 fields in estimating exposure 21 

relative to design values using these two hybrid modeling surfaces. PM2.5 concentrations are 22 

 
28 “Spatial average” as used in Table 3-9 refers to the average across all grid cells in Atlanta or Georgia using the 

DI2019 hybrid modeling approach, while “population-weighted average” uses the DI2019 hybrid modeling 

approach and applies population-weighting to calculate the mean PM2.5 concentration. 

29 Given that higher PM2.5 concentrations have been reported at some near-road monitoring sites, relative to the 

surrounding area (section 2.3.2.2.2), recent requirements for PM2.5 monitoring at near-road locations in large 

urban areas (section 2.2.3.3) may increase the ratios of maximum annual design values to averaged concentrations 

in some areas.  In the Georgia example above, a near-road monitor was not included in our analysis. The near-

road monitor was not added until 2015, and data related to DI2019 ended in 2016. For purposes of developing 

three-year average concentrations using the most recent data for which we had monitored and modeled data, 

2014-2016 data was selected for monitors as well, for which data from 2014-2016 was not available for the near-

road monitor.   
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estimated per year at a 1 km x 1 km spatial resolution. As exhibited in Figure 2-37, the means 1 

vary when one estimates PM2.5 exposures in urban areas only (CBSAs) versus when the averages 2 

used all or most grid cells nationwide. This is likely indicative of the fact that areas included 3 

outside of CBSAs tend to be more rural and have lower estimated PM2.5 concentrations. This is 4 

important to note since, which study area is included in the calculation of the mean (Table 3-7 5 

and Table 3-8 above), and more specifically whether a study is focused on nationwide, regional, 6 

or urban areas, will affect the calculation of the study mean based on how many rural areas are 7 

included with lower estimated PM2.5 concentrations. While the determination of what spatial 8 

scale to use to estimate PM2.5 concentrations does not inherently affect the quality of the 9 

epidemiologic study, the spatial scale can affect the calculation of the long-term mean 10 

concentration across the study area and period. As exhibited in Table 2-4, regardless of the 11 

hybrid modeling approach assessed, the annual average PM2.5 concentrations in CBSA-only 12 

analyses are 4-8% higher than for nationwide analyses, likely as a result of higher PM2.5 13 

concentrations in more densely populated areas. When evaluating comparisons between surfaces 14 

that estimate exposure using population-weighting versus surfaces that do not calculate means 15 

using population-weighting, surfaces that calculate long-term mean PM2.5 concentrations with 16 

population-weighted averages have higher average annual PM2.5 concentrations, ranging from 17 

8.2-10.2 µg/m3, compared to annual PM2.5 concentrations that range from 7.0-8.6 µg/m3 in 18 

analyses that do not apply population weighting. Average maximum annual design values, on the 19 

other hand, exhibit a range from 9.5 to 11.7 µg/m3. Analyses exhibit that average maximum 20 

annual design values are 40 to 50% higher when compared to annual average PM2.5 21 

concentrations estimated without population-weighting and are 15% to 18% higher when 22 

compared to average annual PM2.5 concentrations with population weighting applied.  23 

The comparisons discussed above show a trend generally observed across the various 24 

methods employed to calculate the mean. First, the area annual design values tend to be 10-20% 25 

higher than composite monitor values. Additionally, when assessing means from hybrid 26 

modeling data, the lowest mean values tend to result from the approaches that use estimated 27 

PM2.5 concentrations from all or most grid cells, both urban and rural, across the study area to 28 

compute the mean. When compared to the area annual design values, these annual design values 29 

are higher than means by 40-50%. However, when the approach instead employs methods that 30 

population-weight the mean (e.g. average up the grid cells to a ZIP code spatial level), the 31 

calculated mean PM2.5 concentrations are higher, regardless of the hybrid method employed, and 32 

when compared to the area annual design values, design values are only 15-18% higher than 33 

means (similar to the differences observed for the composite monitor comparison values for the 34 

monitor-based epidemiologic studies). We note that our comparisons used only two hybrid 35 

modeling approaches, and while both modeling approaches are popular in the key epidemiologic 36 
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studies, they are only just two of the hybrid approaches being used in the literature to estimate 1 

PM2.5 concentrations. Research groups also continue to develop and improve prediction models 2 

to estimate PM2.5 concentrations in epidemiologic studies. We also note that different 3 

epidemiologic studies use different methods to assign a population weighted average PM2.5 4 

concentration to their study population and our comparisons do not assess them all. 5 

Additionally, while these analyses focus on the relationships between study reported 6 

means and area annual design values, some studies also provide information on the broader 7 

distributions of exposure estimates and/or health events and the PM2.5 concentrations 8 

corresponding to the lower percentiles of those data (e.g., 25th and/or 10th). We note that this air 9 

quality analysis does not provide a similar comparison for these lower percentiles, and that 10 

caution should be placed upon any direct comparison of these study reported concentration 11 

values corresponding to lower percentiles and annual design values.  12 

In assessing these analyses, we note that these results are most relevant to interpreting 13 

U.S. epidemiologic studies. Using information from the U.S.-based analyses for Canadian 14 

studies would introduce additional uncertainties, given the differences between U.S. and 15 

Canadian studies with respect to population densities, source distributions, and PM2.5 16 

concentration gradients. Given these important differences between studies conducted in the two 17 

countries and the fact that we lack data and information that would allow us to do similar 18 

analyses for Canada, we are unable to provide insight into how the study reported means in the 19 

Canadian studies would compare to area design values in the U.S.  20 

To further expand our evaluation of study-reported mean PM2.5 concentrations, we 21 

specifically consider the following questions: 22 

• What are the overall mean PM2.5 concentrations reported by key epidemiologic 23 

studies? For studies with available information on the broader distributions of 24 

exposure estimates and/or health events, what are the PM2.5 concentrations 25 

corresponding to the lower percentiles of those data (e.g., 25th and/or 10th)?  26 

Figure 3-8 and Figure 3-9 highlight the overall mean (or median) PM2.5 concentrations 27 

reported in key U.S. and Canadian studies, respectively, that use ground-based monitors alone to 28 

estimate long- or short-term PM2.5 exposures. For the small subset of studies with available 29 

information on the broader distributions of underlying data, Figure 3-8 and Figure 3-9 also 30 

identify the study-period mean PM2.5 concentrations corresponding to the 25th and 10th 31 

percentiles of health events30 (see Appendix B, Section B.2 for more information).  32 

 
30 That is, 25% of the total health events occurred in study locations with mean PM2.5 concentrations (i.e., averaged 

over the study period) below the 25th percentiles identified in Figure 3-8 and Figure 3-9 and 10% of the total 

health events occurred in study locations with mean PM2.5 concentrations below the 10th percentiles identified.  
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Figure 3-10 and Figure 3-11 present overall means of predicted PM2.5 concentrations for 1 

key U.S. and Canadian model-based epidemiologic studies, respectively, and the concentrations 2 

corresponding to the 25th and 10th percentiles of estimated exposures or health events31 when 3 

available (see Appendix B, section B.3 for additional information).4 

 
31 For most studies in Figure 3-10 and Figure 3-11, 25th percentiles of exposure estimates are presented. The 

exception is Di et al., 2017b, for which Figure 3-10 presents the short-term PM2.5 exposure estimates 

corresponding to the 25th and 10th percentiles of deaths in the study population (i.e., 25% and 10% of deaths 

occurred at concentrations below these concentrations). In addition, the authors of  Di et al., 2017b provided 

population-weighted exposure values (Chan, 2019). The 10th and 25th percentiles of these population-weighted 

exposure estimates are 7.9 and 9.5 µg/m3, respectively.  



October 2021 3-104  Draft – Do Not Quote or Cite 

    1 

 2 

Figure 3-8. Monitor-based PM2.5 concentrations in key U.S. epidemiologic studies. (Asterisks denote studies included in the draft 3 

ISA Supplement). 4 

 5 
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 1 

Figure 3-9. Monitor-based PM2.5 concentrations in key Canadian epidemiologic studies. (Asterisks denote studies included in the 2 

draft ISA Supplement).  3 
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 1 

Figure 3-10. Hybrid model-predicted PM2.5 concentrations in key U.S. epidemiologic studies. (Asterisks denote studies included 2 

in the draft ISA Supplement).  3 
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 1 

Figure 3-11. Hybrid model-predicted PM2.5 concentrations in key Canadian epidemiologic studies. (Asterisks denote studies 2 

included in the draft ISA Supplement). 3 



October 2021 3-108  Draft – Do Not Quote or Cite 

In further examining these data, we also ask: 1 

• For the key epidemiologic studies using hybrid modeling approaches, what are the 2 

study reported means for the general categories of methods of calculating the study 3 

mean and how do the study-reported means vary and compare to each other? 4 

 Figure 3-12 and Figure 3-13 present the same key model-based epidemiologic studies 5 

from the figures above but focus on the U.S. studies and group them based on their approach to 6 

calculating the study-reported mean. For Figure 3-12, the studies are grouped by the 7 

geographical spatial scale at which the modeling was conducted (i.e., nationwide, regional, 8 

rural). Figure 3-13 presents the same key U.S. model-based epidemiologic studies, but subset by 9 

the method used to average grid cells in study-reported long-term mean PM2.5 concentrations. 10 

For the key U.S. model-based epidemiologic studies, the various methods include the average of 11 

all grid cells; grid cells averaged up to ZIP code, postal code or census tract; or population-12 

weighted grid cell averaged up to ZIP code or census tract. Lastly, Figure 3-14 subsets the key 13 

U.S. epidemiologic studies that used hybrid exposure models by both spatial scale and the 14 

method used to average grid cells in study-reported long-term mean PM2.5 concentrations. 15 

Grouping the key epidemiologic studies in such ways allows for visual comparisons of the study-16 

reported mean PM2.5 concentrations across the different spatial scales and methods of averaging 17 

the grid cells.  18 

 19 
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 1 

 2 

Figure 3-12. Hybrid model-predicted PM2.5 concentrations in key U.S. epidemiologic studies, subset by spatial scale. (Asterisks 3 

denote studies included in the draft ISA Supplement).  4 

  5 



October 2021 3-110  Draft – Do Not Quote or Cite 

 1 

Figure 3-13. Hybrid model-predicted PM2.5 concentrations in key U.S. epidemiologic studies, subset by method used to average 2 

grid cells in study-reported long-term mean PM2.5 concentrations. (Asterisks denote studies included in the draft ISA 3 

Supplement).  4 

  5 
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 1 

Figure 3-14. Hybrid model-predicted PM2.5 concentrations in key U.S. epidemiologic studies, subset by spatial scale and 2 

method used to average grid cells in study-reported long-term mean PM2.5 concentrations. (Asterisks denote studies included 3 

in the draft ISA Supplement).  4 

  5 
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Based on the information above with regard to the key U.S. and Canadian epidemiologic 1 

studies, we summarize some of our observations:  2 

• For key U.S. epidemiologic studies that use monitors to estimate PM2.5 exposures (Figure 3-3 

8), overall mean PM2.5 concentrations are generally at or above 9.9 g/m3.32 Based on our air 4 

quality analyses, we would generally expect these values to be 10-20% lower than the 5 

corresponding area annual design value.  6 

• For key U.S. epidemiologic studies that use hybrid model-predicted exposure (Figure 3-10), 7 

mean PM2.5 concentrations range from just above 8.0 g/m3 to just above 12.0 g/m3.The 8 

majority of these studies estimate PM2.5 exposure by averaging up from the grid cell spatial 9 

resolution used in the modeling approach to the spatial resolution of health study data (e.g., 10 

ZIP code or census tract). This incorporates an aspect of population weighting in the 11 

calculation of the mean. Based on our air quality analyses, we would expect these 12 

epidemiologic studies to report means similar to those from monitor-based studies and to 13 

generally be about 14-18% less than the area annual design value. 14 

- In studies that average up from the grid cell level to the ZIP code, postal code, 15 

or census tract level, mean PM2.5 concentrations range from 9.8 g/m3 to 12.2 16 

g/m3.  17 

- The one study that population weighted the grid cell prior to averaging up to 18 

the ZIP code or census tract level report mean PM2.5 concentrations of 9.3 19 

g/m3. 20 

• The other set of key U.S. epidemiologic studies averaged up from the grid cell spatial 21 

resolution across the entire study area, whether that be the nation or a region of the country. 22 

Based on our air quality analyses (i.e., suggesting these means are 40-50% lower than the 23 

area annual design value), we would expect these epidemiologic studies to report some of the 24 

lowest mean values.  25 

- For these studies, the reported mean PM2.5 concentrations range from 8.1 26 

μg/m3 to 11.9 μg/m3. 27 

• Of the key epidemiologic studies evaluated in the 2019 ISA and draft ISA Supplement, a 28 

subset of studies report PM2.5 concentrations corresponding to the 25th and 10th percentiles of 29 

health data or exposure estimates to provide insight into the concentrations that comprise the 30 

lower quartiles of the air quality distributions. 31 

- In key U.S. epidemiologic studies that use monitors to estimate PM2.5 32 

exposures, 25th percentiles of health events correspond to mean PM2.5 33 

concentrations (i.e., averaged over the study period for each study city) at or 34 

above 11.5 g/m3 and 10th percentiles of health events correspond to mean 35 

PM2.5 concentrations at or above 9.8 g/m3 (i.e., 25% and 10% of health 36 

events, respectively, occur in study locations with mean PM2.5 concentrations 37 

below these values). 38 

 
32 This is generally consistent with, but slightly below, the lowest study-reported mean PM2.5 concentration from 

monitor-based studies available in the 2020 PA, which was 10.7 µg/m3 (U.S. EPA, 2020, Figure 3-7). 
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- Of the key U.S. epidemiologic studies that use hybrid modeling approaches to 1 

estimate long-term PM2.5 exposures, the ambient PM2.5 concentrations 2 

corresponding to 25th percentiles of estimated exposures are 6.2 and 9.1 3 

g/m3.  4 

- In key U.S. epidemiologic studies that use hybrid modeling approaches to 5 

estimate short-term PM2.5 exposures, the ambient concentrations 6 

corresponding to 25th percentiles of estimated exposures, or health events, are 7 

generally at or above 6.4 g/m3. In the one study with lower concentrations, 8 

the ambient PM2.5 concentration corresponding to the 25th percentile of 9 

estimated exposures is 4.7 g/m3.33 In the one study with information 10 

available on the 10th percentile of health events, the ambient PM2.5 11 

concentration corresponding to that 10th percentile is 4.7 g/m3. 12 

• Generally, the study-reported mean concentrations in Canadian studies are lower than those 13 

reported in the U.S. studies for both monitor-based and hybrid model methods. However, 14 

based on our lack of information about how best to compare air quality gradients between 15 

the two countries, it is unclear how to view these Canadian study mean values in the context 16 

of a level of the annual standard in the U.S.  17 

- For the majority of key Canadian epidemiologic studies that use monitor-18 

based exposure (Figure 3-9), mean PM2.5 concentrations generally ranged 19 

from 7.0 g/m3 to 9.0 g/m3. For these studies, 25th percentiles of health 20 

events correspond to mean PM2.5 concentrations at or above 6.5 g/m3 and 21 

10th percentiles of health events correspond to mean PM2.5 concentrations at 22 

or above 6.4 g/m3.   23 

- For the key Canadian epidemiologic studies that use hybrid model-predicted 24 

exposure (Figure 3-11), the mean PM2.5 concentrations are generally lower 25 

than in U.S. model-based studies (Figure 3-10), ranging from approximately 26 

6.0 g/m3 to just below 10.0 g/m3.  27 

- The majority of the key Canadian epidemiologic studies that used hybrid 28 

modeling were completed at the nationwide scale, while four studies were 29 

completed at the regional geographic spatial scale. In addition, all the key 30 

Canadian epidemiologic studies, average up from the grid cell level to the 31 

spatial resolution of health study data (e.g., postal code).  32 

- The majority of studies estimating exposure nationwide range between just 33 

below 6.0 g/m3 to 8.0 g/m3. One study (Erickson et al. (2020)) presents an 34 

analysis related immigrant status and length of residence in Canada versus 35 

non-immigrant populations, which accounts for the four highest mean PM2.5 36 

concentrations in Figure 3-11, ranging between 9.0 g/m3 and 10.0 g/m3.  37 

- The four studies that estimate exposure at the regional scale report mean PM2.5 38 

concentrations that range from 7.8 g/m3 to 9.8 g/m3. 39 

 
33 As noted above, in this study (Shi et al., 2016), the authors report that most deaths occurred at or above the 75th 

percentile of annual exposure estimates (i.e., 10 g/m3). The short-term exposure estimates accounting for most 

deaths are not presented in the published study.  



October 2021 3-114  Draft – Do Not Quote or Cite 

- In two Canadian studies with information available on the 25th percentile of 1 

health events, the ambient PM2.5 concentration corresponding to that 25th 2 

percentile is approximately 8.0 g/m3 in two studies, and 4.3 g/m3 in a third 3 

study. 4 

In addition to the key epidemiologic studies, the 2019 ISA and draft ISA Supplement also 5 

include a subset of studies that assess the relationship between PM2.5 exposure and health effects 6 

that have emerged and so we ask: 7 

• To what extent has information emerged to further inform our understanding of 8 

PM2.5 in ambient air and associations with health effects? Are there studies that 9 

explore alternative methods for assessing the relationship between PM2.5 exposure 10 

and health effects or studies that observe changes in health effects with changes in 11 

PM2.5 concentrations in ambient air over time? 12 

In addition to the expanded body of evidence from the key epidemiologic studies 13 

discussed above, there are also a subset of studies that have emerged that further inform our 14 

understanding of the relationship between PM2.5 exposure and health effects (U.S. EPA, 2019, 15 

U.S. EPA, ).  16 

The first type are studies that examine health effect associations in analyses with the 17 

highest exposures excluded, restricting analyses to daily exposures less than the 24-hour primary 18 

PM2.5 standard and annual exposures less than the annual PM2.5 standard. The restricted analyses 19 

can be informative in assessing the nature of the association between long-term exposures (e.g., 20 

< 12.0 µg/m3) or short-term exposures (e.g., < 35 µg/m3) when looking only at exposures to 21 

lower concentrations, including whether the association persists in such restricted analyses 22 

compared to the same analyses for all exposures, as well as whether the association is stronger, 23 

in terms of magnitude and precision, than when completing the same analysis for all exposures. 24 

These studies, as assessed in the 2019 ISA and draft ISA Supplement, are summarized in Table 25 

3-10 below.  26 
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Table 3-10. Epidemiologic studies examining the health impacts associated with ambient PM2.5 concentrations when studies 1 

are conducted with restricted air quality exposures.  2 

 3 

Citation 
Study Area 

(health 
endpoint) 

Years of 
PM2.5 Air 
Quality 

(monitored) 

AQ in restricted 
analysis 
(µg/m3) 

Study-
reported 
Mean in 

restricted 
analysis 
(µg/m3) 

Study-
reported 
Mean in 

main 
analysis 
(µg/m3) 

Effect Estimate in 
restricted analysis 

(95% CI) 

Effect Estimate in main 
analysis (95% CI) 

U.S.-based Studies and Long-term Exposure (per 5 µg/m3) 

Di et al., 
2017b 

Nationwide 
(All-cause 

mortality 65+) 
2000-2012 < 12.0 9.6 11.0 1.07 (1.06-1.07) 1.04 (1.04-1.04) 

Dominici et al., 
2019 

Nationwide 
(All-cause 
mortality) 

2000-2012 < 12 9.6 11.0 1.06 (1.06-1.07) 1.03 (1.03-1.04) 

Shi et al., 2016 6 NE States 2003-2008 < 10.0 NR 8.1 1.04 (1.00, 1.09) 1.04 (1.01, 1.06) 

Yazdi et al., 
2019 

7 SE States 
(CVD 

morbidity) 
2000-2012 < 12 NR NR 

Stroke: 1.29 (1.27-
1.31) 
MI: 1.18 (1.16-1.20) 
HF: 1.44 (1.43-1.46) 

Stroke: 1.16 (1.16-1.17) 
MI: 1.14 (1.13-1.15) 
HF: 1.29 (1.29-1.30) 

Canadian Studies and Long-term Exposure (per 5 µg/m3) 

Zhang et al., 
2021 

Ontario (Non-
accidental and 
CVD mortality) 

2000-2016 
< 10.0 and 

< 8.8 
NR 7.8 

Non-accidental 
mortality: < 10.0: 1.22 
(1.10-1.36); and < 8.8: 
1.04 (0.91-1.17) 
CVD mortality: < 10.0: 
1.38 (1.10-1.73); and < 
8.8: 1.05 (0.80-1.38) 

Non-accidental mortality: 1.20 
(1.09-1.32) 
CVD mortality: 1.49 (1.22-1.83) 

U.S. Studies and Short-term Exposure (per 10 µg/m3) 

deSouza et al., 
2021 

Nationwide 
(First CVD HA) 

2000-2012  ≤ 25 NR 11.5 1.3% (0.9-1.6 %) 0.9% (0.6-1.1 %) 
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Di et al., 
2017a 

Nationwide 
(All-cause 

mortality 65+) 
2000-2012 <25.0 NR 11.6 1.61 (1.48-1.74) 1.18 (1.09-1.28) 

Lee et al., 
2015 1 

3 SE States 
(Non-

accidental) 
2007-2011 

In ZIP codes 
where annual 
average <12.0 

and only on 
days < 35.0 

NR 11.1 
Non-accidental: 2.08% 
(1.99-2.17) % 

Non-accidental :1.56% (1.19-
1.94%)  
 

Lee et al., 
2015 2 

3 SE States 
(Non-

accidental) 
2007-2011 

In ZIP codes 
where annual 

average < 12.0 
NR 11.1 

Non-accidental: 2.06% 
(1.97-2.15%) 

Non-accidental :1.56% (1.19-
1.94%)  
 

Shi et al., 2016 6 NE States 2003-2008 < 30.0 NR 8.2 2.14% (1.34-2.95%)  2.14% (1.38, 2.89%) 

Wei et al., 
2019 

Nationwide 
(CVD HA) 

2000-2012 

≤ 25 
(WHO air quality 
guideline value 
for daily PM2.5) 

NR NR 

Relative increase in 
risk for HA with 1 
µg/m3 increase in 
lag0-1 PM2.5: 
MI: 0.16 (0.09, 0.24) 
CHF: 0.16 (0.11, 0.22) 
 

Relative increase in risk for HA 
with 1 µg/m3 increase in lag0-1 
PM2.5: 
MI: 0.11 (0.07, 0.16) 
CHF: 0.14 (0.10, 0.17) 
 

1 First, restricted ZIP code areas to where the annual average of predicted PM2.5 is < 12 μg/m3 to assess the acute effect of PM2.5 on mortality only areas with annual average 
concentrations < 12 μg/m3.  
2 In terms of daily standard, conducted analysis on the days < 35 μg/m3 and only in ZIP codes with annual average concentrations < 12 μg/m3. 

 1 
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There are a number of U.S. and Canadian studies that examine health effect associations 1 

in analyses with the highest exposures excluded. These restricted analyses provide support for 2 

positive and statistically significant effect estimates at lower mean PM2.5 concentrations than 3 

their main effect analysis means as shown in Table 3-10 and in many cases, exhibit greater effect 4 

estimates in magnitude than their corresponding main analyses. With regard to these studies, we 5 

particularly note the following: 6 

• In the four U.S. studies that estimate effects associated with long-term exposure to PM2.5, the 7 

effect estimates are greater in the restricted analyses than in the main analyses.  8 

o Di et al. (2017a) and Dominici et al. (2019) report positive and statistically significant 9 

associations in analyses restricted to concentrations less than 12.0 g/m3 for all-cause 10 

mortality Di et al. (2017b) and stroke, MI, and HF Dominici et al. (2019), and effect 11 

estimates are greater in the restricted analyses than effect estimates reported in main 12 

analyses. In addition, both studies report mean PM2.5 concentrations of 9.6 g/m3 13 

o Shi et al. (2016) and Yazdi et al. (2019) report positive and statistically significant 14 

associations in analyses restricted to concentrations less than 10.0 g/m3 and 12.0 15 

g/m3, respectively. Shi et al. (2016) does not report overall mean PM2.5 16 

concentrations in restricted analyses, though such means are presumably somewhat 17 

below the main analysis reported mean of 8.1 g/m3. Yazdi et al. (2019) does not 18 

report the overall mean PM2.5 concentration in either the restricted analysis or main 19 

analysis, but the effect estimates for stroke, MI, and HF are all higher in the restricted 20 

analyses compared to main analyses.   21 

• While none of the U.S. studies of short-term exposure present mean PM2.5 concentrations for 22 

the restricted analyses, these studies generally have mean 24-hour average PM2.5 23 

concentrations in the main analyses below 12.0 g/m3, and report increases in the effect 24 

estimates in the restricted analyses compared to the main analyses.   25 

o With the exception of Wei et al. (2019), short-term exposure studies report mean 24-26 

hour average PM2.5 concentration in main analyses all below 12.0 g/m3, and ranging 27 

from 8.2 g/m3 Shi et al. (2016) to 11.6 (Di et al. (2017a). 28 

o These studies, except for Shi et al. (2016), report increases in effect estimates in 29 

restricted analyses compared to main analyses. Shi et al. (2016) reports the same effect 30 

estimates for both the restricted and main analyses.  31 

• In the one Canadian study of long-term PM2.5 exposure, Zhang et al. (2021) conducted 32 

analyses where annual PM2.5 concentrations were restricted to concentrations below 10.0 33 

g/m3 and 8.8 g/m3, which presumably have lower mean concentrations than the mean of 34 

7.8 g/m3 reported in the main analyses, though restricted analysis mean PM2.5 35 

concentrations are not reported.     36 

o Effect estimates for non-accidental mortality are greater in analyses restricted to PM2.5 37 

concentrations less than 10.0 g/m3, but less in analyses restricted to < 8.8 g/m3. 38 

Effect estimates for CVD mortality are lower in restricted analyses than the main 39 

analysis. 40 
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 1 

Overall, these studies provide additional information on the nature of the association 2 

between long- or short-term exposures when analyses are restricted to lower PM2.5 3 

concentrations. Further, these studies indicate that effect estimates are generally greater in 4 

magnitude in the restricted analyses for long- and short-term PM2.5 exposure compared to the 5 

main analyses. 6 

The second type of studies that have recently emerged and can further inform our 7 

understanding of the relationship between PM2.5 exposure and health effects are those that 8 

employ causal modeling methods. Causal modeling methods seek to mimic randomized 9 

experiments through the use of study design and statistical methods, which reduces the potential 10 

bias of effects due to confounding. The studies that employ causal modeling methods assessed in 11 

the 2019 ISA and draft ISA Supplement are summarized in Table 3-11 below.  12 
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Table 3-11. Summary of information from studies that use causal modeling statistical methods. 1 

Study 
Reference 

Statistical 

Method 1 
Study Area AQ Years 

Health 
Endpoint 
(populatio

n) 

Study-reported 
Mean (µg/m3) 

Results 

Awad et 
al., 2019 

IPW 
U.S. 

Nationwide 
2000-
2012 

LT 
mortality 

(65+) 

Mean change in 
exposure the year 
before move and 
the second year 

after move: 
Whites: -0.73 
Blacks: -0.90 

Per a 10 µg/m3 increase in annual PM2.5 concentrations: 
White individuals: HR = 1.21 (95% CI: 1.20, 1.22)  
Black individuals: HR = 1.12 (95% CI: 1.08, 1.15) 
All-cause mortality: HR = 1.12 (95% CI: 1.08, 1.15) 

Awad et 
al., 2019 
(restricted 

IPW 
U.S. 

Nationwide 
2000-
2012 

LT 
mortality 

(65+) 

Restricted < 12.0: 
NR 

Per a 10 µg/m3 increase in annual PM2.5 concentrations: 
White individuals: HR = 1.25 (95% CI: 1.24, 1.27)  
Black individuals: HR = 1.08 (95% CI: 1.01, 1.14) 

Higbee et 
al., 2020 

IPW 
U.S. 

Nationwide 
1986-
2015 

LT 
mortality 

(18+) 
10.7 

For a 10 µg/m3 increase in annual PM2.5 concentrations: 
All-cause mortality: HR = 1.12 (95% CI: 1.08, 1.15) 
Cardiopulmonary mortality: HR = 1.23 (95% CI: 1.17, 
1.29) 

Qiu et al., 
2020 

IPW New England 
2000-
2012 

ST CVD 
HA (65+) 

AMI:10.3 
CHF: 10.08 

IS: 10.1 

Percent increase HA rate for a 10 µg/m3 increase in 
PM2.5 concentrations 
AMI: 4.31% (95% CI: 2.21, 6.42) 
CHF: 3.95% (95% CI: 2.37,5.53) 
IS: 2.56% (95% CI: 0.44, 4.69) 

Schwartz 
et al., 
2018a 

3 approaches: 
Instrumental 

approach 
Marginal structural 

models 
Time-series 

analysis 

135 U.S. 
Cities 

1999-
2010 

ST 
mortality 

(18+) 
12.8 

Percent change in daily mortality per 10 µg/m3 increase 
in PM2.5 concentrations 
Instrumental approach: 1.54% (95% CI: 1.12, 1.97) 
Marginal structural models: 0.75% (95% CI: 0.35, 1.15) 
Time-series: 0.60%: (95% CI: 0.34, 0.85%) 

Schwartz 
et al., 
2018a 

3 approaches: 
Instrumental 

approach 

135 U.S. 
Cities 

1999-
2010 

ST 
mortality 

(18+) 

Restricted < 25.0: 
NR 

Percent change in daily mortality per 10 µg/m3 increase 
in PM2.5 concentrations 
Instrumental approach: 1.70% (95% CI: 1.11, 2.29) 
Marginal structural models: 0.83% (95% CI: 0.39,1.27) 
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(restricted 
analysis) 

Marginal structural 
models 

Time-series 
analysis 

Time-series: 0.62%: (95% CI: 0.32, 0.93) 

Schwartz 
et al., 
2018b 

GPS IPW 
Northeastern 

and Mid-
Atlantic States 

2000-
2012 

Life 
expectancy 

NA 

Estimated mean age at death for an annual average 
exposure of 12 µg/m3 was 0.89 years (95% CI: 
0.88,0.91) than estimated for a counterfactual PM2.5 

exposure of 7.5 µg/m3 

Schwartz 
et al., 
2021 

DID 
U.S. 

Nationwide 
2000-
2016 

LT 
probability 
of dying 

(65+) 

10.3 
Probability of dying in each year increased by 3.85x10-4 
(95% CI 1.95x10-4, 5.76x10-4) for each 1 µg/m3 increase 
in annual PM2.5 concentrations 

Schwartz 
et al., 
2021  
(restricted 
analysis) 

DID 
U.S. 

Nationwide 
2000-
2016 

LT 
probability 
of dying 

(65+) 

NR 
Probability of dying in each year increased by 4.26x10-4 
(95% CI 1.43x10-4, 7.09x10-4) for each 1 µg/m3 increase 
in annual PM2.5 concentrations 

Wu et al., 
2019 

RC-GPS and 3 
GPS approaches: 
Subclassification 

GPS 

IPTW GPS 
GPS matching 

New England 
2000-
2012 

(modeled) 

LT 
mortality 

(65+) 
NA 

Exposure levels of low (≤ 8.0 µg/m3) versus moderate 
PM2.5 concentrations (8.0-10.0 g/m3) to low exposure  
Subclassification: 1.025 (95% CI: 1.006,1.045) 
IPTW GPS: 1.022 (95% CI: 1.007, 1.038) 
Matching GPS: 1.028 (1.012, 1.045) 
 Comparison of exposure levels of ≤ 8.0 µg/m3 vs. ≥ 
10.0 µg/m3 
Subclassification: 1.035 (95% CI: 0.999,1.072) 
IPTW GPS: 1.030 (95% CI: 1.005, 1.056) 
Matching GPS: 1.035 (95% CI: 1.015, 1.055) 

Wu et al., 
2020b 

Three GPS 
approaches: 

GPS matching 
GPS weighting 

GPS adjustment 

U.S. 
Nationwide 

2000-
2016 

(modeled) 

LT 
mortality 

(65+) 
9.8 

Reported hazard ratios for a decrease in mortality risk 
per 10 µg/m3 decrease in annual PM2.5 

GPS matching: HR = 1.068 (95% CI: 1.054,1.083) 
GPS weighting: HR = 1.076 (95% CI: 1.065, 1.088) 
GPS adjustment: HR = 1.072 (95% CI: 1.061,1.082) 

Wu et al., 
2020a 
(restricted 
analysis) 

Three GPS 
approaches: 

GPS matching 
GPS weighting 

U.S. 
Nationwide 

2000-
2016 

(modeled) 

LT 
mortality 

(65+) 

Restricted < 12.0: 
8.4 

Reported hazard ratios for a decrease in mortality risk 
per 10 µg/m3 decrease in annual PM2.5 

GPS matching: HR = 1.261 (95% CI: 1.233,1.289) 
GPS weighting: HR = 1.268 (95% CI: 1.237, 1.300) 
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GPS adjustment GPS adjustment: HR = 1.231 (95% CI: 1.180,1.284) 

Yazdi et 
al., 2021 

Doubly Robust 
Additive Model 

(DRAM) 

U.S. 
Nationwide 

2000-
2016 

(modeled) 

LT 
Cardiovasc

ular 
hospitalizat

ion 
outcomes 

(65+) 

10.21 
% increase in the risk with 1 µg/m3 increase in PM2.5:  
MI: 0.002; Stroke: 0.009; AI: 0.006 

Yitshak-
Sade et 
al., 2019 

DID 

Northeastern 
and mid-

Atlantic States 
(14 U.S. 
States) 

2000-
2013 

LT 
mortality 

(65+) 
Range: 6.5-14.5 

4.04% (95% CI: 3.49,4.59) increase in mortality rates for 
an IQA (3 µg/m3) increase in annual PM2.5 

concentrations 

1 GPS: generalized propensity score; IPW: inverse probability weighting; DID: Difference-in-difference; HR: hazard ratio; IRR: incidence rate ratio; IPTW: inverse probability 
treatment weighting; IV: instrument variable; OLS: Ordinary Least Squares; RC: regression calibration 

 1 
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The 2019 ISA and draft ISA Supplement assess epidemiologic studies that implemented 1 

causal modeling methods. As presented in Table 3-11 above, these studies employ a variety of 2 

statistical methods, such as GPS, IPW, and DID. We particularly note the following: 3 

• These studies reported consistent results among large study populations across the U.S. The 4 

results from studies that use causal modeling methods further inform the relationship 5 

between long- and short-term PM2.5 exposure and total mortality. 6 

• Studies that employ causal methods to assess the association between long-term exposure to 7 

PM2.5 and mortality provide additional support for the associations reported in the broader 8 

body of cohort studies that examined long-term PM2.5 exposure and mortality.  9 

- For example, Wu et al., 2020a used three different causal modeling statistical 10 

approaches, in addition to two more traditional statistical method methods 11 

(Cox proportional hazards modeling and Poisson time-series regression 12 

model), finding consistent positive and statistically significant results between 13 

the five statistical methods and with HRs per a 10 g/m3 increase in PM2.5 14 

ranging from 1.062 (95% CI: 1.055,1.069) using the poisson statistical 15 

method to 1.076 (95% CI: 1.065, 1.088) with the GPS matching statistical 16 

method. 17 

 18 

Lastly, there is also a smaller subset of epidemiologic studies, accountability analyses, 19 

that evaluated the potential for improvements in public health as ambient PM2.5 concentrations 20 

have declined over time. Given the nature of these studies, the majority tend to focus on time 21 

periods in the past during which ambient PM2.5 concentrations were substantially higher than 22 

those measured more recently (e.g., see Chapter 2, Figure 2-16). These studies, as assessed in the 23 

2019 ISA and draft ISA Supplement, are summarized in Table 3-12 below. 24 

Table 3-12. Epidemiologic studies examining the health impacts of long-term reductions in 25 

ambient PM2.5 concentrations.  26 

Study Reference Study Area 

Years of 
PM2.5 Air 
Quality 

(monitored) 

Starting Mean 
PM2.5 

Concentration 
(µg/m3) 

Ending Mean 
PM2.5 

Concentration 
(µg/m3) 

Study Results 

Pope et al. (2009) 
211 U.S. 
counties 

1979-1983 
compared to 
1999-2000 

20.6 14.1 

Statistically 
significant 
association 
between declining 
ambient PM2.5 and 
increasing life 
expectancy  

Correia et al. 
(2013) 

545 U.S. 
counties 

2000 
compared to 

2007 
13.2 11.6 

Statistically 
significant 
association 
between declining 
ambient PM2.5 and 
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increasing life 
expectancy 

Berhane et al. 
(2016) 

4,602 children 
in 8 California 
communities 

1992-2000; 
1995-2003; 
2002-2011 

20.5 14.4 

Statistically 
significant decrease 
in bronchitic 
symptoms in 
10-year old children 
with and without 
asthma  

Gauderman et al. 
(2015) 

2,120 children 
in 5 California 
communities 

1994-1997; 
1997-2000; 
2007-2010 

21.3-31.5 11.9-17.8 

Statistically 
significant 
improvements in 4-
year growth of lung 
function   

Wyatt et al., 2020b 
 

2132 counties 
in the U.S. 
(population 
≥20,000) 

1990-2010 NR NR 

The annual change 
in cardiovascular 
mortality rate 
ranged from 6.5-7.6  
fewer deaths/year 
(per 100,000 
person-years) per 1 
µg/m3 decrease in 
PM2.5 over time.   

Bennett et al., 
2019 
 

U.S. 
Nationwide 
and 1339 

U.S. counties 

1999-2015 
13.6 (Pop-

weighted mean) 

8.0 (Population-
weighted mean; 
Mean range in 
counties: 2.8-

13.2) 

Reductions in PM2.5 
since 1999 have 
increased life 
expectancy in men 
and women in all 
but 14 counties 
where PM2.5 
increased slightly 

Corrigan et al., 
2018 
 

619 U.S. 
counties 

2000-2010 2000-2004: 12.0 2005-2010: 10.8 

Fewer CV deaths 
per year for each 1 
µg/m3 decrease in 
PM2.5.  

Henneman et al., 
2019 
 

Multiple U.S. 
states 

2005-2012 2005: 10.0 2012: 7.2 

Reduced exposure 
to total PM2.5 and 
coal emissions led 
to reduced rates 
total mortality and 
CVD HA. 

Sanders et al., 
2020 

600-700 U.S. 
counties 

2000-2013 

Before 2006: 
Non-attainment: 

15.3 and 
Attainment: 11.0 

After 2006: 
Non-attainment: 

12.0 
Attainment: 9.3 

By 2005 PM2.5 
designation status 
(attainment or non-
attainment), PM2.5 
levels and 
corresponding 
mortality rates  

Fan and Wang, 
2020 

Eastern US 1999-2013 NR NR 
Fewer CVD deaths 
per year for each 1 
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µg/m3 reduction in 
annual PM2.5 
concentrations 

Peterson et al., 
2020 
 

2132 counties 1990-2010 NR NR 

Fewer CVD deaths 
for each 1 µg/m3 
reduction in annual 
PM2.5 
concentrations 

 1 

 2 

The accountability studies assessed in the 2019 ISA and draft ISA Supplement provide 3 

support for the conclusion that public health benefits are associated with decreases in ambient 4 

PM2.5 concentrations. In particular, we note the following key observations from these studies: 5 

 6 

• Of the new studies evaluated in the 2019 ISA and draft ISA Supplement, Corrigan et al. 7 

(2018), Henneman et al. (2019) and Sanders et al. (2020) present analyses with starting 8 

concentrations below 12.0 µg/m3. 9 

- Henneman et al. (2019) explored the changes in modeled PM2.5 concentrations 10 

following the retirement of coal fired power plants in the U.S., and found that 11 

reductions from mean annual PM2.5 concentrations of 10.0 µg/m3 in 2005 to 12 

mean annual PM2.5 concentrations of 7.2 µg/m3 in 2012 from coal-fueled 13 

power plants resulted in corresponding reductions in the number of 14 

cardiovascular-related hospital admissions and total mortality in those aged 65 15 

and older. 16 

- Corrigan et al. (2018) examined whether there was a change in the 17 

cardiovascular mortality rate before (2000-2004) and after (2005-2010) 18 

implementation of the first annual PM2.5 NAAQS implementation based on 19 

mortality data from the National Center for Health Statistics. They reported 20 

1.10 (95% CI: 0.37, 1.82) fewer cardiovascular deaths per year per 100,000 21 

people for each 1 μg/m3 reduction in annual PM2.5 concentrations. When 22 

comparing whether counties met the annual PM2.5 standard, there were 1.96 23 

(95% CI: 0.77, 3.15) fewer cardiovascular deaths for each 1 μg/m3 reduction 24 

in annual PM2.5 concentrations between the two periods for attainment 25 

counties, whereas for non-attainment counties, there were 0.59 (95% CI: 26 

−0.54, 1.71) fewer cardiovascular deaths between the two periods. 27 

- Sanders et al. (2020) examined whether policy actions (i.e., the first annual 28 

PM2.5 NAAQS implementation rule in 2005 for the 1997 annual PM2.5 29 

standard with a 3-year annual average of 15 μg/m3) reduced PM2.5 30 

concentrations and mortality rates in Medicare beneficiaries between 2000-31 

2013. They found evidence of changes in associations with mortality (a 32 

decreased mortality rate of ~ 0.5 per 1,000 in attainment and non-attainment 33 

areas) due to changes in annual PM2.5 concentrations in both attainment and 34 

non-attainment areas, which had starting concentrations below 12.0 µg/m3 35 

following implementation of the annual PM2.5 NAAQS in 2005. In addition, 36 

following implementation of the annual PM2.5 NAAQS, annual PM2.5 37 
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concentrations decreased by 1.59 μg/m3 (95% CI: 1.39, 1.80) which 1 

corresponded to a reduction in mortality rates among individuals 65 years and 2 

older (0.93% [95% CI: 0.10%, 1.77%]) in non-attainment counties relative to 3 

attainment counties. 4 

• Bennett et al. (2019) reports increases in life expectancy in all but 14 counties (1325 of 1339 5 

counties) that have exhibited reductions in PM2.5 concentrations from 1999 to 2015.   6 

• While Fan and Wang (2020), Peterson et al. (2020), and Wyatt et al. (2020a) do not report 7 

starting and ending concentrations, these studies lend support to the conclusions that 8 

reductions in PM2.5 concentrations lead to public health improvements, including reductions 9 

in cardiovascular mortality. 10 

The information in Table 3-10, Table 3-11, and Table 3-12 provide additional support to 11 

inform the relationship between long- and short-term PM2.5 exposure and total mortality. 12 

Analyses that are restricted only to concentrations at or below the levels of the current primary 13 

PM2.5 standards find positive and significant associations with exposure to PM2.5 and health 14 

outcomes. These restricted analyses often report greater effect estimates compared to effect 15 

estimates in the main analysis that uses the full distribution of PM2.5 concentrations. Studies that 16 

use causal modeling methods to assess the relationship between PM2.5
 and health outcomes 17 

provide additional support for the associations reported in other epidemiologic studies. Finally, 18 

new studies assessed in the draft ISA Supplement evaluate the relationship between declines in 19 

ambient PM2.5 concentrations over time and the potential for improvements in public health, and 20 

support the conclusion in the 2020 PA; improvements in air quality are associated with 21 

improvements in public health. Some of these new studies have lower starting concentrations 22 

than similar studies included in the 2019 ISA.   23 

3.3.4 Uncertainties in the Health Effects Evidence 24 

• To what extent have important uncertainties identified in prior reviews been 25 

reduced and/or have additional uncertainties emerged? 26 

We have not identified any new uncertainties in the evidence since the 2020 review. 27 

However, we continue to recognize uncertainties that persist from the previous reviews. This 28 

array of important areas of uncertainty related to the current health effects evidence, including 29 

that assessed in the 2019 ISA and the draft ISA Supplement, is summarized below. 30 

Although the epidemiologic studies clearly demonstrate associations between long- and 31 

short-term PM2.5 exposures and health outcomes, as in previous reviews, we continue to 32 

recognize several uncertainties and limitations in the health effects evidence remain. 33 

Epidemiologic studies evaluating short-term PM2.5exposure and health effects have reported 34 

heterogeneity in associations between cities and geographic regions within the U.S. 35 

Heterogeneity in the associations observed across epidemiologic studies may be due in part to 36 

exposure error related to measurement-related issues, the use of central fixed-site monitors to 37 
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represent population exposure to PM2.5, and our limited understanding of factors that could be 1 

due to a number of factors including exposure error related to measurement-related issues, 2 

variability in PM2.5 composition regionally, and factors that result in differential exposures (e.g., 3 

topography, the built environment, housing characteristics, personal activity patterns). 4 

Heterogeneity is expected when the methods or the underlying distribution of covariates vary 5 

across studies (U.S. EPA, 2019, p. 6-221). Studies assessed in the 2019 ISA and draft ISA 6 

Supplement have advanced the state of exposure science by presenting innovative methodologies 7 

to estimate PM exposure, detailing new and existing measurement and modeling methods, and 8 

further informing our understanding of the influence of exposure measurement error due to 9 

exposure estimation methods on the associations between PM2.5 and health effects reported in 10 

epidemiologic studies (U.S. EPA, 2019, section 1.2.2; U.S. EPA, 2021a). Data from PM2.5 11 

monitors continue to be commonly used in health studies as a surrogate for PM2.5 exposure, and 12 

often provide a reasonable representation of exposures throughout a study area (U.S. EPA, 2019, 13 

section 3.4.2.2; U.S. EPA, 2021a, section 3.2.2.2.2). However, an increasing number of studies 14 

employ hybrid modeling methods to estimate PM2.5 exposure using data from several sources, 15 

often including satellites and models, in addition to ground-based monitors. These hybrid models 16 

typically have good cross-validation, especially for PM2.5, and have the potential to reduce 17 

exposure measurement error and uncertainty in the health effect estimates from epidemiologic 18 

models of long-term exposure (U.S. EPA, 2019, section 3.5; U.S. EPA, 2021a, section 2.3.3). 19 

While studies using hybrid modeling methods have demonstrated reduced exposure 20 

measurement error and uncertainty in the health effect estimates, these studies use a variety of 21 

approaches to estimate PM2.5 concentrations and to assign exposure to assess the association 22 

between health outcomes and PM2.5 exposure. This variability in methodology has inherent 23 

limitations and uncertainties, as described in more detail in section 2.3.3.1.5, and the 24 

performance of the modeling approaches depends on the availability of monitoring data which 25 

varies by location. Factors likely contributing to poorer model performance often coincide with 26 

relatively low ambient PM2.5 concentrations, in areas where predicted exposures are at a greater 27 

distance to monitors, and under conditions where the reliability and availability of key datasets 28 

(e.g., air quality modeling) are limited. Thus, uncertainty in hybrid model predictions becomes 29 

an increasingly important consideration as lower predicted concentrations are considered. 30 

Regardless of whether a study uses monitoring data or a hybrid modeling approach when 31 

estimating PM2.5 exposures, one key limitation that persists is associated with the interpretation 32 

of the study-reported mean PM2.5 concentrations and how they compare to design values, the 33 
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metric that describe the air quality status of a given area relative to the NAAQS.34 As discussed 1 

above, the overall mean PM2.5 concentrations reported by key epidemiologic studies reflect 2 

averaging of short- or long-term PM2.5 exposure estimates across location (i.e., across multiple 3 

monitors or across modeled grid cells) and over time (i.e., over several years). For monitor-based 4 

studies, the comparison is somewhat more straightforward than for studies that use hybrid 5 

modeling methods, as the monitors used to estimate exposure in the epidemiologic studies are 6 

generally the same monitors that are used to calculate design values for a given area. It is 7 

expected that areas meeting a PM2.5 standard with a particular level would be expected to have 8 

average PM2.5 concentrations (i.e., averaged across space and over time in the area) somewhat 9 

below that standard level. Analyses of recent air quality in U.S. CBSAs indicate that maximum 10 

annual PM2.5 design values for a given three-year period are often 10% to 20% higher than 11 

average monitored concentrations (i.e., averaged across multiple monitors in the same CBSA 12 

(U.S. EPA, 2020, Appendix B, section B.7). The difference between the maximum annual design 13 

value and average concentration in an area can be smaller or larger than this range, likely 14 

depending on factors such as the number of monitors, monitor siting characteristics, and the 15 

distribution of ambient PM2.5 concentrations. For studies that use hybrid modeling methods to 16 

estimate PM2.5 concentrations, the comparison between study-reported mean PM2.5 17 

concentrations and design values is more complicated given the variability in the modeling 18 

methods, temporal scales (i.e., daily versus annual), and spatial scales (i.e., nationwide versus 19 

urban) across studies. A recent comparison between two hybrid modeling surfaces explored the 20 

impact of these factors on the resulting mean PM2.5 concentrations and provided additional 21 

information about the relationship between mean concentrations from studies using hybrid 22 

modeling methods and design values (see section 2.3.3.1.4). However, the results of those 23 

analyses only reflect two surfaces and two types of approaches, so uncertainty remains in 24 

understanding the relationship between estimated modeled PM2.5 concentrations and design 25 

values more broadly across hybrid modeling studies. Moreover, this analysis was completed 26 

using two hybrid modeling methods that estimate PM2.5 concentrations in the U.S., thus an 27 

additional uncertainty includes understanding the relationship between modeled PM2.5 28 

concentrations and design values reported in Canada.  29 

In addition, where PM2.5 and other pollutants (e.g., ozone, nitrogen dioxide, and carbon 30 

monoxide) are correlated, it can be difficult to distinguish whether attenuation of effects in some 31 

studies results from copollutant confounding or collinearity with other pollutants in the ambient 32 

mixture (U.S. EPA, 2019, section 1.5.1; U.S. EPA, 2021a, section 2.2.1). Studies evaluated in 33 

 
34 For the annual PM2.5 standard, design values are calculated as the annual arithmetic mean PM2.5 concentration, 

averaged over 3 years. For the 24-hour standard, design values are calculated as the 98th percentile of the annual 

distribution of 24-hour PM2.5 concentrations, averaged over three years (Appendix N of 40 CFR Part 50). 
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the 2019 ISA and draft ISA Supplement further examined the potential confounding effects of 1 

both gaseous and particulate copollutants on the relationship between long- and short-term PM2.5 2 

exposure and health effects. The studies continue to provide evidence indicating that associations 3 

with PM2.5 are relatively unchanged in copollutants models (U.S. EPA, 2019, section 1.5.1; U.S. 4 

EPA, 2021a, section 2.2.1). Another area of uncertainty is associated with other potential 5 

confounders, beyond copollutants. Some studies have expanded the examination of potential 6 

confounders to not only include copollutants, but also systematic evaluations of the potential 7 

impact of inadequate control from long-term temporal trends and weather (U.S. EPA, 2019, 8 

section 11.1.5.1). Analyses examining these covariates further confirm that the relationship 9 

between PM2.5 exposure and mortality is unlikely to be biased by these factors. Other studies 10 

have explored the use of causal modeling statistical techniques to reduce uncertainties related to 11 

potential confounding that can further inform the causality determination for long-term and 12 

short-term PM2.5 and mortality and cardiovascular effects (U.S. EPA, 2019, section 11.2.2.4, and 13 

U.S. EPA 2021, sections 3.1.1.3, 3.1.2.3, 3.2.1.2, and 3.2.2.3). These studies indicate that bias 14 

from unmeasured confounders can occur in either direction, although controlling for these 15 

confounders did not result in the elimination of the association, but instead provided additional 16 

support for associations between long-term PM2.5 exposure and mortality when accounting for 17 

additional confounders (U.S. EPA, 2021a, section 3.2.2.2.6). 18 

Another important limitation associated with the evidence is that, while epidemiologic 19 

studies indicate associations between PM2.5 and health effects, they do not identify particular 20 

PM2.5 exposures that cause effects. Rather, health effects can occur over the entire distribution of 21 

ambient PM2.5 concentrations evaluated, and epidemiologic studies do not identify a population-22 

level threshold below which it can be concluded with confidence that PM2.5-related effects do not 23 

occur. Overall, evidence assessed in the 2019 ISA and draft ISA Supplement continues to 24 

indicate a linear, no-threshold concentration-response relationship for long- and short-term PM2.5 25 

exposure and all-cause or cause specific mortality. There is less certainty in the shape of the 26 

concentration-response curve at mean annual PM2.5 concentrations generally below 8 µg/m3, 27 

although some studies characterize the concentration-response function with certainty in the 28 

linear relationship below 8 µg/m3 and down to as low as 5 µg/m3 (U.S. EPA, 2019, section 29 

11.2.4; U.S. EPA, 2021a, section 2.2.3.2). 30 

3.4 RISK INFORMATION 31 

To inform conclusions regarding the primary PM2.5 standards that are “requisite” to 32 

protect public health (i.e., neither more nor less stringent than necessary; section 1.2), it is 33 

important to consider the health risks that would be allowed under those standards. For the 34 

current standards, this means evaluating PM2.5-related health risks in locations with three-year 35 
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annual PM2.5 design values of 12.0 g/m3 and/or three-year 24-hour design values of 35 g/m3 1 

(i.e., neither above nor below the levels of the current standards). Therefore, in addition to our 2 

evaluation of PM2.5 concentrations in locations of key epidemiologic studies (which are based on 3 

existing air quality; section 3.3.3.2), we assess PM2.5-attributable risk associated with either:  4 

• PM2.5 air quality that has been adjusted to simulate “just meeting” the current standards (i.e., 5 

design values equal to 12.0 g/m3 and/or 35 g/m3) or lower alternative annual and/or 24-6 

hour standards. 7 

• The change in risk associated with moving from PM2.5 air quality “just meeting” the current 8 

standards to “just meeting” alternative annual and/or 24-hour standards. 9 

These risk estimates, when considered alongside analyses of the evidence discussed in 10 

section 3.3.3, are meant to inform conclusions on the primary standards that would be requisite 11 

to protect the public health against long- and short-term PM2.5 exposures. Our consideration of 12 

estimated risks focuses on addressing the following policy-relevant questions:  13 

• What are the estimated PM2.5-associated health risks for air quality just meeting the 14 

current primary PM2.5 standards?  15 

• To what extent are risks estimated to decline when air quality is adjusted to just 16 

meet potential alternative standards with lower levels?  17 

• What are the uncertainties and limitations in these risk estimates?  18 

 The sections below summarize our approach to estimating risks (section 3.4.1) and the 19 

results of the risk assessment (section 3.4.1.8). Additional detail on the risk assessment is 20 

provided in Appendix C.  21 

3.4.1 Risk Assessment Overview 22 

Risk assessments combine data from multiple sources and involve various assumptions 23 

and uncertainties. Below we summarize key aspects of the risk modeling approach. Input data for 24 

these analyses includes concentration-response functions from epidemiologic studies (section 25 

3.4.1.1) for each health outcome (section 3.4.1.2) and ambient annual or 24-hour PM2.5 26 

concentrations (sections 3.4.1.3 and 3.4.1.4) for the study areas (section 3.4.1.5) utilized in the 27 

risk assessment. Quantitative and qualitative methods used to characterize variability and 28 

uncertainty in the risk estimates are discussed in section 3.4.1.7.  29 

Information on other data inputs, such as baseline health incidence rate and population 30 

demographic information, can be found in the Estimating PM2.5 and Ozone-Attributable Health 31 

Benefits Technical Support Document (TSD) (U.S. EPA, 2021b; associated with the 2021 32 

Revised Cross-State Air Pollution Rule Update (86 FR 23054, April 30, 2021). Additional detail 33 

on the risk assessment approach is provided in Appendix C (section C.1).  34 
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 Concentration-Response Functions  1 

Concentration-response functions used in this risk assessment are from large, multicity 2 

U.S. epidemiologic studies that evaluate the relationship between PM2.5 exposures and mortality. 3 

Specific epidemiologic studies and concentration-response functions used here to estimate risk 4 

were identified using criteria that take into account factors such as study design, geographic 5 

coverage, demographic populations, and health endpoints. Information about the studies used in 6 

this risk assessment is summarized in Table 3-13 and additional detail regarding the selection of 7 

epidemiologic studies and specification of concentration-response functions can be found in 8 

Appendix C (section C.1.1) and the Estimating PM2.5 and Ozone-Attributable Health Benefits 9 

TSD (U.S. EPA, 2021b).  10 

 Health Outcomes  11 

Consistent with the overall approach for this reconsideration, this risk assessment has a 12 

targeted scope that focuses on all-cause or nonaccidental mortality associated with long-term and 13 

short-term PM2.5 exposures (Table 3-13 and Appendix C, section C.1.1).35 Evidence for these 14 

outcomes supports the determination of a “causal relationship” in the 2019 ISA (U.S. EPA, 15 

2019).36  16 

Table 3-13. Epidemiologic studies used to estimate PM2.5-associated risk. 17 

Epidemiology Study Study Populationa 
Age Range 

(years) 
Mortality Categories Covered 

Long-term mortality studies  

Di et al., 2017b Medicare 65+ All-cause 

Turner et al., 2016 ACS 30+ All-cause 

Short-term mortality  

Baxter et al., 2017 77 cities All ages Non-accidental 

Ito et al., 2013 NPACT All ages All cause 

Zanobetti et al., 2014 121 communities 65+ All cause 
aACS (American Cancer Survey), NPACT (National Particle Components Toxicity). See Appendix C Table C-1 for 
additional study details. 

 18 

 
35 Epidemiologic studies tend to attribute risk to either long- or short-term PM2.5 exposures, but rarely to both, 

leading to uncertainties in the relationship between health effects from long- and short-term exposures. When 

biologically plausible pathways leading to health effects are similar, estimates of impacts from long-term 

exposures may include impacts due to short-term exposures and vice-versa. However, if pathways diverge, 

impacts due to long- and short-term exposures may be the sum, or even greater than the sum, of the two exposure 

durations. 

36 While the 2019 ISA also found that evidence supports the determination of a “causal relationship” between long- 

and short-term exposures and cardiovascular effects, cardiovascular mortality was not included as a health 

outcome as it will be captured in the estimates of all-cause mortality. 
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 Air Quality Scenarios 1 

We first estimate health risks associated with air quality adjusted to simulate “just 2 

meeting” the current primary PM2.5 standards (i.e., the annual standard with its level of 12.0 3 

µg/m3 and the 24-hour standard with its level of 35 µg/m3). We then use air quality modeling to 4 

simulate air quality just meeting an alternative standard with a level of 10.0 µg/m3 (annual) and 5 

30 µg/m3 (24-hour). In addition to the model-based approach, for the subset of 30 areas 6 

controlled by the annual standard we also employ linear interpolation and extrapolation to 7 

simulate just meeting alternative annual standards with levels of 11.0 (interpolated between 12.0 8 

and 10.0 g/m3), 9.0 g/m3, and 8.0 g/m3 (both extrapolated from 12.0 and 10.0 g/m3) .37 9 

Figure 3-15 provides an example of the interpolation and extrapolation calculations performed 10 

for a single grid cell. In this example grid cell, modeled annual PM2.5 concentrations are 11.23 11 

when the corresponding design value monitor just meets the current annual standard and 9.87 12 

when the corresponding design value monitor just meets the alternative annual standard of 10.0 13 

g/m3. The interpolated and extrapolated values for the example grid cells are provided in green 14 

and blue text, respectively.38 15 

 16 
Figure 3-15. Illustration of approach to adjusting air quality to simulate just meeting 17 

annual standards with levels of 11.0, 9.0, and 8.0 µg/m3. 18 

 19 

 
37 Modeled air quality surfaces are simulated to just meet standards at the design value monitors and not necessarily 

in all grid cells. As the extrapolated alternative annual standard decreases, the proportion of grid cells at or above 

the modeled standard increases. Appendix Figure C-31 provides the full distribution of grid cell concentrations at 

each modeled and extrapolated standard.  

38 Modeling to “just meet” annual standards involves adjusting the design value monitor to the standard, and not 

necessarily all grid cells modeled. Therefore, it is possible to have estimated PM2.5 concentrations above the 

annual standard modeled in individual grid cells. 
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There is greater uncertainty regarding whether a revised 24-hour standard (i.e., with a 1 

lower level) is needed to further limit “peak” PM2.5 concentration exposure39 and whether a 2 

lower 24-hour standard level would most effectively reduce PM2.5-associated health risks 3 

associated with “typical” daily exposures. However, we do estimate health risks associated with 4 

air quality adjusted to meet a revised 24-hour standard with a level of 30 µg/m3, in conjunction 5 

with estimating the health risks associated with meeting a revised annual standard with a level of 6 

10 µg/m3.40,41  7 

 Model-Based Approaches to Adjusting Air Quality  8 

Air quality modeling was used to develop 12 km gridded PM2.5 concentration fields for 9 

the risk assessment in the 2020 PM PA, and the same air quality simulations used in that 10 

assessment are used here (U.S. EPA, 2020). A PM2.5 concentration field for 2015 was developed 11 

using a Bayesian statistical model (Downscaler) that calibrates chemical transport model (CTM) 12 

predictions of PM2.5 to surface measurements (section 2.3.3). The 2015 PM2.5 concentration field 13 

was then adjusted using response factors developed from CTM modeling with emission changes 14 

relative to 2015. The modeling approach applies realistic spatial response patterns from CTM 15 

modeling to a concentration field, similar to those used in a number of recent epidemiologic 16 

studies, to characterize PM2.5 concentration fields at 12 km resolution for study areas. The 17 

adjusted concentration fields correspond to: 18 

(1) Just meeting the existing annual and 24-hour standards of 12.0 µg/m3 and 35 µg/m3, and  19 

(2) Just meeting potential alternative annual and 24-hour standards of 10.0 µg/m3 and 30 µg/m3.  20 

The adjustments to simulate just meeting the current standards and alternative standards 21 

are approximations of these air quality scenarios. In reality, changes in PM2.5 in an area will 22 

depend on what emissions changes occur and the concentration gradients of PM2.5 will vary 23 

across an area accordingly. In this risk assessment, two different adjustment approaches were 24 

applied to provide two outcomes that could represent potential bounding scenarios of PM2.5 25 

 
39 As noted in section 3.3.2.1, while controlled human exposure studies provided consistent evidence for 

cardiovascular effects following PM2.5 exposures for less than 24 hours (i.e., < 30 minutes to 5 hours), exposure 

concentrations in the studies were well-above the ambient concentrations typically measured in locations meeting 

the existing standards. 

40 The simulated air quality surface, which just meets both an alternative annual standard of 10.0 µg/m3 and 

alternative 24-hour standard of 30 µg/m3, was subset into areas that are controlled by either the alternative annual 

standard of 10.0 µg/m3 or 24-hour standard of 30 µg/m3 to assess risk associated with just meeting each 

alternative standard. 

41 We also estimate population risks for recent (i.e., unadjusted) ambient PM2.5 concentrations (Appendix C).  
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concentrations changes across the study area. The two adjustment approaches used to guide the 1 

generation of these modeled surfaces were:  2 

• Reductions in primary PM2.5 (Pri-PM): This modeling approach simulates air quality 3 

scenarios of interest by preferentially adjusting direct/primary PM emissions. As such, the 4 

changes in PM2.5 tend to be more localized near the direct emissions sources of PM.42  5 

• Reductions in secondary PM2.5 (Sec-PM): This modeling approach simulates air quality 6 

scenarios of interest by preferentially adjusting SO2 and NOX precursor emissions to simulate 7 

changes in secondary PM2.5. In this case, the reductions in PM2.5 tend to be more evenly 8 

spread across a study area.43  9 

The air quality surfaces generated using these two approaches are not additive. Rather, 10 

they should be viewed as reflecting two different broad strategies for adjusting ambient PM2.5 11 

concentrations. 12 

 Study Area Selection  13 

The following factors were considered most important when selecting U.S. study areas 14 

for inclusion in the risk assessment: 15 

• Available Ambient Monitors: We have greater confidence in estimating and simulating air 16 

quality concentrations over areas with relatively dense ambient monitoring networks, as the 17 

modeled air quality surfaces can be compared with monitored concentrations (additional 18 

detail available in Appendix C, section C.1.4).  19 

• Geographical Diversity: Risk assessments including areas that represent a variety of regions 20 

across the U.S. and a substantial portion of the U.S. population can be more representative.  21 

• Ambient PM2.5 Air Quality Concentrations: Based on 2014-2016 design values, only 16 22 

CBSAs44, also called urban study areas here, exceeded either or both the current annual and 23 

24-hour PM2.5 NAAQS. To include a larger portion of the U.S. in this risk assessment, we 24 

also identified CBSAs with ambient PM2.5 concentrations below, but near, the current annual 25 

and/or 24-hour PM2.5 NAAQS. Inclusion of such areas in the risk assessment necessitates an 26 

upward adjustment to PM2.5 air quality concentrations in order to simulate just meeting the 27 

current standards. Given uncertainty in how such increases could potentially occur, we select 28 

areas requiring a relatively modest upward adjustment (i.e., no more than 2.0 g/m3 for the 29 

annual standard and 5 g/m3 for the 24-hour standard, based on the 2014-2016 design value 30 

period). Areas that appeared to be strongly influenced by exceptional events were also 31 

excluded (section C.1.4). Using these criteria, 47 urban study areas were identified, which 32 

 
42 In locations for which air quality scenarios cannot be simulated by adjusting modeled directly emitted PM alone, 

modeled SO2 and NOX precursor emissions are additionally adjusted to simulate changes in secondarily formed 

PM2.5 (Appendix C, section C.1.4).  

43 In locations for which air quality scenarios cannot be simulated by adjusting modeled precursor emissions alone, a 

proportional adjustment of air quality is subsequently applied. This behavior occurs in areas where emission 

changes in addition to NOx and SO2 would be needed to adjust design values to just meet the standard. 

(Appendix C, Figure C-19). 

44 CBSAs (core-based statistical areas) can include one or more counties. Each CBSA selected included at least one 

monitor with valid design values and several CBSAs had more than 10 monitors. See Table C-3 in Appendix C. 
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include nearly 60 million people aged 30-99, or approximately 30% of the U.S population in 1 

this age range (Figure 3-16 and Appendix C, section C.1.3). Of the 47 study areas, there were 2 

30 study areas where just meeting the current standards is controlled by the annual 3 

standard,45 11 study areas where just meeting the current standards is controlled by the daily 4 

standard,46 and 6 study areas where the controlling standard differed depending on the air 5 

quality adjustment approach (Figure 3-16).47   6 

 7 
Figure 3-16. Map of 47 urban study areas included in risk modeling.   8 

 9 

 
45 For these areas, the annual standard is the “controlling standard” because when air quality is adjusted to simulate 

just meeting the current or potential alternative annual standards, that air quality also would meet the 24-hour 

standard being evaluated.  

46 For these areas, the 24-hour standard is the controlling standard because when air quality is adjusted to simulate 

just meeting the current or potential alternative 24-hour standards, that air quality also would meet the annual 

standard being evaluated. Some areas classified as being controlled by the 24-hour standard also violate the 

annual standard.  

47 In these 6 areas, the controlling standard depended on the air quality adjustment method used and/or the standard 

scenarios evaluated.  
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 At-Risk Analysis 1 

To inform conclusions regarding the primary PM2.5 standards that are “requisite” to 2 

protect public health (i.e., neither more nor less stringent than necessary; section 1.2) and provide 3 

an adequate margin of safety, it is important to consider the health risks of specific populations 4 

identified as at increased risk (at-risk) that would be allowed under current and alternative 5 

standards, recognizing associated uncertainties (section 3.4.1.8). Our consideration of estimated 6 

risks among potentially at-risk populations focuses on addressing the following policy-relevant 7 

questions:  8 

• How does PM2.5 exposure and risk compare between demographic groups when air 9 

quality just meets the current and potential alternative primary PM2.5 annual 10 

standards?  11 

• To what extent are impacts estimated to change within each demographic group 12 

when air quality is adjusted to just meet potential alternative annual standards with 13 

lower levels? 14 

Assessing PM2.5-attributable risk stratified by the value of another covariate (e.g., race or 15 

ethnicity) can provide insight into population-specific risk. As described in section 3.3.2, the 16 

2019 ISA and draft ISA Supplement cite extensive evidence indicating that “both the general 17 

population as well as specific populations and lifestages are at-risk for PM2.5-related health 18 

effects” (U.S. EPA, 2019, p. 12-1; U.S. EPA, 2021a). Factors that may contribute to increased 19 

risk of PM2.5-related health effects include lifestage (children and older adults), pre-existing 20 

diseases (cardiovascular disease and respiratory disease), race/ethnicity, and socioeconomic 21 

status. In considering the strength of the available scientific evidence and recognizing that this 22 

risk assessment is focused on the health endpoint of mortality, we assess long-term PM2.5-23 

attributable exposure and mortality risk, stratified by racial/ethnic demographics. Specifically, 24 

we evaluate exposure and risk, stratified by race-specific concentration-response functions when 25 

available, of White, Black, Asian, Native American, Non-Hispanic, and Hispanic individuals. 26 

Concentration-response functions used in this at-risk analysis are from large, multicity 27 

U.S. epidemiologic studies that evaluate the relationship between PM2.5 exposures and mortality. 28 

Eight epidemiologic long-term exposure studies of PM2.5 exposure and all-cause, nonaccidental, 29 

or total mortality in nonwhite populations were identified in the 2019  ISA and draft ISA 30 

Supplement (U.S. EPA, 2019; U.S. EPA, 2021a). Associations from those eight studies relating 31 

long-term PM2.5 exposure and mortality outcomes in nonwhite populations are available in 32 

Figure 3-17. 33 

Specific epidemiologic studies and concentration-response functions used here to 34 

estimate risk were identified using criteria that take into account factors such as study design, 35 

geographic coverage, demographic populations, and health endpoints. Of the studies available 36 
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from the 2019 ISA, Di et al., 2017b was identified as best characterizing potentially at-risk non-1 

White populations across the U.S.48 Additional information on input parameters used in the at-2 

risk analysis can be found in Appendix C, section C.3. 3 

At-risk estimates presented in section 3.4.2.4, when considered alongside estimates of 4 

risk across all populations in the 47 study areas (sections 3.4.2.1, 3.4.2.2, and 3.4.2.3) are meant 5 

to inform conclusions on the primary annual PM2.5 standards that would be requisite to protect 6 

the public health of nonwhite populations potentially at increased risk of long-term PM2.5-related 7 

mortality effects.  8 

 9 

 10 

Figure 3-17. Available epidemiologic associations between long-term PM2.5 exposure and 11 

mortality outcomes in demographic populations.49 12 

 Characterization of Variability and Uncertainty in the Risk Assessment  13 

Both quantitative and qualitative methods have been used to characterize variability and 14 

uncertainty in the risk estimates (Appendix C, section C.3), including: 15 

 
48 Additional details on concentration-response function identification can be found in Appendix C, section C.3.2. Di 

et al., 2017b was identified as best characterizing potentially at-risk non-White populations across the U.S. using 

study and risk estimate criteria described in the Estimating PM2.5 and Ozone-Attributable Health Benefits TSD 

(U.S. EPA, 2021b). Additional information on all available at-risk epidemiologic studies is available in Appendix 

C, section C.3.2. 

49 All studies estimated median or average long-term PM2.5 exposures between 10-12 µg/m3, other than Lipfert and 

Wyzga (2020), which reported an approximate average exposure concentration of 14 µg/m3. Kioumourtzoglou 

et al., 2016 reported associations in cities ranking at or about the 75th percentile proportionally with regards to 

demographic population only. VA, Veterans Affairs; NHIS, National Health Insurance Service. 
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• 95th percentile confidence intervals: We use an iterative Monte Carlo simulation that samples 1 

from the standard error associated with each epidemiologic concentration-response function. 2 

We present the resulting 2.5th and 97.5th percentile values from this distribution as a 95th 3 

percentile confidence interval around the risk estimate. Monte Carlo methods are a well-4 

established means of characterizing random sampling error associated with concentration-5 

response functions.  6 

• Health endpoint sensitivity analyses: We include multiple concentration-response functions 7 

reflecting epidemiology studies differing in various ways, such as the population (e.g., 8 

geographic locations and demographics), exposure estimation methods (e.g., monitor-based 9 

or hybrid techniques), and potential confounders included in the epidemiologic model (e.g., 10 

ozone).50  11 

• Air quality adjustment sensitivity analyses: We simulate just meeting the current and 12 

alternative standards using two approaches, which represent potential bounding scenarios of 13 

PM2.5 concentration changes across the study areas. The Pri-PM adjustment method 14 

preferentially adjusts direct (i.e., primary, directly-emitted) PM2.5 emissions, whereas the 15 

Sec-PM method preferentially adjusts SO2 and NOX precursor emissions to simulate changes 16 

in secondarily formed PM2.5. 17 

• Qualitative uncertainty assessment: We perform additional qualitative evaluations of the 18 

potential for key sources of uncertainty to impact the magnitude and direction of risk 19 

estimates (Appendix C, section C.3.2).  20 

 Characterization of Variability and Uncertainty in the At-Risk Analysis 21 

While considering exposure and health risks of individual at-risk racial and ethnic 22 

populations can be policy-relevant, these estimates will be more uncertain than similar estimates 23 

from the overall risk assessment (sections 3.4.2.1 and 3.4.2.2). This is due to additional sources 24 

of uncertainty specific to the at-risk analysis, such as using concentration-response functions 25 

derived from smaller epidemiologic sample sizes, being combined with the sources of 26 

uncertainty that apply to the overall risk assessment. The augmentation of existing uncertainness 27 

is exemplified by the exposure estimates in the White populations in the simulated air quality 28 

scenarios. White populations make up a greater proportion of rural areas (~60% vs ~80%, 29 

USDA, 2018), and rural areas tend to have lower ambient PM2.5 concentrations. Therefore, as 30 

these scenarios are restricted to the 47 urban study areas, we expect that the average exposure 31 

estimated in this assessment is an over-estimate of the overall national average exposure in the 32 

White population.  33 

For characterizing risk in at-risk populations, we used air quality fields from the Pri-PM 34 

adjustment case alone, because the Pri-PM air quality adjustments are largely associated with 35 

emission reductions within the study areas, due to the local nature of air quality impacts from 36 

 
50 Additional information on long-term epidemiologic study identification can be found in the Estimating PM2.5 and 

Ozone-Attributable Health Benefits TSD (U.S. EPA, 2021b). Specifically, additional information on the identified 

long-term epidemiologic studies can be found in the Study Information Table (U.S. EPA, 2021b). 
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primary PM sources51. In contrast, Sec-PM air quality adjustments may be strongly associated 1 

with sources located outside of the study areas. Since the at-risk analyses are performed for 2 

population groups within the 47 areas alone, the Pri-PM adjustment case (in which air quality 3 

adjustments are primarily associated with emission sources within the 47 areas) is most 4 

appropriate for this at-risk analysis. However, limiting the analysis to a single simulation 5 

decreases the potential representativeness of simulated PM2.5 concentrations changes across the 6 

study area. 7 

3.4.2 Results of the Risk Assessment  8 

This section presents estimates of PM2.5-associated mortality risks for populations in the 9 

identified urban study areas (additional results available in Appendix C, section C.2). Results are 10 

shown as point estimates with 95th percentile confidence intervals for air quality adjusted to 11 

simulate just meeting the current, and potential alternative, standards. We provide tables that 12 

include the total mortality risk associated with air quality just meeting the current or potential 13 

alternative standards, the change in mortality risk (also called delta risk) when moving from air 14 

quality just meeting the current standard to just meeting potential alternative standards, and the 15 

percent risk reduction when moving from air quality just meeting the current standard to just 16 

meeting potential alternative standards.52 We also quantify the percent of baseline incidence, 17 

which estimates the percent of total incidence that is associated with ambient PM2.5 exposure 18 

(e.g., percent of mortality attributable to PM2.5 exposure out of all deaths in the specified 19 

population).53 In addition to tables, we provide figures to illustrate how risks are distributed 20 

across annual average ambient PM25 concentrations. Figures present results for all-cause 21 

mortality associated with long-term PM2.5 exposures, based on a key epidemiologic study by 22 

(Turner et al., 2016). Additional results are presented in Appendix C (section C.2).   23 

 The sections below present risk estimates for the full set of 47 urban study areas (section 24 

3.4.2.1), the subset of 30 areas for which the annual PM2.5 standard is controlling (section 25 

3.4.2.2), and the subset of 11 areas for which the 24-hour PM2.5 standard is controlling (section 26 

3.4.2.3). Risk estimates from populations potentially at increased risk of PM-related effects are 27 

 
51 The Pri-PM and Sec-PM adjustment approaches are described in section 3.4.1.4. 

52 Total risk refers to risk associated with the full increment of exposure associated with each air quality scenario. 

Both delta risk and percent risk reduction reflect the change in risk in going from the current standard to a 

specific alternative standard, with delta risk referring to the change in incidence (i.e., premature PM2.5-attributable 

mortality) and percent risk reduction referring to the percent change when comparing risk under the current 

standard to risk under simulation of an alternative standard. Percent risk reduction is calculated by dividing the 

delta risk by the total risk. 

53 In other words, the percent of the health effect attributable to PM2.5 exposure. For example, risk results estimate 

that 6-8% of all-cause mortality in 2015 was associated with PM2.5 exposure (Table 3-14). 
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available in section 3.4.2.4. Uncertainties in the risk assessment are summarized in section 1 

3.4.2.5. 2 

 Summary of Risk Estimates for the Full Set of 47 Urban Study Areas 3 

Risk estimates for the 47 urban study areas are presented in Table 3-14 and Table 3-15. 4 

Table 3-14 presents all-cause and non-accidental mortality risk estimates attributable to PM2.5 5 

when just meeting the current primary PM2.5 standards and just meeting either an alternative 6 

modeled annual standard of 10.0 g/m3 or an alternative modeled 24-hour standard of 30 g/m3. 7 

Table 3-14 also provides the percent of total all-cause mortality attributable to PM2.5 in 2015 8 

estimated by each epidemiologic concentration-response function.  9 

Table 3-15 presents the reduction in estimated risk when moving from air quality 10 

scenarios just meeting the current standard to air quality just meeting alternative standards. Areas 11 

are again subset into those just meeting either an alternative annual standard of 10.0 g/m3 or an 12 

alternative 24-hour standard of 30 g/m3, based on which standard is controlling in that study 13 

area. Smaller reductions estimated for the alternative 24-hour standard reflect the reduced 14 

number of study areas controlled by the 24-hour standard and the lesser population in those 15 

areas.  16 

Key observations for the full set of 47 study areas from Table 3-14 and Table 3-15, which 17 

include approximately 30% of the U.S. population aged 30-99, are as follows:  18 

• Substantially larger risk reductions are associated with lowering the annual standard than 19 

with lowering the 24-hour standard (Table 3-15). Impacts are estimated to decrease by 13-20 

17% when air quality is adjusted to just meet an alternative annual standard with a level of 21 

10.0 g/m3 or by 1-2% when adjusted to just meet an alternative 24-hour standard with a 22 

level of 30 g/m3. This corresponds to up to 7,440 (5,040-9,830) fewer deaths per year 23 

attributable to long-term PM2.5 exposures.54 24 

• Up to 45,100 deaths in 2015 are attributable to long-term PM2.5 exposures associated with air 25 

quality just meeting the current annual and 24-hour PM2.5 standards, with a 95th percentile 26 

confidence interval of 30,800-59,000. This constitutes up to 8% of total baseline mortality in 27 

adults age 30-99 (Table 3-14). 28 

 
54 In most study areas, the risk reductions presented for an annual standard with a level of 10.0 µg/m3 reflect the 

difference between air quality with a maximum three-year annual PM2.5 design value of 12.0 µg/m3 and air 

quality with a maximum three-year annual PM2.5 design value of 10.0 µg/m3. Similarly, in most study areas, the 

risk reduction presented for a 24-hour standard with a level of 30 µg/m3 reflects the difference between air quality 

with a maximum three-year 24-hour PM2.5 design value of 35 µg/m3 and air quality with a maximum three-year 

24-hour PM2.5 design value of 30 µg/m3. However, in a small number of study areas, the “starting concentration” 

for the annual standard are below 12.0 µg/m3 (four study areas: Riverside-San Bernardino-Ontario, CA; Stockton-

Lodi, CA; Bakersfield, CA; and Hanford-Corcoran, CA) or the starting concentration for the 24-hour standard are 

below 35 µg/m3 (two study areas Pittsburgh, PA and South Bend-Mishawaka, IN-MI:). This is because, in these 

areas, the controlling standard for air quality adjusted to just meet the current standards is different from the 

controlling standard for air quality adjusted to simulate just meeting the alternative standards evaluated.  
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• Short-term PM2.5 exposures are estimated to be associated with up to 3,870 (2,570-5,160) 1 

deaths annually. This accounts for between 0.2-0.7% of mortality in adults age 30-99 in 2 

2015.  3 

 4 

Table 3-14. Estimates of PM2.5-associated mortality for air quality adjusted to just meet the 5 

current or alternative standards (47 urban study areas).  6 

 7 

 8 

 9 

Exposure
Study & 

Ages
Simulation Method

Total Mortality 

Under the Current 

Standard (12/35-0)

% of Baseline 

Mortality 

Attributable to the 

Current Standard

Total Mortality 

Under an 

Alternative Annual 

Standard (10-0)

Total Mortality 

Under an 

Alternative 24-Hr 

Standard (30-0)

Pri PM
40,600 

(39,600 to 41,700)
7.4

35,400 

(34,400 to 36,300)

40,100 

(39,100 to 41,200)

Sec PM
41,200 

(40,200 to 42,300)
7.5

34,800 

(33,900 to 35,700)

40,600 

(39,500 to 41,600)

Pri PM
44,400 

(30,300 to 58,200)
6.1

38,600 

(26,300 to 50,700)

43,900 

(30,000 to 57,500)

Sec PM
45,100 

(30,800 to 59,000)
6.2

38,000 

(25,900 to 49,900)

44,400 

(30,300 to 58,200)

Pri PM
2,490 

(982 to 3,990)
0.4

2,160 

(850 to 3,460)

2,460 

(970 to 3,950)

Sec PM
2,530 

(997 to 4,050)
0.4

2,120 

(837 to 3,400)

2,490 

(982 to 3,990)

Pri PM
1,180 

(-15.8 to 2,370)
0.2

1,020 

(-13.7 to 2,050)

1,160 

(-15.6 to 2,340)

Sec PM
1,200 

(-16.0 to 2,400)
0.2

1,000 

(-13.5 to 2,020)

1,180 

(-15.8 to 2,370)

Pri PM
3,810 

(2,530 to 5,080)
0.7

3,300 

(2,190 to 4,400)

3,760 

(2,500 to 5,020)

Sec PM
3,870 

(2,570 to 5,160)
0.7

3,250 

(2,160 to 4,330)

3,810 

(2,530 to 5,070)

Zanobetti

(65-99)

Di

(65-99)

Turner

(30-99)

Long-Term

Baxter

(0-99)

Ito

(0-99)
Short-Term
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Table 3-15. Estimated reduction in PM2.5-associated mortality for alternative annual and 1 

24-hour standards (47 urban study areas).  2 

 3 
 4 

 Summary of Risk Estimates for the 30 Areas Controlled by the Annual 5 

Standard   6 

This section presents the results for the range of alternative annual standard levels  for the 7 

30 urban study areas for which the annual standard is controlling under all air quality scenarios 8 

evaluated.55,56 Table 3-16 presents total all-cause and non-accidental mortality risk estimates 9 

attributable to PM2.5 when just meeting the current standard of 12.0 µg/m3 and just meeting 10 

potential alternative annual standards with levels of 11.0, 10.0, 9.0, and 8.0 µg/m3. It also 11 

provides the percent of baseline risk attributable to PM2.5 when just meeting the current annual 12 

standard. Table 3-17 presents the reduction in estimated mortality incidence and percent of risk 13 

reduction when moving from air quality scenarios just meeting the current annual standard to air 14 

quality just meeting the various alternative annual standards.  15 

After presenting mortality impact results from the various epidemiologic studies in Table 16 

3-16 and Table 3-17, we focus on a single epidemiologic concentration-response function from 17 

 
55 These 30 areas controlled by the annual standard under all scenarios evaluated include a population of 

approximately 48 million adults aged 30-99, which corresponds to about 75% of the population included in the 

full set of 47 areas or approximately 25% of the total U.S. population. 

56 Alternative annual air quality surfaces in addition to the modeled surface just meeting 10.0 µg/m3 were developed 

using interpolation and extrapolation of modeled PM2.5 concentrations (section 3.4.1.4 and Appendix C section 

C.1.4). 

Exposure
Study & 

Ages

Simulation 

Method

Risk Change When 

Moving from the Current 

to an Alternative Annual 

Standard of 10

Risk Change When 

Moving from the Current 

to an Alternative 24-Hr 

Standard of 30

% Risk Reduction When 

Moving from the Current 

to an Alternative Annual 

Standard of 10

Risk Change When 

Moving from the Current 

to an Alternative 24-Hr 

Standard of 30

Pri PM
5,630 

(5,490 to 5,780)

501 

(488 to 514)
13.9 1.2

Sec PM
6,820 

(6,640 to 7,000)

675 

(657 to 692)
16.6 1.6

Pri PM
6,120 

(4,140 to 8,090)

555 

(375 to 734)
13.8 1.2

Sec PM
7,440 

(5,040 to 9,830)

714 

(483 to 943)
16.5 1.6

Pri PM
335 

(132 to 537)

30.2 

(11.9 to 48.4)
13.4 1.2

Sec PM
408 

(160 to 654)

38.7 

(15.2 to 62.1)
16.1 1.5

Pri PM
158 

(-2.12 to 317)

14.4 

(-0.194 to 29.0)
13.4 1.2

Sec PM
192 

(-2.58 to 386)

18.4 

(-0.246 to 36.9)
16.1 1.5

Pri PM
513 

(341 to 684)

45.5 

(30.2 to 60.7)
13.5 1.2

Sec PM
622 

(413 to 830)

61.5 

(40.8 to 82.0)
16.1 1.6

Long-Term

Di

(65-99)

Turner

(30-99)

Short-Term

Baxter

(0-99)

Ito

(0-99)

Zanobetti

(65-99)
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Turner et al. (2016) to provide additional insight into the distribution of health impacts across 1 

long-term ambient PM2.5 concentrations.57 Figure 3-18 presents distributions of total risk 2 

attributable to annual PM2.5 concentration bins of 1 µg/m3 when just meeting the current and 3 

alternative annual standards.58 Figure 3-19 presents distributions as a heat map, again binned in 1 4 

µg/m3increments, associated with moving from just meeting the current standard to just meeting 5 

each alternative annual standard.59 6 

Drawing from the information in Table 3-16, Table 3-17, Figure 3-18, and Figure 3-19 7 

for the subset of 30 study areas (approximately 25% of the U.S. population) in which the annual 8 

standard is controlling, we note the following key observations:   9 

• There is a potential for significant public health impacts in locations just meeting the current 10 

primary PM2.5 standards. The majority of PM2.5-associated deaths fall well-within the range 11 

of long-term average concentrations over which key epidemiologic studies provide strong 12 

support for reported positive and statistically significant PM2.5 health effect associations. 13 

• Compared to the current annual standards, air quality adjusted to meet alternative annual 14 

standards with lower levels is associated with reductions in estimated all-cause mortality 15 

impacts (i.e., 7-9% reduction for an alternative annual level of 11.0 µg/m3, 15-19% reduction 16 

for a level of 10.0 µg/m3, 22-28% reduction for a level of 9.0 µg/m3, and 30-37% reduction 17 

for a level of 8.0 µg/m3) (Table 3-17 and Figure 3-18).  18 

• The magnitude of estimated risk reduction increases as alternative annual standards with 19 

lower levels are simulated, and these estimated risk reductions are associated with lower 20 

ambient PM2.5 concentrations. Specifically, for air quality adjusted to simulate just meeting 21 

an alternative annual standard, the majority of risk reduction occurs in grid cells with 22 

ambient PM2.5 concentrations between the alternative standard and 2 µg/m3 lower (e.g., for 23 

air quality adjusted to simulate just meeting an annual standard with a level of 8.0 µg/m3, the 24 

 
57 The Estimating PM2.5 and Ozone- Attributable Health Benefits TSD details the approach and criteria used to 

identify studies and concentration-response functions from the 2019 ISA used in this risk assessment (U.S. EPA, 

2021b). Briefly, two studies were again identified as best characterizing mortality risk across the U.S., Di et al., 

2017b and Turner et al., 2016. While both studies used sophisticated techniques to relate PM2.5 exposure and all-

cause mortality across large portions of the U.S population, Di et al., 2017b evaluated Medicare beneficiaries 

aged 65+, whereas Turner et al., 2016 included adults ages 30+ from the ACS cohort. The concentration-response 

function identified in the Estimating PM2.5 and Ozone- Attributable Health Benefits TSD (U.S. EPA, 2021b) from 

Turner et al., 2016 was selected for use in this risk assessment due to the broader age range, although it should be 

noted that the concentration-response function from Di et al., 2017b typically generates mortality risk estimates 

within approximately 5% of the Turner et al., 2016 concentration-response function. 

58 Bins correspond to the lower whole number and include up to, but not including the next whole number. For 

example, the bin for 8 µg/m3, includes all risk occurring at PM2.5 concentrations from 8.00 µg/m3 to 8.99 µg/m3. 

Previously this data was presented as a line graph, which can be found in Appendix C, Figure C-30. 

59 As noted above, Figure 3-18 and Figure 3-19 present estimates of all-cause mortality associated with long-term 

PM2.5 exposures, based on the study by Turner et al., 2016.  
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majority of risk reduction occurs in grid cells with ambient PM2.5 concentrations between 6 1 

and 8 µg/m3) (Figure 3-18 and Figure 3-19).60 2 

• For air quality just meeting the current annual standard, long-term PM2.5 exposures are 3 

estimated to be associated with as many as 39,000 (26,000-51,000) total deaths from long-4 

term exposure annually, accounting for approximately 6-8% of baseline mortality.  5 

Table 3-16. Estimates of PM2.5-associated mortality for the current and potential 6 

alternative annual standards in the 30 study areas where the annual standard is 7 

controlling. 8 

 9 

 
60 Compared to adjusting primary PM2.5 emissions, adjustment of PM precursor emissions resulted in substantially 

larger estimated risk reductions at 7 µg/m3.  

Exposure
Study & 

Ages

Simulation 

Method

Total Risk Under 

the Current 

Standard (12/35-0)

% of 

Baseline 

Risk 

Attributable 

to the 

Current 

Standard

Total Risk Under 

an Alternative 

Annual Standard 

(11-0)

Total Risk Under 

an Alternative 

Annual Standard 

(10-0)

Total Risk Under 

an Alternative 

Annual Standard 

(9-0)

Total Risk Under 

an Alternative 

Annual Standard 

(8-0)

Pri PM
34,900 

(34,000 to 35,800)
7.6

32,400 

(31,600 to 33,300)

29,900 

(29,200 to 30,700)

27,400 

(26,700 to 28,100)

24,900 

(24,200 to 25,500)

Sec PM
35,600 

(34,700 to 36,500)
7.7

32,500 

(31,700 to 33,300)

29,400 

(28,600 to 30,100)

26,300 

(25,600 to 26,900)

23,100 

(22,500 to 23,700)

Pri PM
38,200 

(26,100 to 50,100)
6.3

35,500 

(24,200 to 46,500)

32,700 

(22,300 to 42,900)

29,900 

(20,400 to 39,300)

27,200 

(18,500 to 35,700)

Sec PM
38,900 

(26,600 to 51,000)
6.4

35,500 

(24,200 to 46,600)

32,100 

(21,900 to 42,100)

28,700 

(19,500 to 37,600)

25,200 

(17,100 to 33,100)

Pri PM
2,150 

(846 to 3,440)
0.4

1,990 

(784 to 3,190)

1,830 

(721 to 2,930)

1,670 

(658 to 2,680)

1,510 

(595 to 2,420)

Sec PM
2,190 

(862 to 3,510)
0.4

1,990 

(785 to 3,190)

1,790 

(707 to 2,880)

1,600 

(630 to 2,560)

1,400 

(552 to 2,250)

Pri PM
1,010 

(-13.6 to 2,040)
0.2

939 

(-12.6 to 1,880)

864 

(-11.6 to 1,730)

789 

(-10.6 to 1,580)

713 

(-9.57 to 1,430)

Sec PM
1,030 

(-13.9 to 2,070)
0.2

940 

(-12.6 to 1,890)

847 

(-11.4 to 1,700)

754 

(-10.1 to 1,510)

661 

(-8.87 to 1,330)

Pri PM
3,280 

(2,180 to 4,370)
0.7

3,040 

(2,020 to 4,050)

2,790 

(1,860 to 3,730)

2,550 

(1,700 to 3,400)

2,310 

(1,540 to 3,080)

Sec PM
3,340 

(2,220 to 4,450)
0.7

3,040 

(2,020 to 4,050)

2,740 

(1,820 to 3,650)

2,440 

(1,620 to 3,260)

2,140 

(1,420 to 2,860)

Long-Term

Di

(65-99)

Turner

(30-99)

Short-Term

Baxter

(0-99)

Ito

(0-99)

Zanobetti

(65-99)
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Table 3-17. Estimated delta and percent reduction in PM2.5-associated mortality for the 1 

current and potential alternative annual standards in the 30 study areas where the 2 

annual standard is controlling. 3 

 4 
 5 

Exposure
Study & 

Ages

Simulation 

Method

Risk Change 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 11

Risk Change 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 10

Risk Change 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 9

Risk Change 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 8

% Risk Reduction 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 11

% Risk Reduction 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 10

% Risk Reduction 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 9

% Risk Reduction 

When Moving 

from the Current 

to an Alternative 

Annual Standard 

of 8

Pri PM
2,680 

(2,610 to 2,750)

5,350 

(5,210 to 5,490)

8,000 

(7,790 to 8,210)

10,600 

(10,400 to 10,900)
7.7 15.3 22.9 30.5

Sec PM
3,320 

(3,230 to 3,400)

6,610 

(6,440 to 6,780)

9,880 

(9,620 to 10,100)

13,100 

(12,800 to 13,500)
9.3 18.6 27.8 36.9

Pri PM
2,920 

(1,970 to 3,860)

5,830 

(3,940 to 7,700)

8,720 

(5,900 to 11,500)

11,600 

(7,860 to 15,300)
7.6 15.2 22.8 30.3

Sec PM
3,610 

(2,440 to 4,770)

7,200 

(4,870 to 9,510)

10,800 

(7,290 to 14,200)

14,300 

(9,710 to 18,900)
9.3 18.5 27.7 36.8

Pri PM
160 

(62.8 to 256)

319 

(126 to 512)

478 

(188 to 767)

638 

(251 to 1,020)
7.4 14.9 22.3 29.7

Sec PM
197 

(77.6 to 316)

394 

(155 to 632)

592 

(233 to 948)

789 

(310 to 1,260)
9.0 18.0 27.0 36.0

Pri PM
75.2 

(-1.01 to 151)

150 

(-2.02 to 302)

226 

(-3.03 to 453)

301 

(-4.03 to 604)
7.4 14.8 22.3 29.7

Sec PM
93.1 

(-1.25 to 187)

186 

(-2.49 to 374)

279 

(-3.74 to 561)

372 

(-4.99 to 748)
9.0 18.0 27.0 36.0

Pri PM
244 

(162 to 325)

487 

(324 to 650)

731 

(486 to 975)

974 

(647 to 1,300)
7.4 14.9 22.3 29.7

Sec PM
301 

(200 to 402)

603 

(400 to 804)

904 

(600 to 1,210)

1,200 

(800 to 1,610)
9.0 18.0 27.0 36.0

Long-Term

Di

(65-99)

Turner

(30-99)

Short-Term

Baxter

(0-99)

Ito

(0-99)

Zanobetti

(65-99)
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 1 

Figure 3-18. Distribution of total risk estimates (PM2.5-attibutable mortality) for the 2 

current and alternative annual standards for the subset of 30 urban study areas where 3 

the annual standard is controlling (blue and green bars represent the Pri-PM2.5 and 4 

Sec-PM2.5 estimates, respectively).61 5 

 6 

 7 

 
61 Risk is estimated in this figure using Turner et al., 2016. Risk estimates are rounded toward zero into whole PM2.5 

concentration values (e.g., risk estimate at 10 µg/m3 includes risk occurring at 10.0-10.9 µg/m3). For each 

standard, a small amount of risk is estimated at concentrations higher than the level of the annual standard (e.g., 

some risk is estimated at an average concentration of 13 µg/m3 when air quality is adjusted to just meet the 

current standard). This can result because risk estimates are for a single year (i.e., 2015) within the 3-year design 

value period (i.e., 2014 to 2016). While the three-year average design value is 12.0 µg/m3, a single year can have 

grid cells with annual average concentrations above or below 12.0 µg/m3.  
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 1 

  Annual PM Concentration of Lower Standard (1 µg/m3 bins)  

Annual 
Standard 
Change 

Simulation 
Method 

2 3 4 5 6 7 8 9 10 11 12 Sum 

12-11 
(interpolated) 
µg/m³ 

Pri PM  0 3 11 17 39 110 381 1,534 763 62 2,920 

Sec PM  0 4 9 26 40 122 628 1,836 858 89 3,611 

12-10 µg/m³ 
Pri PM  1 18 12 81 116 569 3,205 1,720 103  5,826 

Sec PM  1 23 23 89 287 1,632 3,377 1,681 87  7,201 
12-9 
(extrapolated) 
µg/m³ 

Pri PM  3 27 82 106 596 4,467 3,252 185   8,718 

Sec PM 0 5 48 98 529 2,754 4,953 2,334 47   10,768 

12-8 
(extrapolated) 
µg/m³ 

Pri PM 0 11 85 161 368 5,324 5,408 238    11,595 

Sec PM 0 50 129 1,116 3,527 6,390 3,101     14,314 

Figure 3-19. Distribution of the difference in risk estimates between the current annual 2 

standard (level of 12.0 µg/m3) and alternative annual standards with levels of 11.0, 10.0, 3 

9.0, and 8.0 µg/m3 for the subset of 30 urban study areas where the annual standard is 4 

controlling.62 5 

  6 

 Summary of Risk Estimates for the 11 Areas Controlled by the 24-Hour 7 

Standard 8 

Table 3-18 presents annual risk information for the subset of 11 urban study areas in 9 

which the 24-hour standard controls the simulated attainment of all modeled standard levels.63 10 

For air quality just meeting the current 24-hour standard, PM2.5 exposures are estimated to be 11 

associated with as many as 2,570 (1,750-3,370) deaths annually, accounting for up to 7% of the 12 

baseline mortality in those 11 areas. Compared to the current standard, air quality just meeting an 13 

alternative 24-hr standard with a level of 30 µg/m3 is associated with reductions in estimated risk 14 

of 9-13%. 15 

 
62 Risks are presented as integers rounded to three significant digits and aggregated into 1 µg/m3 bins. Bins begin at 

the whole number value indicated and include values up to, but not including the next whole number (e.g., risk 

occurring at PM concentrations of 6.00 to 6.99 are shown in the bin at 6). Risk is estimated in this figure using 

Turner et al., 2016.  

63 These 11 areas controlled by the 24-hour standard under all scenarios evaluated include a population of 

approximately 10 million adults aged 30-99, or about 17% of the population included in the full set of 47 areas. 
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Table 3-18. Estimates of PM2.5-associated mortality for the current 24-hour standard, and 1 

an alternative, in the 11 study areas where the 24-hour standard is controlling. 2 

 3 

 4 

 Summary of Risk Estimates for At-Risk Populations 5 

Potential at-risk populations are summarized in section 3.3.2. Given that this risk and 6 

exposure assessment focuses on mortality endpoints, a quantitative assessment is supported by 7 

evidence in the 2019 ISA and draft ISA Supplement for racial and ethnic differences in PM2.5 8 

exposures and in PM2.5-related health risk supports a quantitative assessment (U.S. EPA, 2019, 9 

section 12.5.4, U.S. EPA, 2021a, section 3.3.3.2).64 Evidence strongly supports that non-White 10 

populations, such as Black and Hispanic populations, have higher PM2.5 exposures than White 11 

and non-Hispanic populations, respectively, thus contributing to increased risk of PM-related 12 

effects. Additionally, Di et al., 2017b provides race- and ethnicity-stratified concentration-13 

response functions for ages 65 and over. Therefore, we quantitatively assess risk for certain 14 

 
64 For characterizing risk in at-risk populations, we used air quality fields from the Pri-PM adjustment case alone. In 

the Pri-PM case, the air quality adjustments for a given area are largely associated with emission reductions 

within that area due to the local nature of air quality impacts from primary PM sources. For the Sec-PM case, the 

air quality adjustments may be strongly associated with sources located outside of the area. Since the at-risk 

analyses are performed for population groups within the 47 areas alone, the Pri-PM adjustment case (in which air 

quality adjustments are primarily associated with emission sources within the 47 areas) is most appropriate for the 

at-risk analysis.   

Exposure
Study & 

Ages

Simulation 

Method

Total Risk 

Under the 

Current 

Standard (12/35-

0)

% of 

Baseline

Total Risk Under 

an Alternative 

Annual Standard 

(30-0)

Risk Change When 

Moving from the 

Current to an 

Alternative 24-Hr 

Standard of 30

% Risk Reduction 

When Moving from 

the Current to an 

Alternative 24-Hr 

Standard of 30

Pri PM
2,320 

(2,260 to 2,380)
6.7

2,040 

(1,990 to 2,090)

304 

(296 to 312)
13.1

Sec PM
2,300 

(2,250 to 2,360)
6.7

2,100 

(2,050 to 2,150)

218 

(212 to 224)
9.4

Pri PM
2,570 

(1,750 to 3,370)
5.6

2,250 

(1,530 to 2,960)

334 

(226 to 442)
13.0

Sec PM
2,550 

(1,740 to 3,340)
5.6

2,320 

(1,580 to 3,050)

241 

(163 to 318)
9.4

Pri PM
142 

(56.1 to 228)
0.3

124 

(49.0 to 199)

18.1 

(7.11 to 29.0)
12.7

Sec PM
141 

(55.6 to 226)
0.3

128 

(50.5 to 206)

13.0 

(5.12 to 20.9)
9.2

Pri PM
68.6 

(-0.920 to 138)
0.1

59.9 

(-0.803 to 120)

8.70 

(-0.117 to 17.5)
12.7

Sec PM
68.0 

(-0.912 to 137)
0.1

61.8 

(-0.828 to 124)

6.25 

(-0.0838 to 12.6)
9.2

Pri PM
217 

(145 to 290)
0.6

190 

(126 to 253)

27.7 

(18.4 to 36.9)
12.7

Sec PM
216 

(143 to 287)
0.6

196 

(130 to 261)

19.8 

(13.1 to 26.4)
9.2

Long-Term

Di

(65-99)

Turner

(30-99)

Short-Term

Baxter

(0-99)

Ito

(0-99)

Zanobetti

(65-99)
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racial and ethnic populations of older adults in the full set of 47 areas and the subset of 30 areas 1 

controlled by the annual PM2.5 standard under all Pri-PM air quality simulations evaluated.65 2 

Additional information on this at-risk analysis is available throughout Appendix C, section C.2.  3 

For this analysis, we first compare the estimated changes in air quality occurring within 4 

each demographic population when just meeting current and alternative annual PM2.5 standards 5 

(Figure 3-20, left side).66 Across all simulated air quality scenarios in the full set of 47 and subset 6 

of 30 study areas, Blacks experience the highest average PM2.5 concentrations of the 7 

demographic groups analyzed. This increase was typically around 2-5% and was highest in 8 

modeling scenarios just meeting the current suite of standards. Native American populations 9 

typically experienced the lowest average PM2.5 concentrations, especially in the full set of 47 10 

study areas. White, Hispanic, and Asian populations were exposed to fairly similar average PM2.5 11 

concentrations, although White populations tended to be at the higher end of that range in the 12 

subset of 30 areas and the lower end of that range in the full set of 47 areas. Additionally, there is 13 

comparatively less disproportionate exposure between demographic populations as the 14 

alternative annual standard decreases. 15 

While exposure is an important aspect to evaluate when considering potentially 16 

disproportionate impacts, risk estimates provide additional information. Notably, risk estimates 17 

also generate information regarding: 18 

• The number of people affected by the air pollution reduction. In this instance, the population 19 

is further divided by demographic group. 20 

• The relationship between exposure and health impact baseline incidence rates, or more 21 

specifically, the percentage change in the risk of an adverse health effect due to a one-unit 22 

change in ambient air pollution. These concentration-response functions are generally 23 

derived from epidemiologic studies.  24 

• The average number of people who die in a given population over a given period of time. 25 

This is commonly referred to as the baseline mortality incidence rate. 26 

For this quantitative analysis of demographic populations potentially at increased risk of PM2.5 27 

exposure, we utilize race-specific, or race-stratified, concentration-response functions and 28 

 
65 Each individual is categorized by both race and ethnicity in this analysis. In other words, the sum of White, Black, 

Asian, and Native American individuals equals the total population, as well as the sum of Hispanic and non-

Hispanic individuals. Though Di et al., 2017b did not provide a non-Hispanic concentration-response 

relationship, results for non-Hispanics appears similar to Whites when the overall concentration-response 

relationship was applied to non-Hispanics (Appendix C Figures C-33 and C-34). 

66 Changes in air quality are estimated using the same approach used in the general risk assessment (sections 3.4.2.1, 

3.4.2.2, and 3.4.2.3), summarized in section 3.4.1.4 and detailed in Appendix C.  
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baseline incidence rates, to more accurately estimate risk within each demographic group.67 1 

Population-normalized mortality risk occurring within each demographic population is available 2 

on the right side of Figure 3-20. Across all scenarios and demographic groups evaluated, Black 3 

populations are associated with the largest PM2.5-attributable mortality risk rate per 100,000 4 

people. An example of the 95th percentile confidence interval is available in Appendix Figure C-5 

32. 6 

 7 

Figure 3-20. Average PM2.5 exposure concentration and PM2.5-attributable risk estimates 8 

by demographic population when just meeting current or alternative PM2.5 standards. 9 

 10 

We next estimate demographic-specific average exposure and risk changes when 11 

modeled air quality shifts from just meeting the current annual standard to just meeting potential 12 

 
67 Information on how the race-stratified concentration-response functions and baseline incidence rates impact the 

results can be found in Appendix C, section C.4. Briefly, race-stratified concentration-response functions 

increased risk estimated in nonwhite populations, with the greatest magnitude increase occurring in Black 

populations, and decreased risk estimated in White populations. Race-stratified baseline incidence rates decreased 

risk estimated in all demographic populations analyzed, with the greatest magnitude decreases occurring in White 

and Black populations. 
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alternative annual standard scenarios (Figure 3-21). Simulated PM2.5 concentration reductions 1 

are shown on the left side of the figure and reductions in population-normalized mortality risk 2 

are shown on the right side. As the alternative annual PM standard decreases in the subset of 30 3 

areas controlled by the annual standard, the average reduction in PM2.5 concentration and 4 

mortality risk rates increase across all demographic populations assessed. 5 

 6 

Figure 3-21. Average change in PM2.5 exposure concentration and PM2.5-attributable 7 

mortality risk estimates by demographic population when moving from the current to 8 

alternative PM2.5 standards. 9 

 10 

We also directly compare the reductions in average national PM2.5 concentrations and 11 

risk rates within each demographic population. Table 3-19 and Table 3-20 provide the percent of 12 

national average PM2.5-attributable exposures and risk reductions, when shifting from the current 13 

annual PM2.5 standard (12.0 µg/m3) to potential alternative annual PM2.5 standards (11.0 µg/m3, 14 

10.0 µg/m3, 9.0 µg/m3, and 8.0 µg/m3). The percent PM2.5 and risk reductions are greater in the 15 

Black population than in the White population for each alternative standard evaluated for both 16 

the full set of study areas and the subset controlled by the annual standard. Additionally, the 17 

difference in percent risk reduction increases more in Blacks than in Whites as the potential 18 

alternative annual standard decreases. In other words, Blacks will experience proportionally 19 

greater benefit from successively lower annual standards, although even at an annual standard of 20 

8 µg/m3 Blacks will experience higher rates of premature mortality risk from PM2.5 exposure 21 

than Whites. 22 
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Table 3-19. Average national percent PM2.5 reduction in demographic populations aged 65 1 

and over residing in the full set of 47 study areas and subset of 30 study areas controlled 2 

by the annual standard. 3 

Ethnicity & Race 

% PM Reduction 
from 12 µg/m3 to 11 
(interpolated) µg/m3 

% PM Reduction from 
12 µg/m3 to 10 µg/m3 

% PM Reduction from 
12 µg/m3 to 9 

(extrapolated) µg/m3 

% PM Reduction 
from 12 µg/m3 to 8 

(extrapolated) µg/m3 

30 areas 47 areas 30 areas 30 areas 30 areas 

White 7 14 15 22 29 

Black 8 15 15 23 31 

Hispanic 8 15 16 23 31 

Asian 8 15 15 23 31 

Native American 8 14 15 23 30 

 4 

Table 3-20. Average national percent PM2.5 risk reduction in demographic populations 5 

aged 65 and over residing in the full set of 47 study areas and subset of 30 study areas 6 

controlled by the annual standard. 7 

Ethnicity & Race 

% Risk Reduction 
from 12 µg/m3 to 11 
(interpolated) µg/m3 

% Risk Reduction 
from 12 µg/m3 to 10 

µg/m3 

% Risk Reduction 
from 12 µg/m3 to 9 

(extrapolated) µg/m3 

% Risk Reduction 
from 12 µg/m3 to 8 

(extrapolated) µg/m3 

30 areas 47 areas 30 areas 30 areas 30 areas 

White 8 15 15 23 30 

Black 9 17 17 25 33 

Hispanic 8 16 16 25 33 

Asian 8 16 16 24 32 

Native American 8 15 16 24 32 

 8 

While average exposure concentrations and risk estimates across demographic 9 

populations can convey some insight regarding whether certain populations may be 10 

disproportionately impacted, distributional information, while more complex, can provide a more 11 

comprehensive understanding of the analytical results. As such, we compare both estimated 12 

PM2.5 exposures and mortality risk rates per 100k individuals to the running sum of each 13 

demographic population. To permit the direct comparison of demographic populations with 14 

different absolute numbers, populations are expressed as a percentage in Figure 3-22 and Figure 15 

3-23.68  16 

In both Figure 3-22 and Figure 3-23, PM2.5 concentration information is on the left side 17 

and mortality risk estimates are on the right side. Recent conditions (2015) information for both 18 

exposure and risk can be found in Appendix C, section C.4, as well as sensitivity analyses 19 

 
68 Information on the absolute number of all-cause premature mortality cases within each racial and ethnic 

population demographic can be found in Appendix C Tables C-12 and C-13. 
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investigating the impact of race-stratified concentration-response functions and baseline 1 

incidence rates on the results. Cumulative distribution plots of PM2.5 concentrations and 2 

population-normalized mortality risk reductions when shifting from the current to an alternative 3 

annual standard are available in Figure 3-23.  4 

 5 

 6 

Figure 3-22. PM2.5 exposure concentrations and PM2.5-attributable mortality risk estimates 7 

by demographic population when just meeting current or alternative PM2.5 standards. 8 

 9 

 10 
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 1 

Figure 3-23. Change in PM2.5 exposure concentrations and PM2.5-attributable mortality 2 

risk estimates by demographic population when moving from the current to alternative 3 

PM2.5 standards. 4 

 5 

 Variability and Uncertainty in Risk Estimates 6 

We characterize variability and uncertainty associated with risk estimates using several 7 

quantitative and qualitative approaches, as described in detail in Appendix C (section C.3). 8 

Approaches to addressing key uncertainties include the following:  9 

• Evaluating multiple concentration-response functions for the same health endpoint: The 10 

degree to which different concentration-response functions result in different risk estimates 11 

could reflect differences in study design and/or study populations evaluated, as well as other 12 

factors. In most instances in this risk assessment, the concentration-response function used 13 

has only a small impact on risk estimates. 14 

• Evaluating multiple methods for simulating air quality scenarios: The approach used to adjust 15 

air quality (i.e., Pri-PM and Sec-PM adjustments) has some impact on overall estimates of 16 

risk (e.g., Table 3-14). However, the adjustment approach has a larger impact on the 17 

distribution of risk reductions, particularly for alternative annual levels of 9.0 and 8.0 g/m3 18 

(Figure 3-19).   19 
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• Characterizing the 95th percentile confidence intervals associated with risk estimates: There 1 

is considerable variation in the range of confidence intervals associated with the point 2 

estimates generated for this analysis (Table 3-14), with some concentration-response 3 

functions displaying substantially greater variability than others (e.g., short-term PM2.5 4 

exposure and all-cause mortality based on effect estimates from Ito et al. (2013) versus long-5 

term PM2.5 exposure all-cause mortality estimates based on Turner et al., 2016. There are a 6 

number of factors potentially responsible for the varying degrees of statistical precision in 7 

effect estimates, including sample size, exposure measurement error, degree of control for 8 

confounders/effect modifiers, and variability in PM2.5 concentrations evaluated in the original 9 

epidemiologic study.  10 

• Qualitative assessment of additional sources of uncertainty: Based in part on WHO (2008) 11 

guidance and on guidance documents developed by the EPA (U.S. EPA, 2001, U.S. EPA, 12 

2004), we also completed a qualitative characterization of sources of uncertainty including an 13 

assessment of both the magnitude and direction of impact of those uncertainties on risk 14 

estimates. The classification of the magnitude of impact for sources of uncertainty includes 15 

three levels: (a) low (unlikely to produce a sufficient impact on risk estimates to affect their 16 

interpretation), (b) medium (potential to have a sufficient impact to affect interpretation), and 17 

(c) high (likely to have an impact sufficient to affect interpretation). For several of the 18 

sources, we provide a classification between these levels (e.g., low-medium, medium-high).69 19 

The below uncertainties, as well as various additional sources of uncertainty, are detailed in 20 

the Estimating PM2.5 and Ozone- Attributable Health Benefits TSD (U.S. EPA, 21 

2021b).Sources of uncertainty with at least a low classification as to the magnitude of 22 

potential impacts include the following (from Appendix C, Table C-32):70  23 

- Use of air quality modeling to adjust PM2.5 concentrations: The baseline and 24 

adjusted air quality concentration fields were developed using modeling to fill 25 

spatial and temporal gaps in monitoring and explore “what if” scenarios. 26 

State-of-the-science modeling methods were used, but modeling-related biases 27 

and errors introduce uncertainty into the PM2.5 concentration estimates. In 28 

addition, due to the national scale of the assessment, scenarios are based on 29 

changing modeled emissions of primary PM2.5 or NOX and SO2 from all 30 

anthropogenic sources throughout the U.S. by fixed percentages. Although 31 

this approach tends to target key emission sources in each study area, it does 32 

not tailor emission changes to specific sources. The two adjustment cases span 33 

a wide range of emission conditions, but these cases are necessarily a subset 34 

of the full set of possible emission scenarios that could be used to adjust PM2.5 35 

concentrations to simulate “just meeting” standards.  36 

 
69 Additional information is available in Appendix C, section C.3.  

70 We also identified several additional factors judged to have less than a medium classification of impact on the risk 

estimates generate, including: (a) the temporal mismatch between ambient air quality data characterizing 

exposure and mortality in long-term exposure-related epidemiology studies, (b) compositional and source 

differences in PM, (c) exposure measurement error in epidemiology studies assessing the relationship between 

mortality and exposure to ambient PM2.5, (d) lag structure in short-term exposure-related mortality epidemiology 

studies, and (e) assumed causal association between PM and mortality that supports modeling changes in risk 

associated with future changes in ambient PM2.5. See Table C-32 in Appendix C for additional discussion of these 

sources of uncertainty. 
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- Use of linear interpolation/extrapolation to adjust air quality: The use of 1 

interpolation and extrapolation to simulate just meeting annual standards with 2 

levels of 11.0, 9.0, and 8.0 g/m3 does not fully capture potential non-3 

linearities associated with real-world changes in air quality.  4 

- Potential confounding of the PM2.5-mortality effect: Factors are considered 5 

potential confounders if demonstrated in the scientific literature to be related 6 

to the health effect and correlated with PM2.5. Omitting potential confounders 7 

from analyses could either increase or decrease the magnitude of PM2.5 effect 8 

estimates (e.g., Di et al., 2017b, supplemental Figure S2). Thus, not 9 

accounting for confounders can introduce uncertainty into effect estimates 10 

and, consequently, into the estimated impacts generated using those effect 11 

estimates. Confounders vary according to study design, exposure duration, 12 

and health effect. For studies of short-term exposures, confounders may 13 

include meteorology (e.g., temperature, humidity), day of week, season, 14 

medication use, allergen exposure, and long-term temporal trends. For studies 15 

of long-term exposures, confounders may include socioeconomic status, race, 16 

age, medication use, smoking status, stress, noise, and occupational 17 

exposures. While various approaches to control for potential confounders have 18 

been adopted across the studies used in the risk assessment, and across the 19 

broader body of PM2.5 epidemiologic studies assessed in the 2019 ISA, no 20 

individual study adjusts for all potential confounders (U.S. EPA, 2019, Table 21 

A-1). 22 

- Potential for exposure error: Epidemiologic studies have employed a variety 23 

of approaches to estimate population-level PM2.5 exposures (e.g., stationary 24 

monitors and hybrid modeling approaches). These approaches are based on 25 

using measured and/or predicted ambient PM2.5 concentrations as surrogates 26 

for population exposures. As such, exposure estimates in epidemiologic 27 

studies are subject to exposure error. The 2019 ISA notes that, while bias in 28 

either direction can occur, exposure error tends to result in underestimation of 29 

health effects in epidemiologic studies of PM exposure (U.S. EPA, 2019, 30 

section 3.5). Consistent with this, Hart et al. (2015) reports that correction for 31 

PM2.5 exposure error using personal exposure information results in a 32 

moderately larger effect estimate for long-term PM2.5 exposure and mortality, 33 

though with wider confidence intervals. Error in the underlying epidemiologic 34 

studies contributes to uncertainty in the risk estimates based on concentration-35 

response relationships in those studies. Beyond the exposure error in 36 

concentration-response functions, the use of a different approach to represent 37 

exposures in the risk assessment (i.e., 12 x 12 km gridded surface based on 38 

modeling) could introduce additional error into risk estimates.  39 

- Shape of the concentration-response relationship at low ambient PM 40 

concentrations: Interpreting the shapes of concentration-response 41 

relationships, particularly at PM2.5 concentrations near the lower end of the air 42 

quality distribution, can be complicated by relatively low data density in the 43 

lower concentration range, the possible influence of exposure measurement 44 

error, and variability among individuals with respect to air pollution health 45 

effects. These sources of variability and uncertainty tend to smooth and 46 
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“linearize” population-level concentration-response functions, and thus could 1 

obscure the existence of a threshold or nonlinear relationship (U.S. EPA, 2 

2015b, section 6.c).   3 

 4 

Additional uncertainties are associated with the at-risk analysis. Importantly, the smaller 5 

population within each demographic group reduces statistical power. As this risk and exposure 6 

assessment focuses on urban areas, demographic groups that primarily reside in rural areas, such 7 

as Native Americans, are underrepresented.  8 

3.4.3 Conclusions of the Risk Assessment  9 

Although limitations in the underlying data and approaches lead to some uncertainty 10 

regarding estimates of PM2.5-associated risk (summarized in section 3.4.1.7), the risk assessment 11 

estimates that the current primary PM2.5 standards could allow a substantial number of PM2.5-12 

associated deaths in the U.S. For example, when air quality in the 47 study areas is adjusted to 13 

simulate just meeting the current standards, the risk assessment estimates 40,600-45,100 long-14 

term PM2.5 exposure-related deaths in a single year, with confidence intervals ranging from 15 

30,300-59,000 deaths (Table 3-14). Additionally, the at-risk assessment estimated that Black 16 

populations may experience disproportionally higher exposures and risk under simulated air 17 

quality conditions just meeting the current primary PM2.5 annual standard as compared to White 18 

populations (section 3.4.2.4).71 19 

Compared to the current annual standard, meeting a revised annual standard with a lower 20 

level is estimated to reduce PM2.5-associated health risks in the 30 annually-controlled study 21 

areas by about 7-9% for a level of 11.0 µg/m3, 15-19% for a level of 10.0 µg/m3, 22-28% for a 22 

level of 9.0 µg/m3, and 30-37% for a level of 8.0 µg/m3. (Table 3-17)72 Meeting a revised annual 23 

standard with a lower level may also reduce exposure and risk in Black populations slightly more 24 

so than in White populations in simulated scenarios just meeting alternative annual standards 25 

(section 3.4.2.4).  26 

Revising the level of the 24-hour standard to 30 g/m3 is estimated to lower PM2.5-27 

associated risks across a more limited population and number of areas then revising the annual 28 

standard (section 3.4.2.3). Risk reduction predictions are largely confined to areas located in the 29 

 
71 Risk estimates in Black populations are largely due to race-specific concentration-response functions. 
72 Importantly, as the magnitude of estimated risk reductions increases with lower alternative annual standards, 

estimated risk reductions are associated with lower ambient PM2.5 concentrations. Lower PM2.5 concentrations 

may less closely align with those observed in the epidemiologic study from which the concentration-response 

function was obtained, contributing to uncertainty. Additional information on estimated ambient concentrations of 

the original Medicare and ACS cohorts evaluated by Di et al., 2017b and Turner et al., 2016, respectively, can be 

found in section 6.1.2.1 of the Estimating PM2.5 and Ozone- Attributable Health Benefits TSD (U.S. EPA, 2021b). 
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western U.S., several of which are also likely to experience risk reductions upon meeting a 1 

revised annual standard.  2 

3.5 KEY CONSIDERATIONS REGARDING THE ADEQUACY OF THE 3 

PRIMARY PM2.5 STANDARDS 4 

In considering the adequacy of the primary PM2.5 standards, the overarching question we 5 

consider is: 6 

• Does the scientific evidence and risk-based information support or call into question 7 

the adequacy of the protection afforded by the current primary PM2.5 standards? 8 

To assist us in interpreting the scientific evidence and the results of recent quantitative 9 

risk analyses to address this question, we have focused on a series of more specific questions, as 10 

detailed in sections 3.5.1 and 3.5.2 below. In considering the scientific and technical information, 11 

we consider both the information available at the time of the 2012 and 2020 reviews and 12 

information available in this reconsideration, which have been critically assessed in the 2019 ISA 13 

and the draft ISA Supplement. In so doing, a key consideration is whether the information in this 14 

reconsideration alters our overall conclusions from the 2020 review regarding health effects 15 

associated with PM2.5 in ambient air. 16 

3.5.1 Evidence-based Considerations 17 

In considering the evidence with regard to the overarching question posed above 18 

regarding the adequacy of the current PM2.5 standards, we address a series of more specific 19 

questions that focus on policy-relevant aspects of the evidence. These questions begin with 20 

consideration of the available evidence on health effects associated with exposure to PM2.5. 21 

(section 3.5.1.1). The subsequent questions consider identification of populations at-risk of 22 

PM2.5-related health effects (section 3.5.1.2), and the exposure durations and levels of PM2.5 23 

associated with health effects (section 3.5.1.3). Important uncertainties associated with the 24 

evidence are considered in section 3.5.1.4. 25 

 Health Effects Associated with Exposure to PM2.5 26 

In answering the overarching question above, we begin by considering the following 27 

question: 28 

• Is there newly available evidence that indicates the importance of certain particle 29 

characteristics (i.e., components or size fractions) other than PM2.5 mass with regard 30 

to concentrations in ambient air, and potential for human exposures and health 31 

effects? 32 

No newly available evidence has been identified in this reconsideration regarding particle 33 

characteristics, such as components or size fractions, other than PM2.5 mass with regard to 34 
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concentrations in ambient air, and potential for health effects. While some studies evaluate the 1 

health effects of particular sources of fine particles, or of particular fine particle components, 2 

evidence from these studies does not identify any one source or component that is a better 3 

predictor of health effects than PM2.5 mass (U.S. EPA, 2019, section 1.5.4). The 2019 ISA 4 

specifically notes that “results of these studies confirm and further support the conclusion of the 5 

2009 ISA that many PM2.5 components and sources are associated with many health effects and 6 

that the evidence does not indicate that any one source or component is consistently more 7 

strongly related with health effects than PM2.5 mass” (U.S. EPA, 2019, section 1.5.4). In 8 

addition, the evidence for health effects following exposures specifically to the ultrafine fraction 9 

of fine particles continues to be far more limited than the evidence for PM2.5 mass as a whole. As 10 

discussed in the 2019 ISA, the lack of a consistent UFP definition in health studies and across 11 

disciplines, together with a variety of approaches to administering and measuring UFP in those 12 

studies, contribute to such limitations (U.S. EPA, 2019, section 1.4.3). Thus, as was the case for 13 

previous reviews, the evidence base for health effects of fine particles does not support 14 

consideration of other PM characteristics, such as components, or size fractions. For these 15 

reasons, we continue to focus on the health effects associated with PM2.5 mass. 16 

• Does the available scientific evidence alter our conclusions regarding the nature of 17 

health effects attributable to human exposure to PM2.5 from ambient air? 18 

The scientific evidence, including that assessed in the 2019 ISA and draft ISA 19 

Supplement, is consistent with the conclusion reached in the previous reviews regarding health 20 

effects and PM exposures where a causal relationship was concluded. Specifically, as in prior 21 

reviews, it was concluded that there is a causal relationship between short- and long-term PM2.5 22 

exposures and mortality and cardiovascular effects (U.S. EPA, 2019, sections 11.1, 11.2, 6.1, 23 

6.2; U.S. EPA, 2021a, sections 3.2.1, 3.2.2, 3.1.1, and 3.1.2). Further, a likely to be causal 24 

relationship was concluded for short- and long-term PM2.5 exposures and respiratory effects 25 

(U.S. EPA, 2019, sections 5.1 and 5.2). Additionally, conclusions reached in the 2019 ISA differ 26 

with regard to cancer and nervous systems effects and long-term PM2.5 exposure, based on 27 

evidence assessed in the 2019 ISA and it was concluded that there is a likely to be causal 28 

relationship (U.S. EPA, 2019, sections 10.2 and 8.2). The evidence base is concluded to be 29 

suggestive of, but not sufficient to infer, causal relationships between short- and long-term PM2.5 30 

exposures and metabolic effects (U.S. EPA, 2019, sections 7.1 and 7.2), reproduction and 31 

fertility (U.S. EPA, 2019, section 9.1.1), and pregnancy and birth outcomes (U.S. EPA, 2019, 32 

section 9.1.2). In addition, effects associated with short-term exposure to UFP and cardiovascular 33 

(U.S. EPA, 2019, section 6.5), respiratory (U.S. EPA, 2019, section 5.5), and nervous system 34 

effects (U.S. EPA, 2019, section 8.5), as well as long-term exposure to UFP and nervous system 35 

effects (U.S. EPA, 2019, section 8.6) are concluded to be suggest of, but not sufficient to infer, 36 
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causal relationship. As in the 2020 review, the strongest evidence, including with regard to 1 

quantitative characterizations of relationships between PM2.5 exposure and effects, is for 2 

mortality and cardiovascular effects. 3 

 Populations At-Risk of PM2.5-related Health Effects 4 

Populations or lifestages can be at increased risk of an air pollutant-related health effect 5 

due to one or more factors. These factors can be intrinsic, such as physiological factors that may 6 

influence the internal dose or toxicity of a pollutant, or extrinsic, such as sociodemographic, or 7 

behavioral factors. The questions considered in this section address what the available evidence 8 

indicates regarding which populations are particularly at risk of health effects related to exposure 9 

to PM2.5 in ambient air. 10 

•  Does the current evidence alter our understanding of populations that are 11 

particularly at risk from PM2.5 exposures? Is there evidence that suggests additional 12 

at-risk populations that should be given increased focus for this reconsideration? 13 

The current evidence does not alter our understanding of which populations are 14 

potentially at greater risk from health effects of PM2.5 exposures. As in previous reviews, the 15 

2019 ISA continues to provide support that factors that may contribute to increased risk of 16 

PM2.5-related health effects include lifestage (children and older adults), pre-existing diseases 17 

(cardiovascular disease and respiratory disease), race/ethnicity, and socioeconomic status. Other 18 

factors that have the potential to contribute to increased risk, but for which the evidence is less 19 

clear, include obesity, diabetes, genetic factors, smoking status, sex, diet, and residential location 20 

(U.S. EPA, 2019, chapter 12). 21 

In addition to these population groups, the 2019 ISA and draft ISA Supplement note that 22 

there is strong evidence for racial and ethnic differences in PM2.5 exposures and PM2.5-related 23 

health risk. There is strong evidence demonstrating that Black and Hispanic populations, in 24 

particular, have higher PM2.5 exposures than non-Hispanic White populations (U.S. EPA, 2019, 25 

Figure 12-2; U.S. EPA, 2021a, Figure 3-38). Further, there is consistent evidence across multiple 26 

studies that demonstrate increased risk of PM2.5-related health effects, with the strongest 27 

evidence for health risk disparities for mortality (U.S. EPA, 2019, section 12.5.4). 28 

Studies assessed in the 2019 ISA and draft ISA Supplement also provide evidence of 29 

exposure and health risk disparities based on SES. The evidence indicates that lower SES 30 

communities are exposed to higher concentrations of PM2.5 compared to higher SES 31 

communities (U.S. EPA, 2019, section 12.5.3; U.S. EPA, 2021a, section 3.3.3.1.1). Additionally, 32 

evidence supports the conclusions that lower SES is associated with cause-specific mortality and 33 

certain health endpoints (i.e., MI and CHF), but less so for all-cause or total (non-accidental) 34 

mortality (U.S. EPA, 2019, section 12.5.3; U.S. EPA, 2021a, section 3.3.3.1). 35 
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 Exposure Concentrations Associated with Health Effects 1 

In answering the overarching question with regard to the adequacy of the primary PM2.5 2 

standards, as described above, we next consider the scientific evidence and the support it 3 

provides for the occurrence of adverse public health effects and the associated exposure 4 

concentrations at which such effects occur. In so doing, we ask the following questions: 5 

• Does the current evidence alter our conclusions regarding the exposure duration and 6 

concentrations associated with health effects? To what extent does the scientific 7 

evidence indicate health effects attributable to exposures to PM2.5 concentrations 8 

lower than previously reported and what are important uncertainties in that 9 

evidence? 10 

The evidence available in this reconsideration regarding PM2.5 exposures associated with 11 

health effects affirms and strengthens the evidence available at the time of the 2020 review, 12 

taking into account studies that have become available since that time. Consistent with the 13 

evidence available in the 2020 review, and as assessed in the 2019 ISA and the draft ISA 14 

Supplement, the strong evidence base of epidemiologic studies report associations between long- 15 

and short-term PM2.5 exposures and a variety of outcomes, including mortality and 16 

cardiovascular effects. Additionally, as detailed in section 3.3.1, animal toxicological studies and 17 

controlled human exposure studies continue to provide support understanding the effects of 18 

exposure to PM2.5, and support for biologically plausible mechanisms through which adverse 19 

human health outcomes could occur. In addition, controlled human exposure studies have 20 

consistently reported that PM2.5 exposures lasting from less than one hour up to five hours can 21 

impact cardiovascular function and provide some insight into how short-term exposure to PM2.5 22 

may impact cardiovascular function in ways that could lead to more serious outcomes. 23 

The controlled human exposure studies, as discussed in detail in the 2019 ISA (U.S. EPA, 24 

2019, section 6.1) and summarized above in section 3.3.3.1, have demonstrated effects on 25 

cardiovascular function following PM2.5 exposures ranging from one to five hours, with the most 26 

consistent evidence for impaired vascular function (U.S. EPA, 2019, section 6.1.13.2). In 27 

addition, although less consistent, the 2019 ISA notes that studies examining PM2.5 exposures 28 

also provide evidence for increased blood pressure (U.S. EPA, 2019, section 6.1.6.3), conduction 29 

abnormalities/arrhythmia (U.S. EPA, 2019, section 6.1.4.3), changes in heart rate variability 30 

(U.S. EPA, 2019, section 6.1.10.2), changes in hemostasis that could promote clot formation 31 

(U.S. EPA, 2019, section 6.1.12.2), and increases in inflammatory cells and markers (U.S. EPA, 32 

2019, section 6.1.11.2). The 2019 ISA concludes that, when taken as a whole, controlled human 33 

exposure studies demonstrate that exposure to PM2.5 may impact cardiovascular function in ways 34 

that could lead to more serious outcomes (U.S. EPA, 2019, section 6.1.16). Thus, such studies 35 

can provide insight into the potential for specific PM2.5 exposures to result in physiological 36 
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changes that could increase the risk of more serious effects, though the health relevance of the 1 

occurrence of these acute effects is less certain.  2 

To provide some insight into what these studies may indicate regarding the primary PM2.5 3 

standards, air quality analyses examine monitored 2-hour PM2.5 concentrations at sites meeting 4 

the current primary PM2.5 standards (as described in section 2.3.2 and section A.3 of Appendix 5 

A).73 The 2-hour PM2.5 concentrations to which individuals were exposed in most of these 6 

studies are well-above the ambient concentrations typically measured in locations meeting the 7 

current primary standards. For example, at air quality monitoring sites meeting the current 8 

primary PM2.5 standards (i.e., the 24-hour standard and the annual standard), the 2-hour 9 

concentrations generally remain below 10 μg/m3, and virtually never exceed 30 μg/m3. Two-hour 10 

concentrations are higher at monitoring sites violating the current standards, but generally remain 11 

below 16 μg/m3 and virtually never exceeding 80 μg/m3. Thus, while controlled human exposure 12 

studies provide support for the biological mechanisms and plausibility of the serious 13 

cardiovascular effects associated with ambient PM2.5 exposures in epidemiologic studies (U.S. 14 

EPA, 2019, chapter 6), the exposures evaluated in most of these studies are well-above the 15 

ambient concentrations typically measured in locations meeting the current primary standards, 16 

and the results are variable across some of the controlled human exposure studies evaluated at 17 

near ambient PM2.5 concentrations.  18 

 While controlled human exposure studies provide insight on the exposure concentrations 19 

that directly elicit health effects in humans, uncertainty exists in translating the observations in 20 

animal toxicology studies to potential adverse health effects in humans. The interpretation of the 21 

animal toxicology studies with regard to the potential implications for human health is 22 

complicated by the fact that the concentrations of PM2.5 in animal toxicologic studies are much 23 

higher than those shown to elicit effects in human populations, and there are also significant 24 

anatomical and physiological differences between animal models and humans. Most of the 25 

animal toxicology studies have generally examined short-term exposures to PM2.5 concentrations 26 

from 100 to >1,000 μg/m3 and long-term exposures to concentrations from 66 to >400 μg/m3 27 

(e.g., see U.S. EPA, 2019, Table 1-2). Two exceptions are a study reporting impaired lung 28 

development following long-term exposures (i.e., 24 hours per day for several months prenatally 29 

and postnatally) to an average PM2.5 concentration of 16.8 μg/m3 (Mauad et al., 2008) and a 30 

study reporting increased carcinogenic potential following long-term exposures (i.e., 2 months) 31 

to an average PM2.5 concentration of 17.7 μg/m3 (Cangerana Pereira et al., 2011). These two 32 

studies report serious effects following long-term exposures to PM2.5 concentrations close to the 33 

 
73 In addition, 4-hour and 5-hour PM2.5 concentrations at monitoring sites meeting or violating the current primary 

PM2.5 standards were also evaluated (as described in section 2.3.2 and section A.3 of Appendix A). 
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ambient concentrations reported in some PM2.5 epidemiologic studies (U.S. EPA, 2019, Table 1-1 

2), though still above the ambient concentrations likely to occur in areas meeting the current 2 

primary standards. Thus, as is the case with controlled human exposure studies, animal 3 

toxicology studies support the plausibility of various adverse effects that have been linked to 4 

ambient PM2.5 exposures (U.S. EPA, 2019) ). 5 

 Epidemiologic studies in the U.S. and Canada, assessed in the 2019 ISA and draft ISA 6 

Supplement, continue to report positive and statistically significant associations between long- 7 

and short-term exposure to PM2.5 and mortality and morbidity, including both new studies 8 

evaluated in the draft ISA Supplement related to total mortality and cardiovascular mortality and 9 

morbidity and studies that examined populations and lifestages that may be at comparatively 10 

higher risk of experiencing a PM2.5-related health effects (e.g., older adults). Such studies 11 

employ various designs and examine a variety of health outcomes, geographic areas, and 12 

approaches to controlling for confounding variables. With regard to controlling for potential 13 

confounders in particular, key epidemiologic studies use a wide array of approaches. Time-series 14 

studies control for potential confounders that vary over short time intervals (e.g., including 15 

temperature, humidity, dew point temperature, and day of the week) while cohort studies control 16 

for community- and/or individual-level confounders that vary spatially (e.g., including income, 17 

race, age, socioeconomic status, smoking, body mass index, and annual weather variables such 18 

as temperature and humidity) (Appendix B, Table B-4). Sensitivity analyses indicate that adding 19 

covariates to control for potential confounders can either increase or decrease the magnitude of 20 

PM2.5 effect estimates, depending on the covariate, and that none of the covariates examined can 21 

fully explain the association with mortality (e.g., Di et al., 2017b, Figure S2 in Supplementary 22 

Materials). Thus, while no individual study adjusts for all potential confounders, a broad range of 23 

approaches have been adopted across studies to examine confounding, supporting the robustness 24 

of reported associations.  25 

 Available studies additionally indicate that PM2.5 health effect associations are robust 26 

across various approaches to estimating PM2.5 exposures and across various exposure windows. 27 

This includes recent studies that estimate exposures using ground-based monitors alone and 28 

studies that estimate exposures using data from multiple sources (e.g., satellites, land use 29 

information, modeling), in addition to monitors. While none of these approaches eliminates the 30 

potential for exposure error in epidemiologic studies, such error does not call into question the 31 

fundamental findings of the broad body of PM2.5 epidemiologic evidence. In fact, the 2019 ISA 32 

notes that while bias in either direction can occur, exposure error tends to lead to underestimation 33 

of health effects in epidemiologic studies of PM exposure (U.S. EPA, 2019, section 3.5). 34 

Consistent with this, a recent study reports that correction for PM2.5 exposure error using 35 

personal exposure information results in a moderately larger effect estimate for long-term PM2.5 36 
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exposure and mortality (Hart et al., 2015). While most PM2.5 epidemiologic studies have not 1 

employed similar corrections for exposure error, several studies report that restricting analyses to 2 

populations in close proximity to a monitor (i.e., in order to reduce exposure error) result in 3 

larger PM2.5 effect estimates (e.g., Willis et al., 2003; Kloog et al., 2013). The consistent 4 

reporting of PM2.5 health effect associations across exposure estimation approaches, even in the 5 

face of exposure error, together with the larger effect estimates reported in some studies that 6 

have attempted to reduce exposure error, provides further support for the robustness of 7 

associations between PM2.5 exposures and mortality and morbidity.   8 

Consistent findings from the broad body of epidemiologic studies are also supported by 9 

an emerging body of studies employing causal modeling methods to further inform the causal 10 

nature of the relationship between long- or short-term term PM2.5 exposure and mortality (U.S. 11 

EPA, 2019, sections 11.1.2.1, 11.2.2.4, U.S. EPA, 2021a, sections 3.1.1.3, 3.1.2.3, 3.2.1.3, and 12 

3.2.2.3). These studies, summarized above in Table 3-11, used a variety of statistical methods to 13 

control for confounding bias and consistently report positive associations, which support the 14 

positive and significant effects seen in cohort studies associated with short- and long-term 15 

exposure to PM2.5 and mortality. 16 

 In addition to broadening our understanding of the health effects that can result from 17 

exposures to PM2.5 and strengthening support for some key effects (e.g., nervous system effects, 18 

cancer), recent epidemiologic studies strengthen support for health effect associations at 19 

relatively low ambient PM2.5 concentrations. Studies that examine the shapes of concentration-20 

response functions over the full distribution of ambient PM2.5 concentrations have not identified 21 

a threshold concentration, below which associations no longer exist (U.S. EPA, 2019, section 22 

1.5.3, U.S. EPA, 2021a, sections 2.2.3.1 and 2.2.3.2). While such analyses are complicated by 23 

the relatively sparse data available at the lower end of the air quality distribution (U.S. EPA, 24 

2019, section 1.5.3), analyses that assess the concentration-response relationship support a linear, 25 

no-threshold effect down to 5.0 μg/m3, though uncertainties increase at concentrations of less 26 

than 8.0 μg/m3.  27 

 There are a number of U.S. and Canadian studies that examine health effect associations 28 

in analyses with the highest exposures excluded and report positive and statistically significant 29 

associations in analyses restricted to annual average PM2.5 exposures at or below 12 g/m3 and 30 

or to daily exposures below 35 g/m3 (Table 3-10). While mean PM2.5 concentrations for these 31 

restricted analyses may not be reported in most studies, we can presume that the mean PM2.5 32 

concentrations in the restricted analyses are less than the study-reported mean PM2.5 33 

concentrations in the main analyses, which range from 8.1 µg/m3 to 11.6 µg/m3 in the U.S., and 34 

was 7.8 µg/m3 for the one study in Canada that included restricted analysis. It is important to 35 

note that even if we had information on PM2.5 mean concentrations reported in restricted 36 
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analysis, we would not necessarily be able to use these means in a similar decision framework as 1 

was used in past reviews (section 3.3.3.2.1). given uncertainties associated with identifying the 2 

relationship between a calculated mean concentration that excludes specific daily or annual 3 

average concentrations above a certain threshold and the design value used to determine 4 

compliance with a standard (annual or 24-hour). However, restricted analyses do provide support 5 

for effects at lower concentrations, exhibiting associations for mean concentrations presumably 6 

below the mean concentrations for the main analyses.  7 

  Finally, accountability studies evaluate whether changes in air quality are associated with 8 

improvements in public health and a number of recent studies are evaluated in the draft ISA 9 

Supplement (summarized in Table 3-12 above). These studies exhibit positive and significant 10 

associations, including some studies that report starting PM2.5 concentrations below 12.0 µg/m3, 11 

indicating that public health improvements may occur following PM2.5 reductions in areas that 12 

already meet the current annual PM2.5 standard. For example, studies by Corrigan et al. (2018) 13 

and Sanders et al. (2020) both found improvements in mortality rates due to improvements in air 14 

quality in both attainment and nonattainment areas following implementation of the 1997 15 

primary annual PM2.5 NAAQS.74 Other recent studies additionally report that declines in ambient 16 

PM2.5 concentrations over a period of years have been associated with decreases in mortality 17 

rates and increases in life expectancy, improvements in respiratory development, and decreased 18 

incidence of respiratory disease in children, further supporting the robustness of PM2.5 health 19 

effect associations reported in the epidemiologic evidence.  20 

 Consistent with previous reviews, we note that the use of information from epidemiologic 21 

studies to inform conclusions on the primary PM2.5 standards is complicated by the fact that such 22 

studies evaluate associations between distributions of ambient PM2.5 and health outcomes, and 23 

do not identify the specific exposures that can lead to the reported effects. Rather, health effects 24 

can occur over the entire distribution of ambient PM2.5 concentrations evaluated, and 25 

epidemiologic studies do not identify a population-level threshold below which it can be 26 

concluded with confidence that PM-associated health effects do not occur (U.S. EPA, 2019, 27 

section 1.5.3). However, the study-reported ambient PM2.5 concentrations reflecting estimated 28 

exposure in the middle portion of the PM2.5 air quality distribution, which corresponds to the 29 

bulk of the underlying data, which provide the strongest support for reported health effect 30 

associations and can inform our preliminary conclusions on the current and potential alternative 31 

standards. In using this information to inform our preliminary conclusions, we recognize that the 32 

mean PM2.5 concentrations reported by key epidemiologic studies differ in how mean 33 

 
74 We note that the studies by Corrigan et al. (2018)  and Sanders et al. (2020) report monitor-based average PM2.5 

concentrations, and that these studies do not report design values. 
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concentrations were calculated (Table 3-5, Table 3-6, Table 3-7, Table 3-8), as well as their 1 

interpretation in what means represent in the context of the current standards. To frame our 2 

evaluation of study-reported mean PM2.5 concentrations, we specifically consider the following 3 

question: 4 

• How do the study-reported means from the key epidemiologic studies and the related 5 

air quality analyses that compare study means to area design values inform our 6 

consideration of the level of the current annual PM2.5 standard?  7 

In the 2012 review, the Administrator recognized that evidence of an association between PM2.5-8 

related health effects and long- and short-term exposures in the epidemiologic studies were 9 

strongest at and around the long-term average where the data in the study are most concentrated. 10 

In so doing, she noted that the long-term mean PM2.5 concentrations were available for the 11 

studies considered and represented the most robust data set to inform decisions on appropriate 12 

levels for the annual primary PM2.5 standard, while also recognizing that this approach did not 13 

provide a bright line for reaching this decision (78 FR 3140, January 15, 2013). As detailed in 14 

section 3.3.3.2.1, the reported mean PM2.5 concentrations derived from monitored observations 15 

are not the same as the mean PM2.5 concentrations estimated using hybrid modeling methods, 16 

which are also not the same as design values used to determine whether an area meets or exceeds 17 

the PM2.5 NAAQS. Additional analyses, new in this draft PA though similar to those in the 2012 18 

review, examine how the calculation of the study mean varies across studies and how these 19 

metrics compare to the annual design value. The analysis indicates that study means from 20 

methods that use hybrid models to estimate exposures are generally lower in areas where urban 21 

and rural PM2.5 concentrations are estimated, compared to hybrid modeled PM2.5 concentrations 22 

in urban areas or concentrations that have been population-weighted. Moreover, the analysis 23 

indicates that hybrid modeling mean estimates are generally lower than the average of monitored 24 

PM2.5 concentrations, which are both below the concentration measured at the highest monitor 25 

(i.e., the approach used to calculate the design value). In the national-scale analysis, where air 26 

quality analyses compared composite monitored PM2.5 concentrations with annual PM2.5 design 27 

values in the U.S., annual PM2.5 design values were approximately 10% to 20% higher than 28 

concentrations averaged across multiple monitors in the same CBSA (section 2.3.3.1, Figure 2-29 

28 and Table 2-2). 30 

Further, with the expansion of studies that employ hybrid modeling methods to estimate 31 

PM2.5 concentrations, Section 2.3.3.2.4 details a comparison of PM2.5 fields in estimating 32 
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exposure relative to design values using the DI2019 and HA202075 surfaces, which are two air 1 

quality surfaces included in several of the key epidemiologic studies. This analysis illustrates that 2 

population-weighting the PM2.5 concentrations in the hybrid modeling approaches has an effect 3 

on the resulting study-reported mean. Specifically, the analysis shows that area annual design 4 

values are 40% to 50% higher compared to the study-reported means when population-weighting 5 

is not employed. Additionally, when population-weighting is applied in studies using hybrid 6 

modeling approaches, average annual PM2.5 design values are only 15% to 18% higher than the 7 

study-reported means. This suggests that whether a study using a hybrid modeling approach 8 

incorporated population-weighting is very important for understanding how to interpret the 9 

estimated PM2.5 exposure concentrations, particularly for purposes of comparing those estimated 10 

concentrations to actual design values. 11 

Thus, given the potentially large differences between study reported means and area 12 

annual design values, it is important to consider the manner in which PM2.5 concentrations are 13 

estimated (e.g., monitored concentrations versus modeled concentrations) and the method by 14 

which means are calculated and reported as the overall mean PM2.5 concentration (e.g., averaging 15 

across all grid cells in an urban area versus population-weighting). Additional analyses, new in 16 

this draft PA though similar to those in the 2012 review, suggest that area annual design values 17 

higher than the study-reported means by 10-20% (monitor-based studies), 14-18% (hybrid 18 

modeling with population-weighting) or 40-50% (hybrid modeling without population 19 

weighting). Grouping studies based on the approach used to estimate the mean, we note that the 20 

overall mean PM2.5 concentrations in key U.S. epidemiologic studies are as follows: 21 

• Range of monitor-based mean PM2.5 concentrations is from 9.9 μg/m3 to 16.5 μg/m3 (range in 22 

2020 PA: 10.7 μg/m3 to 16.5 μg/m3)  23 

• Range of mean PM2.5 concentrations in studies that use hybrid modeling and apply 24 

population-weighting: 9.3 μg/m3 to 12.3 μg/m3 25 

• Range of mean PM2.5 concentrations in studies that use hybrid modeling and do not apply 26 

population-weighting: 8.1 μg/m3 to 11.9 μg/m3 27 

 The mean PM2.5 concentrations in Canadian studies are more difficult to compare to the 28 

annual design value used to determine compliance in the U.S. As we note above, the air quality 29 

analyses in section 3.3.3.2.1 are most relevant for interpreting U.S. epidemiologic studies. Given 30 

that we are lacking important pieces of information that allow us to do similar analyses for 31 

 
75 As discussed above in section 2.3.3.2.4, HA2020 refers to estimated PM2.5 concentrations from a hybrid modeling 

approach developed by Hammer et al. (2020) and van Donkelaar et al. (2019), and which estimates Nationwide 

PM2.5 concentrations from 2000-2016.  
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Canada, we are unable to provide specific quantitative insight into how the study reported means 1 

in the Canadian studies would compare to area design values in the U.S. However, we note that 2 

the overall mean PM2.5 concentrations in key Canadian epidemiologic studies are similar to, 3 

though somewhat lower than, those from the U.S. studies: 4 

• Range of monitor-based mean PM2.5 concentrations: 6.9 µg/m3 to 13.3 µg/m3  5 

• Range of mean PM2.5 concentrations in studies that use hybrid modeling (all of which 6 

average up to postal codes and thus include some aspects of population-weighting): 5.9 7 

µg/m3 to 9.8 µg/m3  8 

In the context of evaluating whether the newly available scientific information alters our 9 

conclusions from the 2020 review regarding the nature of health effects attributable to human 10 

exposure to PM2.5 from ambient air, while the causality determinations have not changed, the 11 

number of studies that use hybrid modeling approaches has expanded. When using the 12 

information from the new air quality analyses to interpret key epidemiologic studies in the 13 

context of the primary standards, we note that they suggest that epidemiologic studies that use 14 

monitor-based estimates for PM2.5 exposure or that calculate population-weighted averages from 15 

hybrid modeling approaches generally report mean concentrations that are more easily compared 16 

to an area annual design value (i.e., area annual design values are 10-20% greater than mean 17 

PM2.5 concentrations). However, we also note that area annual design values tend to be 18 

substantially greater than mean concentrations in epidemiologic studies that use hybrid 19 

approaches and do not include population weighting (e.g. 40-50% greater). Thus, when 20 

evaluating what the mean PM2.5 concentrations reported by key epidemiologic studies may 21 

indicate regarding the current or alternative PM2.5 standards, we emphasize the importance of 22 

considering the broader relationships between mean PM2.5 concentrations, averaged across space 23 

and over time using a variety of approaches, and PM2.5 design values. 24 

• How do the study-reported PM2.5 concentrations corresponding to the 25th and 10th 25 

percentiles of health data or exposure estimates provide insight to inform our 26 

consideration of the level of the current annual PM2.5 standard?  27 

In the 2012 review, the 2011 PA noted the interrelatedness of the distributional statistics 28 

and a range of one standard deviation around the mean which contains approximately 68% of 29 

normally distributed data, in that one standard deviation below the mean falls between the 25th 30 

and 10th percentiles (U.S. EPA, 2011 p. 2-71). Given this, the 2011 PA provided information, as 31 

available for a subset of key epidemiologic studies, on the study-reported PM2.5 concentrations 32 

corresponding to the 25th and 10th percentiles of health data or exposure estimates. 33 

In that review, the Administrator placed some weight on studies that provided mean 34 

PM2.5 concentrations around the 25th percentile of the distributions of deaths and cardiovascular-35 

related hospitalizations and judged the region around the 25th percentile as a reasonable part of 36 



 

October 2021 3-168  Draft – Do Not Quote or Cite 

the distribution to guide the decision on the appropriate standard level (78 FR 3161, January 15, 1 

2013). Given the potential for consideration of this information in this reconsideration with 2 

regard to the adequacy of the standard level, we note that of the key epidemiologic studies 3 

evaluated in the 2019 ISA and draft ISA Supplement, a subset of studies report PM2.5 4 

concentrations corresponding to the 25th and 10th percentiles of health data or exposure estimates 5 

to provide insight into the concentrations that comprise the lower quartiles of the air quality 6 

distributions. In the key U.S. epidemiologic studies that report the 25th and 10th percentiles of 7 

health events corresponding to mean PM2.5 concentrations (i.e., averaged over the study period 8 

for each study city), we note: 9 

• Monitor-based 25th percentiles of health events correspond to mean PM2.5 concentrations 10 

(i.e., averaged over the study period for each study city): at or above 11.5 g/m3 11 

• Monitor-based 10th percentiles of health events correspond to mean PM2.5 concentrations: at 12 

or above 9.8 g/m3 13 

• PM2.5 concentrations corresponding to 25th percentiles of estimated exposures that use hybrid 14 

modeling approaches to estimate long-term PM2.5 exposures range from 6.2 to 9.2 g/m3 15 

• PM2.5 concentrations corresponding to 25th percentiles of estimated exposures in studies that 16 

uses hybrid modeling to estimate short-term exposures: at or above 6.4 g/m3 17 

• PM2.5 concentration corresponding to the 25th percentile of estimated exposures in one study 18 

with lower concentrations is 4.6 g/m3 19 

• PM2.5 concentration corresponding to the 10th percentile in the two studies with available 20 

information on this percentile range from 4.7 g/m3 to 7.3 g/m3.  21 

In thinking about these values relative to an area annual design value, we emphasize that 22 

the 25th and 10th percentiles provide information about the lower quartiles of the air quality 23 

distributions, while the study reported mean provides information about the average or typical 24 

exposures, and the corresponding area annual design value provides the highest average annual 25 

PM2.5 concentration being measured. In this way, all of these metrics (i.e. lower percentiles, 26 

study mean, annual design value) have a relationship relative to the other.   27 

 Uncertainties in the Health Effects Evidence 28 

A number of key uncertainties and limitations were identified in the previous review with respect 29 

to health effects evidence, as described in the 2020 PA. This section considers the currently 30 

available information, including that newly available in this reconsideration, with regard to such 31 

areas of uncertainty. 32 
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• To what extent have previously identified uncertainties in the health effects evidence 1 

been reduced and/or have new uncertainties emerged? 2 

We continue to recognize uncertainties that persist from previous reviews. First, we note 3 

uncertainties related to the susceptibility of different population groups for which evidence is not 4 

as clear (e.g., based on differences in underlying factors such as obesity, smoking status and 5 

residential location). For human exposures studies, there are uncertainties related to mixed 6 

results seen at concentrations near ambient PM2.5 levels. It is also unclear how the results alone 7 

and the importance of the effects observed in these studies, particularly in studies conducted at 8 

near-ambient PM2.5 concentrations, should be interpreted with respect to adversity to public 9 

health. With respect to animal toxicology studies, while these studies also help establish 10 

biological plausibility, uncertainty exists in extrapolating the effects seen in animal toxicology 11 

studies, and the PM2.5 concentrations that cause those effects to human populations.  12 

Uncertainties associated with the epidemiologic evidence (e.g., the potential for 13 

copollutant confounding and exposure measurement error) remain, though new studies assessed 14 

in the draft ISA Supplement employ statistical methods like causal modeling methods, which 15 

have reduced some uncertainties related to potential confounding of effects. In so doing, 16 

however, we note the strength in the epidemiologic evidence in its support for determination of a 17 

causal relationship for mortality and cardiovascular effects as summarized in section 3.3.1 above.  18 

With regard to controlling for potential confounders in particular, key epidemiologic 19 

studies use a wide array of approaches. Time-series studies control for potential confounders that 20 

vary over short time intervals (e.g., including temperature, humidity, dew point temperature, and 21 

day of the week), while cohort studies control for community- and/or individual-level 22 

confounders that vary spatially (e.g., including income, race, age, socioeconomic status, 23 

smoking, body mass index, and annual weather variables such as temperature and humidity) 24 

(Appendix B, Table B-4). Sensitivity analyses indicate that adding covariates to control for 25 

potential confounders can either increase or decrease the magnitude of PM2.5 effect estimates, 26 

depending on the covariate, and that none of the covariates examined can fully explain the 27 

association with mortality (e.g., Di et al., 2017b, Figure S2 in Supplementary Materials). Thus, 28 

while no individual study adjusts for all potential confounders, a broad range of approaches have 29 

been adopted across studies to examine confounding, supporting the robustness of reported 30 

associations. Available studies additionally indicate that PM2.5 health effect associations are 31 

robust across various approaches to estimating PM2.5 exposures and across various exposure 32 

windows. This includes recent studies that estimate exposures using ground-based monitors 33 

alone and studies that estimate exposures using data from multiple sources (e.g., satellites, land 34 

use information, modeling), in addition to monitors. While none of these approaches eliminates 35 
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the potential for exposure error in epidemiologic studies, such error does not call into question 1 

the fundamental findings of the broad body of PM2.5 epidemiologic evidence. 2 

Additionally, studies that examine the shapes of concentration-response functions over 3 

the full distribution of ambient PM2.5 concentrations have not identified a threshold 4 

concentration, below which associations no longer exist (U.S. EPA, 2019, section 1.5.3, U.S. 5 

EPA, 2021a, sections 2.2.3.1 and 2.2.3.2). While such analyses are complicated by the relatively 6 

sparse data available at the lower end of the air quality distribution (U.S. EPA, 2019, section 7 

1.5.3), analyses that assess the concentration-response relationship support a linear, no-threshold 8 

effect down to 5.0 μg/m3, though uncertainties increase at concentrations of less than 8.0 μg/m3. 9 

While studies using hybrid modeling methods have demonstrated reduced exposure 10 

measurement error and uncertainty in the health effect estimates, these methodologies have 11 

inherent limitations and uncertainties, as described in more detail in section 2.3.3.1.5 and above 12 

in 3.3.4, and the performance of the modeling approaches depends on the availability of 13 

monitoring data which varies by location. Factors likely contributing to poorer model 14 

performance often coincide with relatively low ambient PM2.5 concentrations, in areas where 15 

predicted exposures are at a greater distance to monitors, and under conditions where the 16 

reliability and availability of key datasets (e.g., air quality modeling) are limited. Thus, 17 

uncertainty in hybrid model predictions becomes an increasingly important consideration as 18 

lower predicted concentrations are considered.  19 

In addition, limitations and or uncertainties exist in the analysis (section 2.3.3.2.4) 20 

evaluating the comparison of estimated PM2.5 concentrations using hybrid modeling surfaces and 21 

their relationship to design values that should be considered. While design values in general are 22 

higher than estimated PM2.5 concentrations using these two hybrid modeling approaches, it is 23 

important to recognize that these are just two hybrid modeling approaches and other 24 

models/approaches/spatial scales may result in somewhat different values. This analysis 25 

estimates PM2.5 concentrations by CBSAs, but not every health study uses PM2.5 estimates at this 26 

spatial scale, and spatial scales for exposure estimates can vary by study. As an example of this 27 

variation, in Di et al. (2016), an annual average PM2.5 concentration was assigned to a person at-28 

risk of death according to the ZIP code of the person’s residence. The analysis completed was a 29 

nationwide analysis and ratios are based on national estimates. However, not all health studies 30 

are national studies and ratios in different parts of the country could be higher or lower, 31 

depending on factors like population, as well as rural versus urban areas.  This analysis used 32 

specific air quality years (2000-2016) and other air quality year could result in higher or lower 33 

ratios.  34 

Regardless of whether an epidemiologic study uses monitoring data or a hybrid modeling 35 

approach when estimating PM2.5 exposures, one important challenge that persists is associated 36 
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with the interpretation of the study reported mean PM2.5 concentrations and how they compare to 1 

design values. This is particularly true given the variability that exists across the various 2 

approaches to estimate exposure and to calculate the study reported mean. Further, with respect 3 

to interpreting the study reported mean concentrations from Canadian studies, using U.S. based 4 

analyses of hybrid modeling and their relationship to design values is complicated by differences 5 

between the U.S. and Canada as it relates to population densities, PM2.5 concentration gradients, 6 

and source distributions in the two countries.   7 

3.5.2 Risk-based Considerations 8 

Our consideration of the scientific evidence available in this reconsideration, as at the 9 

time of the 2020 review, is informed by results from a quantitative analysis of risk. The 10 

overarching consideration in this section is whether the current risk information alters our overall 11 

conclusions regarding health risk associated with exposure to PM2.5 in ambient air. As in our 12 

consideration of the evidence in section 3.5.1 above, we have focused the discussion regarding 13 

the risk information around key questions related to air quality conditions simulated to just meet 14 

existing and alternative primary PM2.5 standards. 15 

Prior to addressing the key risk questions, we provide a summary of important aspects of 16 

the assessment, including the study areas, air quality scenarios, and risk metrics (section 3.5.2.1). 17 

We then consider aspects of the questions beginning with the magnitude of risk estimated by 18 

both the overall assessment and for certain at-risk populations, followed by the key uncertainties 19 

associated with the quantitative analyses with regard to drawing conclusions as to the adequacy 20 

of protection afforded by the current primary PM2.5 standards (section 3.5.2.2 and 3.5.2.3). We 21 

also consider uncertainties associated with the risk assessment (section 3.5.2.4). Lastly, we 22 

consider the risk estimates from the quantitative assessments with regard to the extent to which 23 

such estimates may be judged to be important from a public health perspective (section 3.5.2.5). 24 

 Risk Assessment Analyses 25 

In the risk assessment conducted for this reconsideration, described in detail in section 26 

3.4 above and Appendix C, we have estimated PM2.5 health risks associated with air quality 27 

conditions that just meet the current primary PM2.5 standards and potential alternative standard 28 

levels. These analyses inform our understanding of the health risks for all-cause or nonaccidental 29 

mortality associated with long- and short-term PM2.5 exposures. These analyses estimate 30 

exposure and risk for populations in 47 urban study areas, as well as subsets of those study areas 31 

depending on which of the primary PM2.5 standards is controlling in a given study area. 32 

The 47 urban study areas were identified as they required relatively small adjustments 33 

(<20%) to just meet the current primary PM2.5 standards and present a variety of circumstances 34 

with regard to risk associated with long- and short-term exposures to PM2.5 in ambient air. This 35 
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set of study areas and the associated populations are intended to be informative to the EPA’s 1 

consideration of potential risks that may be associated with the air quality conditions that meet 2 

the current and potential alternative primary PM2.5 standards. The 47 study areas include nearly 3 

60 million people ages 30 years or older and illustrate the differences likely to occur across 4 

various locations with such air quality as a result of area-specific differences in emissions, 5 

meteorological, and population characteristics. While the same conceptual air quality scenarios 6 

are simulated in all study areas (i.e., conditions that just meet the existing or alternate standards), 7 

source, meteorological and population characteristics in the study areas contribute to variability 8 

in the estimated magnitude of risk across study areas. 9 

As an initial matter, we note that, consistent with the overall approach for this 10 

reconsideration, the risk assessment has a target scope that focuses on all-cause or nonaccidental 11 

mortality associated with long- and short-term PM2.5 exposures (section 3.4.1.2). As noted in 12 

section 3.5.1 above, the evidence assessed in the 2019 ISA and draft ISA Supplement support a 13 

causal relationship between long- and short-term PM2.5 exposures and mortality. Concentration-14 

response functions used in the risk assessment are from large, multicity U.S. epidemiologic 15 

studies that evaluate the relationship between PM2.5 exposures and mortality and were identified 16 

using criteria that take into account factors such as study design, geographic coverage, 17 

demographic populations, and health endpoints (U.S. EPA, 2021b, section 2.1). 18 

In the risk assessment, air quality modeling was used to develop a PM2.5 concentration 19 

field for 2015 (described in more detail in section 3.4.1.4 and Appendix C). The 2015 PM2.5 20 

concentration field was adjusted to simulate just meeting the existing annual and 24-hour 21 

standards of 12.0 µg/m3 and 35 µg/m3 and to just meeting potential alternative annual and 24-22 

hour standards of 10.0 µg/m3 and 30 µg/m3. The adjustments made to the PM2.5 concentration 23 

field are based on assumptions. Changes in PM2.5, in reality, require specific information 24 

regarding emissions changes, with concentration gradients of PM2.5 varying accordingly across 25 

an area. The risk assessment used two adjustment approaches to serve as bounding scenarios for 26 

the various ways an alternative standard may be met: (1) preferentially adjusting direct/primary 27 

PM emissions, for which changes in PM2.5 tend to be more localized near the direct emissions 28 

sources of PM (Pri-PM), and (2) preferentially adjusting SO2 and NOX precursor emissions to 29 

simulate changes in secondarily formed PM2.5, for which reductions in PM2.5 tend to be more 30 

evenly spread across a study area (Sec-PM). In addition to the air quality modeling approach, 31 

linear interpolation and extrapolation were used to simulate just meeting alternative annual 32 

standards with levels of 11.0 (interpolated between 12.0 and 10.0 g/m3), 9.0 g/m3, and 8.0 33 

g/m3 (both extrapolated from 12.0 and 10.0 g/m3) in the subset of study areas controlled by 34 

the annual standard. 35 
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Evidence strongly supports that different racial and ethnic groups, such as Black and 1 

Hispanic populations, have higher PM2.5 exposures than White and non-Hispanic populations, 2 

respectively, thus contributing to increased risk of PM-related effects. In addition to the risk 3 

assessment described above, quantitative analyses for this reconsideration also assess long-term 4 

PM2.5-attributable exposure and mortality risk, stratified by racial/ethnic demographics. 5 

Consistent with the overall risk assessment approach, the specific epidemiologic studies and 6 

concentration-response functions used in the at-risk analyses were selected to take into account 7 

factors such as study design, geographic coverage, demographic populations, and health 8 

endpoints. Of the available studies, Di et al., 2017b was identified as best characterizing 9 

populations potentially at increased risk of long-term exposure and all-cause mortality and 10 

provides race- and ethnicity-stratified concentration-response functions for ages 65 and over 11 

(section 3.4.1.6 and Appendix C). Risk is quantitatively assessed within racial and ethnic 12 

minority populations of older adults in the full set of 47 areas and the subset of 30 areas 13 

controlled by the annual PM2.5 standard under Pri-PM air quality simulations. This analysis, 14 

when considered alongside estimates of risk across all populations in the 47 study areas, can help 15 

to inform preliminary conclusions on the annual primary PM2.5 standards that would be requisite 16 

to protect the public health of nonwhite populations potentially at increased risk of long-term 17 

PM2.5-related mortality effects. 18 

 Estimating Risk under the Current and Alternative Primary PM2.5 Standards 19 

In this section, we summarize the risk estimates associated with air quality scenarios just 20 

meeting the current primary PM2.5 standards and potential alterative standard levels. 21 

• What are the estimated PM2.5-associated health risks for air quality just meeting the 22 

current primary PM2.5 standards?  23 

In considering the risk results, we focus first on estimates for the full set of 47 urban 24 

study areas. The risk assessment estimates that the current primary PM2.5 standards could allow a 25 

substantial number of deaths in the U.S., with the large majority of those deaths associated with 26 

long-term PM2.5 exposures. For example, when air quality in the 47 study areas is adjusted to just 27 

meet the current standards, the risk assessment estimates about 41,000 to 45,000 deaths from all-28 

cause mortality in a single year (i.e., for long-term exposures; confidence intervals range from 29 

about 30,000 to 59,000) (section 3.4.2.1). For the 30 study areas76 where just meeting the current 30 

 
76 These 30 areas controlled by the annual standard under all scenarios evaluated include a population of 

approximately 48 million adults aged 30-99, or about 75% of the population included in the full set of 47 areas. 
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standards is controlled by the annual standard,77 long-term PM2.5 exposures are estimated to be 1 

associated with as many as 39,000 (confidence intervals range from about 26,000 to 51,000) 2 

deaths from all-cause mortality in a single year (section 3.4.2.2). For the 11 study areas78 where 3 

just meeting the current standards is controlled by the daily standard,79 long-term PM2.5 4 

exposures are estimated to be associated with as many as 2,600 (confidence intervals ranging 5 

from 1,700 to 3,400) deaths in a single year (section 3.4.2.3). The risk assessment estimates far 6 

fewer deaths in a single year for short-term PM2.5 exposures as compared to long-term PM2.5 7 

exposures, across all of the study area subsets. 8 

While the absolute numbers of estimated deaths vary across exposure durations, 9 

populations, and concentration-response functions, the general magnitude of risk estimates 10 

supports the potential for significant public health impacts in locations meeting the current 11 

primary PM2.5 standards. This is particularly the case given that the large majority of PM2.5-12 

associated deaths for air quality just meeting the current standards are estimated at annual 13 

average PM2.5 concentrations from about 10 to 12 µg/m3. These annual average PM2.5 14 

concentrations fall within the range of long-term average concentrations over which key 15 

epidemiologic studies provide strong support for reported positive and statistically significant 16 

health effect associations. 17 

• To what extent are risks estimated to decline when air quality is adjusted to just 18 

meet potential alternative standards with lower levels?  19 

In the 47 urban study areas, when air quality is simulated to just meet alternative 20 

standards, there are substantially larger risk reductions associated with lowering the annual 21 

standard then with lowering the 24-hour standard. Risks are estimated to decrease by 13-17% 22 

when air quality is adjusted to just meet an alternative annual standard with a level of 10.0 g/m3 23 

or by 1-2% when adjusted to just meet an alternative 24-hour standard with a level of 30 g/m3 24 

(section 3.4.2.1). The percentage decrease when just meet an alternative annual standard with a 25 

level of 10.0 g/m3 corresponds to approximately 7,400 fewer deaths per year (confidence 26 

intervals ranging from about 4,100 to 9,800) attributable to long-term PM2.5 exposures.  27 

 
77 For these areas, the annual standard is the “controlling standard” because when air quality is adjusted to simulate 

just meeting the current or potential alternative annual standards, that air quality also would meet the 24-hour 

standard being evaluated.  

78 These 11 areas controlled by the 24-hour standard under all scenarios evaluated include a population of 

approximately 10 million adults aged 30-99, or about 17% of the population included in the full set of 47 areas. 

79 For these areas, the 24-hour standard is the controlling standard because when air quality is adjusted to simulate 

just meeting the current or potential alternative 24-hour standards, that air quality also would meet the annual 

standard being evaluated. Some areas classified as being controlled by the 24-hour standard also violate the 

annual standard.  
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In the 30 study areas where just meeting the current and alternative standards is 1 

controlled by the annual standard, air quality adjusted to meet alternative annual standards with 2 

lower levels is associated with reductions in estimated all-cause mortality risk. These reductions 3 

in risk for alternative annual levels are as follows: 7-9% reduction for an alternative annual level 4 

of 11.0 µg/m3, 15-19% reduction for a level of 10.0 µg/m3, 22-28% reduction for a level of 9.0 5 

µg/m3, and 30-37% reduction for a level of 8.0 µg/m3 (section 3.4.2.2). For each of these 6 

standards, most of the risk remaining is estimated at annual average PM2.5 concentrations that 7 

fall somewhat below the alternative standard levels. 8 

 At-Risk Analyses 9 

As noted above, in addition to the risk assessment described in sections 3.4.1.1-3.4.1.5 10 

and 3.4.2.1-3.4.2.3, risk was quantitatively assessed within racial and ethnic minority populations 11 

of older adults in the full set of 47 areas and the subset of 30 areas controlled by the annual PM2.5 12 

standard under all air quality simulations evaluated (sections 3.4.1.6 and 3.4.2.4). 13 

• What is the magnitude of population risk in at-risk populations in areas simulated to 14 

just meet the current primary PM2.5 standards? To what extent are risks estimated 15 

to decline within each demographic group when air quality is adjusted to just meet 16 

potential alternative annual standards with lower levels? 17 

The at-risk analysis first compares the average estimated PM2.5 exposure concentrations 18 

for each demographic population when just meeting the current and alternative annual PM2.5 19 

standards. Across all simulated air quality for both the full set of 47 and the subset of 30 study 20 

areas, Blacks experience the highest average PM2.5 concentrations of the demographic groups 21 

analyzed. Native Americans experienced the lowest average PM2.5 concentrations, particularly in 22 

the full set of 47 study areas. White, Hispanic, and Asian populations were exposed to similar 23 

average PM2.5 concentrations. Additionally, as the levels of potential alternative annual PM2.5 24 

standards decrease, there is comparatively less disproportionate exposure between demographic 25 

populations (section 3.4.2.4). 26 

Risk estimates can provide additional information beyond the exposure information to 27 

inform our understanding of potentially disproportionate impacts, in this instance by including 28 

demographic-specific information on baseline incidence and the relationship between exposure 29 

and health effect. Across all air quality scenarios and demographic groups evaluated, Black 30 

populations are associated with the largest PM2.5-attributable mortality risk rate per 100,000 31 

people, while White populations are associated with the smallest PM2.5-attributative mortality 32 

risk rate (section 3.4.2.4, Figure 3-20). Generally, as the levels of potential alternative annual 33 

PM2.5 standards decrease in the 30 areas controlled by the annual standard, the average reduction 34 

in PM2.5 concentration and mortality risk rates increase across all demographic populations 35 

(section 3.4.2.4, Figure 3-21). 36 
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In comparing the reductions in average national PM2.5 concentrations and risk rates 1 

within each demographic population, we note that the average percent PM2.5 concentrations and 2 

risk reductions are slightly greater in the Black population than in the White population for each 3 

alternative standard evaluated (11.0 µg/m3, 10.0 µg/m3, 9.0 µg/m3, and 8.0 µg/m3), when shifting 4 

from the current annual PM2.5 standard (12.0 µg/m3) in the full set of 47 areas and the subset of 5 

30 areas controlled by the annual standard. We further note that the difference in average percent 6 

risk reductions increases slightly more in Blacks than in Whites as the level of the potential 7 

alternative annual standard decreases (section 3.4.2.4, Table 3-19 and Table 3-20). 8 

 Uncertainties 9 

In this section, we consider uncertainties associated with the quantitative estimates of risk 10 

in the overall risk assessment and from risk rates and exposure estimates in the at-risk analysis 11 

(sections 3.4.2.5, 3.4.1.7, and 3.4.1.8). Variability and uncertainty associated with the risk 12 

estimates are assessed using several quantitative and qualitative approaches, as described in more 13 

detail in section C.3 of Appendix C. Generally, the quantitative uncertainty characterization 14 

approaches include the following: (1) evaluating multiple concentration-response functions for 15 

the same health endpoint; (2) evaluating multiple methods for simulating air quality scenarios; 16 

and (3) characterizing the 95% confidence intervals associated with risk estimates. The 17 

qualitative uncertainty characterization approach is based on WHO (2008) guidance and on 18 

guidance documents developed by the EPA (U.S. EPA, 2001, U.S. EPA, 2004). This qualitative 19 

approach includes an assessment of both the magnitude and direction of impact of those 20 

uncertainties on risk estimates, including three levels of classification for the magnitude: low, 21 

medium, and high.80 22 

• What are the key uncertainties associated with the risk estimates and at-risk 23 

analysis, including those of particular significance with regard to drawing 24 

conclusions as to the adequacy of the protection afforded by the current primary 25 

PM2.5 standards?  26 

Based on the uncertainty characterization and associated analyses in the risk assessment 27 

and consideration of associated policy implications, we recognize several areas of uncertainty as 28 

particularly important in our consideration of the risk estimates, as was also the case in previous 29 

reviews, and in the risk rates and exposure and risk reductions in the at-risk analysis. 30 

 
80 The classification of the magnitude of impact for sources of uncertainty includes three levels: (a) low (unlikely to 

produce a sufficient impact on risk estimates to affect their interpretation), (b) medium (potential to have a 

sufficient impact to affect interpretation), and (c) high (likely to have an impact sufficient to affect interpretation). 

For several of the sources, a classification was provided between these levels (e.g., low-medium, medium-high). 

More information is available in Appendix C, section C.3. 
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With regard to the concentration-response relationships, we recognize that the degree to 1 

which different concentration-response functions result in different risk estimates could reflect 2 

differences in study design and/or populations evaluated, as well as other factors. We also note 3 

uncertainty in the risk assessment associated with the interpretation of the shapes of 4 

concentration-response relationships, particularly at PM2.5 concentrations near the lower end of 5 

the air quality distribution. This interpretation is complicated by relatively low data density in the 6 

lower concentration range, the possible influence of exposure measurement error, and variability 7 

among individuals with respect to air pollution health effects. These sources of variability and 8 

uncertainty tend to smooth and “linearize” population-level concentration-response functions, 9 

and thus could obscure the existence of a threshold or nonlinear relationship (U.S. EPA, 2015b, 10 

section 6.c). As described in section 3.3.1, the 2019 ISA concludes and the draft ISA Supplement 11 

provides further support that the majority of evidence of long-term PM2.5 exposure and mortality 12 

supports a linear, no-threshold concentration-response relationship, though there is initial 13 

evidence indicating that the slope of the concentration-response curve may be steeper at lower 14 

concentrations for cardiovascular mortality (U.S. EPA, 2019, section 1.5.3.2; U.S. EPA, 2021a, 15 

section 3.2.2.2). The 2019 ISA and draft ISA Supplement note that there is less certainty in the 16 

shape of the concentration-response curve at mean annual PM2.5 concentrations generally below 17 

8 μg/m3 because data density is reduced below this concentration (U.S. EPA, 2019, section 18 

11.2.4; U.S. EPA, 2021a, section 3.2.2.2.7). As described in more detail in section 3.4.2.5 above 19 

and Appendix C, a portion of risk modeling in the risk assessment does include locations with 20 

annual ambient PM2.5 concentrations adjusted to below 8 ug/m3, so there is the potential for 21 

significant uncertainty being introduced into the risk assessment (particularly for that portion of 22 

risk modeled at or below 8 ug/m3). With regard to short-term PM2.5 exposure and mortality, the 23 

2019 ISA concludes and the draft ISA Supplement provides additional support that, while 24 

difficulties remain in assessing the shape of the PM2.5-mortality concentration-response 25 

relationship and studies have not conducted systematic evaluations of alternatives to linearity, 26 

recent studies continue to provide evidence of a no-threshold linear relationship, with less 27 

confidence at concentrations lower than 5 μg/m3 (U.S. EPA, 2021a, section 3.2.1.2.6). However, 28 

we note that in most instances in the risk assessment for this reconsideration, the concentration-29 

response function used had only a small impact on the risk estimates. 30 

With regard to the method for simulating air quality scenarios, the approach used to 31 

adjust air quality (i.e., adjusting primary PM emissions or secondary PM emission precursors) 32 

had some impact on the overall risk estimates. We also note that there may be uncertainty 33 

associated with the methods used to simulate air quality scenarios just meeting the current and 34 

potential alternative primary PM2.5 standards. The model-based methods for simulating air 35 

quality scenarios that just meet the current and alternative standards could contribute to 36 
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uncertainties associated with the PM2.5 concentration estimates used in the risk assessment and 1 

at-risk analyses. While state-of-the-science modeling methods were used to fill in the spatial and 2 

temporal gaps in monitoring data, model-related biases and errors can introduce uncertainties. 3 

Additionally, the modeling scenarios are based on “across-the-board” changes in primary PM2.5 4 

or NOX and SO2 emissions from all anthropogenic sources throughout the U.S. by fixed 5 

percentages. While this approach tends to target the key sources in each area, emission changes 6 

are not tailored to specific periods or sources. Furthermore, while the two adjustment approaches 7 

that were applied span a wide range of emissions conditions, they represent a subset of the 8 

possible emissions cases that could be used to adjust PM2.5 concentrations. In addition, when 9 

simulating air quality scenarios that just meet potential alternative annual PM2.5 standards using 10 

linear extrapolation/interpolation, we recognize that this approach does not fully capture the 11 

potential non-linearities associated with real-world changes in air quality. However, it is 12 

important to note that the adjustment approach had a larger impact on the distribution of risk 13 

reductions, particularly for potential alternative annual standard levels of 9.0 and 8.0 g/m3. 14 

It is important to note that the air quality adjustment approaches applied in the risk 15 

assessment differ from the development and modeling of emission control strategies that would 16 

occur in implementing a standard. In implementing a standard, an appropriately defined 17 

nonattainment area would reduce emissions of primary PM and/or PM precursors selected 18 

through analysis of site-specific conditions to meet a standard that is exceeded. In the risk 19 

assessment, gridded concentration fields over CBSAs were adjusted to higher or lower 20 

concentrations to correspond to just meet standards based on emission changes applied 21 

throughout the U.S. Two emission adjustment cases (primary PM and NOX and SO2) were used 22 

to provide concentration fields that span a wide range of realistic spatial patterns, but the air 23 

quality modeling for the risk assessment is not designed to reflect emission changes that might 24 

occur in implementing a standard. The Regulatory Impact Analysis (RIA) associated with 25 

NAAQS revisions provides illustrative estimates of emission changes needed to meet potential 26 

alternative standards and more closely reflects implementation considerations (U.S. EPA, 2013, 27 

U.S. EPA, 2015a).   28 

We further note that there is considerable variation in the range of confidence intervals 29 

associated with the point estimates generated in the risk assessment, with some concentration-30 

response functions displaying greater variability than others. A number of factors could 31 

potentially influence the varying degrees of statistical precision in effect estimates, including 32 

sample size, exposure measurement error, degree of control for confounders/effect modifiers, 33 

and variability in PM2.5 concentrations evaluated in the original epidemiologic study. 34 

There may also be uncertainty associated with the potential confounding of the PM2.5-35 

mortality effect and the omission of potential confounders from analyses could either increase or 36 
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decrease the magnitude of PM2.5 effect estimates. Not accounting for confounders can introduce 1 

uncertainty into the effect estimates, and thereby introduce uncertainty into the risk estimates that 2 

are generated using those effect estimates. While various approaches to control for potential 3 

confounders have been adopted across the epidemiologic studies assessed in the 2019 ISA and 4 

draft ISA Supplement, and those used in the risk assessment, no individual study adjusts for all 5 

potential confounders.  6 

In addition to the uncertainty associated with the risk assessment estimates, additional 7 

uncertainties are associated with the risk rates, exposure estimate, and risk reductions in the at-8 

risk analysis. As an initial matter, we note that this analysis is based on race- and ethnicity-9 

stratified concentration-response functions only for ages 65 and over (Di et al., 2017b). The use 10 

of one study in such an analysis introduces uncertainties and limitations in the broad applicability 11 

of such results in the context of the national U.S. population across demographic groups and age 12 

ranges. In addition, each non-White demographic group analyzed in the study comprised a 13 

smaller percentage of the full study population, which reduces analytical power. Finally, the risk 14 

and exposure assessment focuses on urban areas. This means that demographic groups that 15 

preferentially reside in rural areas, such as Native Americans, are underrepresented in this 16 

analysis. Additionally, average exposure concentrations estimated for demographic groups with 17 

substantial rural populations, such as Whites, may be overestimated in this urban analysis.  18 

In summary, here we recognize several particularly important uncertainties that affect the 19 

quantitative estimates of risk rates and exposure in the at-risk analysis and their interpretation in 20 

the context of considering the current primary PM2.5 standards. These include uncertainties 21 

related to the modeling and adjustment methods for simulating air quality scenarios; the potential 22 

influence of confounders on the relationship between PM2.5 exposure and mortality; the 23 

interpretation of the shapes of concentration-response functions, particularly at lower 24 

concentrations; and limited availability of studies to inform the at-risk analysis. 25 

 Potential Public Health Implications 26 

In considering the public health implications of the quantitative risk assessment and at-27 

risk analysis that may inform the Administrator’s judgments in this area, this section discusses 28 

the information pertaining to the following questions. 29 

• To what extent are the estimates of risk important from a public health perspective? 30 

What does the information available in this reconsideration indicate with regard to 31 

the size of the at-risk populations? 32 

Several factors are important to consideration of public health implications. These 33 

include the magnitude or severity of the effects associated with the estimated exposures, as well 34 

as their adversity at the individual and population scales. Other important considerations include 35 
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the size of the population estimated to experience such effects or to experience exposures 1 

associated with such effects. Thus, the discussion here reflects consideration of the risk-based 2 

evidence in the context of potential health implications in previous NAAQS decisions. 3 

With regard to PM2.5 concentrations in ambient air, the public health implications and 4 

potential public health impacts of interest in this reconsideration relate to those effects where a 5 

causal relationship with PM2.5 exposure was concluded. These are mortality and cardiovascular 6 

effects related to both long- and short-term exposures, as summarized in section 3.3.1 above. 7 

Such effects, including more serious effects such as mortality, can be considered severe from a 8 

public health perspective. 9 

In considering public health implications, it is important to consider impacts on 10 

population groups of differing susceptibility. The size of the at-risk populations (children, older 11 

adults, those with pre-existing cardiovascular or respiratory diseases) in the U.S. is substantial. 12 

As summarized in section 3.3.2, more than 22% of the population are children (<18 years old; 13 

approximately 73 million people) and about 16% are older adults (65+ years old; approximately 14 

54 million people). For adults in the U.S. 18 years old and older, cardiovascular diseases are 15 

most prevalent in adult populations over the age of 65, with 29% of this age group reporting 16 

some type of heart disease (Table 3-3 above). Similarly, adults over the age of 65 also have a 17 

greater prevalence of respiratory diseases, particularly COPD reported as chronic bronchitis or 18 

emphysema, while the asthma prevalence is generally consistent across all adult age groups for 19 

those 18 years or older (Table 3-3). It is important to note that for older adults, the increased risk 20 

in this lifestage can likely be attributed to the gradual decline in physiological processes that 21 

occurs with aging, and some overlap exists between populations considered to be at-risk because 22 

of pre-existing disease and lifestage (U.S. EPA, 2019, p. 12-25). 23 

Another factor that may contribute to differences PM2.5 exposures and PM2.5-related 24 

health risk is race/ethnicity. As described above in section 3.3.2 and in the 2019 ISA and draft 25 

ISA Supplement, there is strong evidence demonstrating that Black and Hispanic populations, in 26 

particular, have higher PM2.5 exposures and health risk disparities compared to non-Hispanic 27 

White populations. In the U.S., more than 12% of the U.S. population (more than 40.5 million 28 

people) are Blacks and more than 18% are Hispanics (more than 60 million people), while 60% 29 

of the population (nearly 197 million people) are non-Hispanic Whites (Table 3-2). Black and 30 

Hispanic individuals of all ages make up a substantial portion of the population. 31 

In considering the public health implications of the risk estimates across the study areas, 32 

we note the purpose for the study areas is to illustrate circumstances that may occur in areas that 33 

just meet the current or potential alternative standards, and not to estimate risk associated with 34 

conditions occuring in those specific locations currently. We note that some areas across the U.S. 35 

have air quality for PM2.5 that is near or above the existing standards. Thus, the air quality and 36 
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exposure circumstances assessed in the study areas in the risk assessment are of particular 1 

importance in considering whether the currently available information calls into question the 2 

adequacy of the public health protection afforded by the current standards. 3 

The risk estimates for the study areas assessed in this reconsideration reflect differences 4 

in exposure circumstances among those areas and illustrate the exposures and risks that might be 5 

expected to occur in other areas with such circumstances under air quality conditions that just 6 

meet the current standards or the alternative standards assessed. Thus, the exposure and risk 7 

estimates indicate the magnitude of exposure and risk that might be expected in many areas of 8 

the U.S. with PM2.5 concentrations at or near the current or alternative standards. Although the 9 

methodologies and data used to estimate risks in this reconsideration differ in several ways from 10 

what was used in the 2020 review, the findings and considerations summarized here present a 11 

pattern of exposure and risk that is generally similar to that considered in the 2020 review, and 12 

indicate a level of protection generally consistent with that described in the 2020 PA. 13 

In summary, the considerations raised here are important to conclusions regarding the 14 

public health significance of the risk assessment results. Specifically, we note that available 15 

evidence and information suggests that both long- and short-term PM2.5 exposures are associated 16 

with adverse health effects, including more severe effects such as mortality. In addition, we note 17 

that such effects impact large segments of the U.S. population, including those populations that 18 

may have other factors that influence risk (i.e., lifestage, pre-existing cardiovascular and 19 

respiratory diseases, race/ethnicity), as well as disparities in PM2.5 exposures and health risks 20 

based on race and ethnicity. Therefore, we recognize that the air quality allowed by the current 21 

primary PM2.5 standards could be judged to be associated with significant public health risk. We 22 

recognize that such conclusions also depend in part on public health policy judgments that will 23 

weigh in the Administrator’s decision in this reconsideration with regard to the adequacy of 24 

protection afforded by the current standards. Such judgments that are common to NAAQS 25 

decisions include those related to public health implications of effects of differing severity. Such 26 

judgments also include those concerning the public health significance of effects at exposures for 27 

which evidence is limited or lacking, such as effects at lower concentrations than those 28 

demonstrated in the key epidemiologic studies and in those population groups for which 29 

population-specific information, such as concentration-response functions, are not available from 30 

the epidemiologic literature. 31 

3.5.3 Preliminary Conclusions 32 

This section describes our preliminary conclusions for the Administrator’s consideration 33 

in this reconsideration of the primary PM2.5 standards. These preliminary conclusions are based 34 

on considerations described in the sections above, and in the discussion below regarding the 35 
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scientific evidence (as summarized in the 2019 ISA (U.S. EPA, 2019) and the draft ISA 1 

Supplement (U.S. EPA, 2021a)), the quantitative assessments of PM2.5-associated health risks, 2 

and analyses of PM2.5 air quality.  3 

 Current Standards 4 

In taking into consideration the discussions responding to specific questions above in this 5 

chapter, this section addresses the following overarching policy question. 6 

• Does the currently available scientific evidence and risk-based information support 7 

or call into question the adequacy of the public health protection afforded by the 8 

current annual and 24-hour PM2.5 standards? 9 

In considering this question, we recognize that, as is the case with NAAQS reviews in 10 

general, the extent to which the current primary PM2.5 standards are judged to be adequate will 11 

depend on a variety of factors, including science policy judgments and public health policy 12 

judgments to be made by the Administrator. These factors include public health policy 13 

judgments concerning the appropriate PM2.5 concentrations on which to place weight, as well as 14 

judgments on the public health significance of the effects that have been observed at the 15 

exposures evaluated in the health effects evidence. The factors relevant to judging the adequacy 16 

of the standards also include the interpretation of, and decisions as to the weight to place on, 17 

different aspects of the results of the risk assessment for the study areas included and the 18 

associated uncertainties. Thus, we recognize that the Administrator’s conclusions regarding the 19 

adequacy of the current standards will depend in part on judgments regarding aspects of the 20 

evidence and risk estimates, and judgments about the degree of protection that is requisite to 21 

protect public health with an adequate margin of safety. 22 

Our response to the overarching question above takes into consideration the discussions 23 

that address the specific policy-relevant questions in prior sections of this document (sections 24 

3.3, 3.4, 3.5.1, and 3.5.2) and builds on the approach from previous reviews (summarized in 25 

section 3.1 above). We focus first on consideration of the evidence, including that assessed in the 26 

2019 ISA and the draft ISA Supplement, and the extent to which it alters key conclusions 27 

supporting the current standards. We then turn to consideration of the quantitative estimates of 28 

risk developed in this reconsideration, including associated uncertainties and limitations, and the 29 

extent to which they indicate differing conclusions regarding the magnitude of risk, as well as 30 

level of protection from adverse effects, associated with the current standards. We additionally 31 

consider the key aspects of the evidence and risk estimates emphasized in establishing the 32 

current standards, and the associated public health policy judgments and judgments about the 33 

uncertainties inherent in the scientific evidence and quantitative analyses that are integral to 34 

decisions on the adequacy of the current primary PM2.5 standards. 35 



 

October 2021 3-183  Draft – Do Not Quote or Cite 

We first note that our approach recognizes that the current annual standard (based on 1 

arithmetic mean concentrations) and 24-hour standard (based on 98th percentile concentrations), 2 

together, are intended to provide public health protection against the full distribution of short- 3 

and long-term PM2.5 exposures. In general, the annual standard is most effective at controlling 4 

exposures to “typical” daily PM2.5 concentrations that are experienced over the year, while the 5 

24-hour standard, with its 98th percentile form, is most effective at limiting peak daily or 24-6 

hour PM2.5 concentrations. In considering the combined effects of these standards, we recognize 7 

that changes in PM2.5 air quality designed to meet an annual standard would likely result not only 8 

in lower short- and long-term PM2.5 concentrations near the middle of the air quality distribution, 9 

but also in fewer and lower short-term peak PM2.5 concentrations. Additionally, changes 10 

designed to meet a lower 24-hour standard, with a 98th percentile form, would most effectively 11 

result in fewer and lower peak 24-hour PM2.5 concentrations, but also have an effect on lowering 12 

the annual average PM2.5 concentrations. Thus, our focus in evaluating the current primary 13 

standards is on the protection provided by the combination of the annual and 24-hour standards 14 

against the distribution of both short- and long-term PM2.5 exposures.  15 

 As an initial matter, we note the longstanding body of health evidence supporting 16 

relationships between PM2.5 exposures (short- and long-term) and mortality or serious morbidity 17 

effects. The evidence available in this reconsideration (i.e., assessed in U.S. EPA, 2019 and U.S. 18 

EPA, 2021a) and summarized above in section 3.3.1 and section 3.5.1) reaffirms, and in some 19 

cases strengthens, the conclusions from the 2009 ISA regarding the health effects of PM2.5 20 

exposures (U.S. EPA, 2009). As noted above, epidemiologic studies conducted in North 21 

America, Europe, or Asia demonstrate generally positive, and often statistically significant, 22 

PM2.5 health effect associations. Such studies report associations between estimated PM2.5 23 

exposures and non-accidental, cardiovascular, or respiratory mortality; cardiovascular or 24 

respiratory hospitalizations or emergency room visits; and other mortality/morbidity outcomes 25 

(e.g., lung cancer mortality or incidence, asthma development). Recent experimental evidence, as 26 

well as evidence from panel studies, strengthens support for potential biological pathways 27 

through which PM2.5 exposures could lead to the serious effects reported in many population-28 

level epidemiologic studies, including support for pathways that could lead to cardiovascular, 29 

respiratory, nervous system, and cancer-related effects.  30 

 Epidemiologic studies in the U.S. report health effect associations with mortality and/or 31 

morbidity across multiple cities and in diverse populations, including in studies examining 32 

populations and lifestages that may be at comparatively higher risk of experiencing a PM2.5-33 

related health effect (e.g., older adults, children). Further, these studies use a variety of statistical 34 

designs, and employ a variety of methods to examine exposure measurement error as well as to 35 

control for confounding effects, including more recent causal modeling studies. Results of these 36 
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analyses support the robustness of the reported associations. Additional findings from an 1 

expanded body of studies that employ causal modeling and accountability methods further 2 

inform the causal nature of the relationship between long- or short-term term PM2.5 exposure and 3 

mortality (U.S. EPA, 2019, sections 11.1.2.1, 11.2.2.4,U.S. EPA, 2021a, sections 3.1.1.3, 3.1.2.3, 4 

3.2.1.3, and 3.2.2.3). These studies, summarized above in Table 3-11 and Table 3-12, examine 5 

both short- and long-term PM2.5 exposure and cardiovascular effects and mortality, and using a 6 

variety of statistical methods to control for confounding bias, consistently report positive 7 

associations, which further supports the broader body of epidemiologic evidence for both 8 

cardiovascular effects and mortality. Moreover, recent epidemiologic studies strengthen support 9 

for health effect associations at relatively low ambient PM2.5 concentrations. Studies that 10 

examine the shapes of concentration-response relationships over the full distribution of ambient 11 

PM2.5 concentrations have not identified a threshold concentration, below which associations no 12 

longer exist (U.S. EPA, 2019, section 1.5.3, U.S. EPA, 2021a, sections 2.1.1.5.1 and 2.1.1.5.2). 13 

While such analyses are complicated by the relatively sparse data available at the lower end of 14 

the air quality distribution (U.S. EPA, 2019, section 1.5.3), several studies report positive and 15 

statistically significant associations in additional analyses restricted to annual average PM2.5 16 

exposures below 12 g/m3 or to daily exposures below 35 g/m3 as exhibited in Table 3-10.  17 

These and other recent studies provide support for health effect associations at lower 18 

ambient PM2.5 concentrations than in previous reviews. In this reconsideration, a large number of 19 

key studies report positive and statistically significant associations for air quality distributions 20 

with lower overall mean PM2.5 concentrations (i.e., Figure 3-8, Figure 3-9, Figure 3-10, Figure 3-21 

11). Consistent with the 2012 review, it is important to consider the manner in which PM2.5 mean 22 

concentrations are estimated (e.g., monitored concentrations versus modeled concentrations) and 23 

the method by which means are calculated and reported as the overall mean PM2.5 concentration 24 

(e.g., averaging across all grid cells in an urban area versus population-weighting). Additional 25 

analyses, new in this draft PA though similar to those in the 2012 review, suggest that the area 26 

annual design value is generally greater than the study mean by 10-20% (monitor-based studies), 27 

14-18% (hybrid modeling with population-weighting) or 40-50% (hybrid modeling without 28 

population weighting). We note this information relative to the overall mean PM2.5 29 

concentrations in key U.S. epidemiologic studies which are: 9.9 μg/m3 to 16.5 μg/m3 for monitor-30 

based studies; 9.3 μg/m3 to 12.3 μg/m3 for studies that use hybrid modeling and apply 31 

population-weighting; and 8.1 μg/m3 to 11.9 μg/m3 for studies that use hybrid modeling and do 32 

not apply population-weighting. The study reported mean concentrations in Canadian studies are 33 

more difficult to compare to the area annual standard design value but are lower than those 34 

reported in the U.S. studies for both monitor-based and hybrid model methods, ranging from 7.0 35 

g/m3 to 9.0 g/m3 in monitor-based studies, and 6.0 g/m3 to 10.0 g/m3 in model-based 36 
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studies. These mean values are consistent with the mean PM2.5 concentrations reported in studies 1 

available at the time of the 2020 review (U.S. EPA, 2020, Figure 3-8).  2 

 In assessing the adequacy of the current standard, we examine a subset of studies, many 3 

of which are newly available in this reconsideration, that employ causal modeling methods to 4 

control for confounding bias (Table 3-11), which report positive and significant associations for 5 

a variety of health outcomes and support the positive and significant associations in analyses 6 

identified as key epidemiologic studies above. We also evaluate what the accountability studies 7 

may indicate with respect to improvements in public health with improvements in air quality. In 8 

so doing, we take note of two accountability studies (Sanders et al., 2020 and Corrigan et al., 9 

2018) newly available in this reconsideration with starting concentrations at or below 12.0 µg/m3 10 

that indicate positive and significant associations with mortality and reductions in ambient PM2.5 11 

(Table 3-12). We further evaluate studies with analyses that restrict annual or daily PM2.5 12 

concentrations to values below the annual or daily PM2.5 standard, respectively (Table 3-10). 13 

These restricted analyses indicate positive and significant associations, including mean PM2.5 14 

concentrations presumably below the mean reported PM2.5 in the main cohort, where long-term 15 

mean PM2.5 concentrations range from 8.2 µg/m3 to 11.5 µg/m3, as well as effect estimates that 16 

are generally greater in magnitude than effect estimates seen in main analyses. 17 

 In addition to the epidemiologic evidence, we examine experimental studies, including 18 

controlled human exposure studies and animal toxicological studies. As detailed in above in 19 

section 3.3.3.1 and section 3.5.1.3, these studies provide support for the effects of exposure to 20 

PM2.5, and support for biologically plausible mechanisms through which adverse human health 21 

outcomes could occur. Exposures in controlled human exposure studies last from less than one 22 

hour and up to five hours, and indicate that the most consistent evidence is associated with 23 

cardiovascular effects, and more specifically, impaired vascular function.  PM2.5 exposures 24 

evaluated in most of these studies are well-above the ambient concentrations typically measured 25 

in locations meeting the current primary standards. For example, at air quality monitoring sites 26 

meeting the current primary PM2.5 standards (i.e., the 24-hour standard and the annual standard), 27 

the 2-hour concentrations generally remain below 10 μg/m3, and virtually never exceed 30 28 

μg/m3. Two-hour concentrations are higher at monitoring sites violating the current standards, 29 

but generally remain below 16 μg/m3 and virtually never exceed 80 μg/m3. In addition, as noted 30 

earlier in section 3.3.3.1, chronic vascular dysfunction can be judged to be a biomarker of an 31 

adverse health effect from air pollution, but the health relevance of acute reductions in vascular 32 

function are less certain (Thurston et al., 2017). Thus, while these studies are important in 33 

establishing biological plausibility, it is unclear how the results alone and the importance of the 34 

effects observed in these studies, particularly in studies conducted at near-ambient PM2.5 35 

concentrations, should be interpreted with respect to adversity to public health..  36 
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In addition to the evidence above, we also consider what the risk assessment indicates 1 

with regard to the adequacy of the current primary PM2.5 standards. The risk assessment 2 

estimates that the current primary PM2.5 standards could allow a substantial number of deaths in 3 

the U.S., with the large majority of those deaths associated with long-term PM2.5 exposures. For 4 

example, when air quality in the 47 study areas is adjusted to simulate just meeting the current 5 

standards, the risk assessment estimates 40,600-45,100 long-term PM2.5 exposure-related deaths 6 

in a single year, with confidence intervals ranging from 30,300-59,000. While the absolute 7 

numbers of estimated deaths vary across exposure durations, populations, and concentration-8 

response functions, the general magnitude of risk estimates supports the potential for significant 9 

public health impacts in locations meeting the current primary PM2.5 standards. This is 10 

particularly the case given that the large majority of PM2.5-associated deaths for air quality just 11 

meeting the current standards are estimated at annual average PM2.5 concentrations from about 12 

10 to 12 g/m3. These annual average PM2.5 concentrations fall well-within the range of long-13 

term average concentrations over which key epidemiologic studies provide strong support for 14 

reported positive and statistically significant PM2.5 health effect associations.  15 

 Based on the information summarized above, and discussed in more detail in sections 3.3, 16 

3.4, and 3.5 of this draft PA, we particularly note the following in reaching preliminary 17 

conclusions on the current primary PM2.5 standards:  18 

• There is a long-standing body of strong health evidence demonstrating relationships between 19 

long- or short-term PM2.5 exposures and a variety of outcomes, including mortality and 20 

serious morbidity effects. Studies assessed in the 2019 ISA and the draft ISA Supplement 21 

have reduced key uncertainties and broadened our understanding of the health effects that 22 

can result from exposures to PM2.5.  23 

- Recent U.S. and Canadian epidemiologic studies provide support for generally 24 

positive and statistically significant health effect associations across a broad 25 

range of ambient PM2.5 concentrations, including for air quality distributions 26 

with overall mean concentrations lower than in the previous reviews. 27 

- Controlled human exposure studies and animal toxicological studies provide 28 

support for the effects of exposure to PM2.5, and support for biologically 29 

plausible mechanisms through which adverse human health outcomes could 30 

occur. 31 

- Epidemiologic studies that use causal modeling methods have expanded since 32 

the 2020 PA and further inform the causal nature of the relationship between 33 

short- and long-term exposure to PM2.5 and mortality and cardiovascular 34 

effects. These studies use a variety of statistical methods to reduce 35 

uncertainties with respect to confounding bias.  36 

• Recent U.S. accountability studies provide support for improvements in public health, 37 

including reductions in mortality in studies with starting PM2.5 concentrations at or below the 38 

current primary PM2.5 annual standard. Some epidemiologic studies (Corrigan et al., 2018 39 

and Sanders et al., 2020) that employ accountability methods using monitored data evaluate 40 
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the effect of the implementation of the 1997 annual PM2.5 standard, finding evidence of 1 

reductions in mortality in areas with starting PM2.5 concentrations at or below 12.0 g/m3. 2 

• Studies that restrict analyses to air quality below the current daily or annual PM2.5 standard 3 

exhibit positive and significant associations, which are often greater in magnitude than main 4 

analyses. Di et al. (2017b) and Dominici et al. (2019) report positive and statistically 5 

significant associations that are greater in analyses restricted below 12.0 µg/m3 and report 6 

mean concentrations of 9.6 µg/m3. In studies that restrict analyses < 35.0 µg/m3 or lower, 7 

mean PM2.5 concentrations are not reported, though such means are presumably somewhat 8 

below those based on the overall cohort, which range from 8.2 µg/m3 to 11.5 µg/m3, and 9 

effect estimates are generally great than those in the overall cohort. More specifically, one 10 

U.S. study by Shi et al. (2016) reports positive and statistically significant associations in 11 

analyses restricted to relatively low annual or 24-hour PM2.5 exposure estimates.  12 

• Exposures in controlled human exposure studies last from less than one hour and up to five 13 

hours and indicate that the most consistent evidence is associated with cardiovascular effects, 14 

and more specifically, impaired vascular function.  Further, air quality analyses suggest that 15 

the ambient concentrations in these studies typically do not occur in locations meeting the 16 

current primary standards, thus suggesting that the current primary PM2.5 standards provide 17 

protection against these “peak” concentrations.  18 

• We note the decision framework used in previous reviews that places significant weight on 19 

key epidemiologic studies and consider whether the mean concentrations in these studies 20 

would be allowed in areas meeting the current primary standard.  21 

- Such a decision framework placed significant weight on epidemiologic studies 22 

that assessed associations between PM2.5 exposure and health outcomes that 23 

were most strongly supported by the body of scientific evidence and 24 

recognized there is significantly greater confidence in the magnitude and 25 

significance of observed associations for the part of the air quality distribution 26 

corresponding to where the bulk of the health events in each study have been 27 

observed, generally at or around the mean concentration.  28 

- Additional analyses, new in this draft PA though similar to analyses in the 29 

2012 review, suggest that the area annual design value is greater than the 30 

study reported mean values by 10-20% (monitor-based studies), 14-18% 31 

(hybrid modeling with population-weighting) or 40-50% (hybrid modeling 32 

without population weighting). 33 

- Focusing on the key epidemiologic studies available in this reconsideration, 34 

the overall mean PM2.5 concentrations in key U.S. epidemiologic studies are 35 

as follows: 36 

o Range of monitor-based mean PM2.5 concentrations is from 9.9 μg/m3 37 

to 16.5 μg/m3 (range in 2020 PA: 10.7 μg/m3 to 16.5 μg/m3)  38 

o Range of mean PM2.5 concentrations in studies that use hybrid 39 

modeling and apply population-weighting: 9.3 μg/m3 to 12.3 μg/m3 40 

o Range of mean PM2.5 concentrations in studies that use hybrid 41 

modeling and do not apply population-weighting: 8.1 μg/m3 to 11.9 42 

μg/m3 43 
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- Though the Canadian studies are more difficult to utilize for comparison to the 1 

annual design value used to determine compliance in the U.S., the overall 2 

mean PM2.5 concentrations in key Canadian epidemiologic studies are within 3 

the range, though somewhat lower than those from the U.S. studies, and are as 4 

follows: 5 

o Range of monitor-based mean PM2.5 concentrations is from 6.9 µg/m3 6 

to 13.3 µg/m3  7 

o Range of mean PM2.5 concentrations in studies that use hybrid 8 

modeling (all of which average up to postal codes and thus include 9 

some aspects of population-weighting) is 5.9 µg/m3 to 9.8 µg/m3 10 

- Past decision frameworks also placed some weight on considering the annual 11 

standard level relative to the 25th and 10th percentile of health events while 12 

also noting that epidemiologic studies provide more limited support for health 13 

effect associations based on air quality distributions at these lower PM2.5 14 

concentration percentiles.  15 

o In key U.S. epidemiologic studies that use monitors to estimate PM2.5 16 

exposures, 25th percentiles of health events correspond to mean PM2.5 17 

concentrations (i.e., averaged over the study period for each study city) 18 

at or above 11.5 µg/m3 and 10th percentiles of health events correspond 19 

to mean PM2.5 concentrations at or above 9.8 µg/m3  20 

o Of the key U.S. epidemiologic studies that use hybrid modeling 21 

approaches to estimate long-term PM2.5 exposures and do not apply 22 

population-weighting, the ambient PM2.5 concentrations corresponding 23 

to 25th percentiles of estimated exposures range from 4.6 µg/m3 to 9.2 24 

µg/m3, while in studies that do apply population-weighting, 25th 25 

percentiles range from 6.7 µg/m3 to 9.1 µg/m3. In the two studies (each 26 

apply population-weighting) with information available on the 10th 27 

percentile of health events, the ambient PM2.5 concentrations 28 

corresponding to the 10th percentile are 4.7 µg/m3 and 7.3 µg/m3. 29 

• The risk assessment estimates that the current primary PM2.5 standards could allow a 30 

substantial number of PM2.5-associated deaths in the U.S. The large majority of these 31 

estimated deaths are associated with the annual average PM2.5 concentrations near (and above 32 

in some cases) the average concentrations in key epidemiologic studies reporting positive and 33 

statistically significant health effect associations. Further, the risk assessment estimated that 34 

Black populations may experience disproportionally higher exposures and risk under 35 

simulated air quality conditions just meeting the current primary PM2.5 annual standard as 36 

compared to White populations. 37 

When taken together, we reach the conclusion that the available scientific evidence, air quality 38 

analyses, and the risk assessment, as summarized above, can reasonably be viewed as calling 39 

into question the adequacy of the public health protection afforded by the combination of the 40 

current annual and 24-hour primary PM2.5 standards. In particular, we note the information and 41 

analyses new to this reconsideration (and discussed in detail above) in reaching this conclusion.  42 



 

October 2021 3-189  Draft – Do Not Quote or Cite 

 Potential Alternative Standards  1 

 In this section, we consider the potential alternative primary PM2.5 standards that could be 2 

supported by the evidence and quantitative information available in this reconsideration. These 3 

considerations are framed by the following overarching policy-relevant question, posed at the 4 

beginning of this chapter:  5 

• What is the range of potential alternative standards that could be supported by the 6 

available scientific evidence and risk-based information to increase public health 7 

protection against short- and long-term fine particle exposures? 8 

In answering this question, we consider each of the elements of the annual and 24-hour PM2.5 9 

standards: indicator, averaging time, form, and level. The sections below discuss our 10 

consideration of these elements, and our conclusions that (1) it is appropriate to consider revising 11 

the level of the current annual standard, in conjunction with retaining the current indicator, 12 

averaging time, and form of that standard, to increase public health protection against fine 13 

particle exposures and (2) depending on the decision made on the annual standard, consideration 14 

could be given to either retaining or revising the level of the 24-hour PM2.5 standard.   15 

3.5.3.2.1 Indicator 16 

In initially setting standards for fine particles in 1997, the EPA concluded it was 17 

appropriate to control fine particles as a group, rather than singling out any particular component 18 

or class of fine particles. The Agency noted that community health studies had found significant 19 

health effect associations using various indicators of fine particles, and that health effects in a 20 

large number of areas had significant mass contributions from differing components or sources 21 

of fine particles. In addition, a number of toxicological and controlled human exposure studies 22 

had reported health effects following exposures to high concentrations of numerous fine particle 23 

components (62 FR 38667, July 18, 1997). In establishing a size-based indicator in 1997 to 24 

distinguish fine particles from particles in the coarse mode, the EPA noted that the available 25 

epidemiologic studies of fine particles were based largely on PM2.5 mass. The selection of a 2.5 26 

m size cut additionally reflected the regulatory importance of defining an indicator that would 27 

more completely capture fine particles under all conditions likely to be encountered across the 28 

U.S. and the monitoring technology that was generally available (62 FR 38666 to 38668, July 18, 29 

1997).  30 

Since the 1997 review, studies that evaluate fine particle-related health effects continue to 31 

provide strong support for such effects using PM2.5 mass as the metric for fine particle exposures. 32 

Subsequent reviews have recognized the strength of this evidence, concluding that it has 33 

continued to support a PM2.5 mass-based indicator for a standard meant to protect against fine 34 

particle exposures. In the 2012 review, some studies had additionally examined health effects of 35 
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exposures to particular sources or components of fine particles, or to the ultrafine fraction of fine 1 

particles. Based on limitations in such studies, together with the continued strong support for 2 

effects of PM2.5 exposures, the Agency retained PM2.5 mass as the indicator for fine particles and 3 

did not supplement the PM2.5 standards with standards based on particle composition or on the 4 

ultrafine fraction (78 FR 3123, January 15, 2013).  5 

As in the 2012 review, studies assessed the 2019 ISA continue to provide strong support 6 

for health effects following long- and short-term PM2.5 exposures (U.S. EPA, 2019). While some 7 

studies evaluate the health effects of particular sources of fine particles, or of particular fine 8 

particle components, evidence from these studies does not identify any one source or component 9 

that is a better predictor of health effects than PM2.5 mass (U.S. EPA, 2019, section 1.5.4). As 10 

summarized in section 3.5.1 above, the 2019 ISA the evidence confirms and further supports that 11 

many PM2.5 components and sources are associated with health effects, and does not indicate that 12 

any one source or component is consistently more strongly related with health effects than PM2.5 13 

mass (U.S. EPA, 2019, section 1.5.4). Further, the evidence for health effects following 14 

exposures specifically to the ultrafine fraction of fine particles continues to be far more limited 15 

than the evidence for PM2.5 mass, and the varying definitions of UFP, as well as differences in 16 

approaches to administering and measuring UFP, contribute to such limitations (U.S. EPA, 2019, 17 

section 1.4.3). Thus, for reasons similar to those discussed in the 2020 review (85 FR 82715, 18 

December 18, 2020), we reach the preliminary conclusion that the available information 19 

continues to support the PM2.5 mass-based indicator and remains too limited to support a distinct 20 

standard for any specific PM2.5 component or group of components, and too limited to support a 21 

distinct standard for the ultrafine fraction.   22 

3.5.3.2.2 Averaging Time  23 

In 1997, the EPA initially set an annual PM2.5 standard to protect against health effects 24 

associated with both long- and short-term PM2.5 exposures, and a 24-hour standard to supplement 25 

the protection afforded by the annual standard (62 FR 38667 to 38668, July 18, 1997). In 26 

subsequent reviews, the EPA retained both annual and 24-hour averaging times, largely 27 

reflecting the strong evidence for health effects associated with annual and daily PM2.5 exposure 28 

estimates (71 FR 61164, October 17, 2006; 78 FR 3123 to 3124, January 15, 2013).  29 

In this reconsideration, epidemiologic and controlled human exposure studies have 30 

examined a variety of PM2.5 exposure durations. Epidemiologic studies continue to provide 31 

strong support for health effects associated with both long- and short-term PM2.5 exposures based 32 

on annual (or multiyear) and 24-hour PM2.5 averaging periods, respectively.  33 

With regard to short-term exposures in particular, a smaller number of epidemiologic 34 

studies examine associations between sub-daily PM2.5 exposures and respiratory effects, 35 
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cardiovascular effects, or mortality. Compared to 24-hour PM2.5 exposure estimates, associations 1 

with sub-daily estimates are less consistent and, in some cases, smaller in magnitude (U.S. EPA, 2 

2019, section 1.5.2.1). In addition, studies of sub-daily exposures typically examine subclinical 3 

effects, rather than the more serious population-level effects that have been reported to be 4 

associated with 24-hour exposures (e.g., mortality, hospitalizations). Taken together, the 2019 5 

ISA concludes that epidemiologic studies do not indicate sub-daily averaging periods are more 6 

closely associated with health effects than the 24-hour average exposure metric (U.S. EPA, 2019, 7 

section 1.5.2.1).  8 

Additionally, while recent controlled human exposure studies provide consistent evidence 9 

for cardiovascular effects following PM2.5 exposures for less than 24 hours (i.e., < 30 minutes to 10 

5 hours), exposure concentrations in these studies are well-above the ambient concentrations 11 

typically measured in locations meeting the current standards (section 3.3.3.1). Thus, these 12 

studies also do not suggest the need for additional protection against sub-daily PM2.5 exposures, 13 

beyond that provided by the current primary standards.  14 

Drawing from the evidence assessed in the 2019 ISA, and the observations noted above, 15 

we reach the conclusion that the available evidence continues to provide strong support for 16 

consideration of retaining the current annual and 24-hour averaging times. The available 17 

evidence suggests that PM2.5 standards with these averaging times, when coupled with 18 

appropriate forms and levels, can protect against the range of long- and short-term PM2.5 19 

exposures that have been associated with health effects. Thus, as in the 2020 review (78 FR 20 

82715, December 18, 2020), we reach the preliminary conclusion that the currently available 21 

evidence does not support considering alternatives to the annual and 24-hour averaging times for 22 

standards meant to protect against long- and short-term PM2.5 exposures.  23 

3.5.3.2.3 Form  24 

The form of a standard defines the air quality statistic that is to be compared to the level 25 

in determining whether an area attains that standard. As in other recent reviews, our foremost 26 

consideration in reaching preliminary conclusions on form is the adequacy of the public health 27 

protection provided by the combination of the form and the other elements of the standard.  28 

As noted above, in 1997 the EPA initially set an annual PM2.5 standard to protect against 29 

health effects associated with both long- and short-term PM2.5 exposures and a 24-hour standard 30 

to provide supplemental protection, particularly against the short-term exposures to “peak” PM2.5 31 

concentrations that can occur in some areas (62 FR 38667 to 38668, July 18, 1997). The EPA 32 

established the form of the annual PM2.5 standard as an annual arithmetic mean, averaged over 3 33 

years, from single or multiple community-oriented monitors. That is, the level of the annual 34 

standard was to be compared to measurements made at each community-oriented monitoring site 35 
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or, if specific criteria were met, measurements from multiple community-oriented monitoring 1 

sites could be averaged together (i.e., spatial averaging) (62 FR 38671 to 38672, July 18, 1997). 2 

In the 1997 review, the EPA also established the form of the 24-hour PM2.5 standard as the 98th 3 

percentile of 24-hour concentrations at each monitor within an area (i.e., no spatial averaging), 4 

averaged over three years (62 FR at 38671 to 38674, July 18, 1997). In the 2006 review, the EPA 5 

retained these standard forms but tightened the criteria for using spatial averaging with the 6 

annual standard (71 FR 61117, October 17, 2006).81  7 

In the 2012 review, the EPA’s consideration of the form of the annual PM2.5 standard 8 

again included a focus on the issue of spatial averaging. An analysis of air quality and population 9 

demographic information indicated that the highest PM2.5 concentrations in a given area tended 10 

to be measured at monitors in locations where the surrounding populations were more likely to 11 

live below the poverty line and to include larger percentages of racial and ethnic minorities (U.S. 12 

EPA, 2011, p. 2-60). Based on this analysis, the 2011 PA concluded that spatial averaging could 13 

result in disproportionate impacts in minority populations and populations with lower SES. The 14 

Administrator concluded that public health would not be protected with an adequate margin of 15 

safety in all locations, as required by law, if disproportionately higher PM2.5 concentrations in 16 

low income and minority communities were averaged together with lower concentrations 17 

measured at other sites in a large urban area. Therefore, she concluded that the form of the 18 

annual PM2.5 standard should be revised to eliminate spatial averaging provisions (78 FR 3124, 19 

January 15, 2013).  20 

In the 2012 review, the EPA also considered the form of the 24-hour PM2.5 standard. The 21 

Agency recognized that the existing 98th percentile form for the 24-hour standard was originally 22 

selected to provide a balance between limiting the occurrence of peak 24-hour PM2.5 23 

concentrations and identifying a stable target for risk management programs. Updated air quality 24 

analyses in the 2012 review provided additional support for the increased stability of the 98th 25 

percentile PM2.5 concentration, compared to the 99th percentile (U.S. EPA, 2011, Figure 2-2, p. 26 

2-62). Thus, the Administrator concluded that it was appropriate to retain the 98th percentile form 27 

for the 24-hour PM2.5 standard (78 FR 3127, January 15, 2013).  28 

In the 2020 review, the Administrator noted that the scientific evidence continued to 29 

provide strong support for health effect associations for both long-term (e.g., annual or multi-30 

year) and short-term (e.g., mostly 24-hour) exposures to PM2.5 and judged that the evidence did 31 

not support considering alternative averaging times (85 FR 82715, December 18, 2020). For 32 

 
81 Specifically, the Administrator revised spatial averaging criteria such that “(1) [t]he annual mean concentration at 

each site shall be within 10 percent of the spatially averaged annual mean, and (2) the daily values for each 

monitoring site pair shall yield a correlation coefficient of at least 0.9 for each calendar quarter (71 FR 61167, 

October 17, 2006).  
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reasons consistent with those in the 2012 review, the Administrator judged that the current 1 

annual and 24-hour averaging times remained appropriate. 2 

The information available in this reconsideration continues to support the current forms 3 

of the annual and 24-hour PM2.5 standards. As discussed above (section 3.3.1), epidemiologic 4 

studies continue to provide strong support for health effect associations with both long-term 5 

(e.g., annual or multi-year) and short-term (e.g., mostly 24-hour) PM2.5 exposures. These studies 6 

provide the strongest support for such associations for the part of the air quality distribution 7 

corresponding to the bulk of the underlying data, typically around the overall mean 8 

concentrations reported (section 3.3.3.2.1). The form of the current annual standard (i.e., 9 

arithmetic mean, averaged over three years) remains appropriate for targeting “typical” daily and 10 

annual exposures around these means of the PM2.5 air quality distribution. In addition, controlled 11 

human exposure studies provide evidence for health effects following single short-term PM2.5 12 

exposures near the peak concentrations measured in the ambient air (section 3.3.3.1). Thus, the 13 

evidence also supports retaining a standard focused on providing supplemental protection against 14 

short-term peak exposures. The information available in this reconsideration continues to support 15 

the decision to use a 98th percentile form for a 24-hour standard that is meant to provide a 16 

balance between limiting the occurrence of such peak 24-hour PM2.5 concentrations and 17 

identifying a stable target for risk management programs. Thus, when the information 18 

summarized above is taken together, we reach the preliminary conclusion that it is appropriate to 19 

consider retaining the forms of the current annual and 24-hour PM2.5 standards, in conjunction 20 

with a revised level as discussed below.  21 

3.5.3.2.4 Level 22 

With regard to level, we specifically address the following policy-relevant question:  23 

• For primary PM2.5 standards defined in terms of the current averaging times and 24 

forms, what potential alternative levels are appropriate to consider in order to 25 

increase public health protection against long- and short-term exposures to PM2.5 in 26 

ambient air? 27 

In answering this question, we consider key epidemiologic studies that evaluate associations 28 

between PM2.5 air quality distributions and mortality or morbidity, controlled human exposure 29 

studies examining effects following short-term PM2.5 exposures, air quality analyses that help to 30 

place these studies into a policy-relevant context, and the risk assessment estimates of PM2.5-31 

associated mortality under various alternative standard scenarios.  32 

Consideration of the evidence and analyses, as summarized in this chapter, informs our 33 

evaluation of the public health protection that could be provided by alternative annual and 24-34 

hour standards with revised levels. There are various ways to combine an annual standard (based 35 

on arithmetic mean concentrations) and a 24-hour standard (based on 98th percentile 36 
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concentrations), to achieve an appropriate degree of public health protection. In particular, we 1 

recognize that changes in PM2.5 air quality designed to meet an annual standard would likely 2 

result not only in lower short- and long-term PM2.5 concentrations near the middle of the air 3 

quality distribution (i.e., around the mean of the distribution), but also in fewer and lower short-4 

term peak PM2.5 concentrations. Additionally, changes designed to meet a 24-hour standard, with 5 

a 98th percentile form, would result not only in fewer and lower peak 24-hour PM2.5 6 

concentrations, but also in lower average PM2.5 concentrations.  7 

However, while either standard could be viewed as providing some measure of protection 8 

against both average exposures and peak exposures, the 24-hour and annual standards are not 9 

expected to be equally effective at limiting both types of exposures. Specifically, the 24-hour 10 

standard (with its 98th percentile form) is more directly tied to short-term peak PM2.5 11 

concentrations, and thus more likely to appropriately limit exposures to such concentrations, than 12 

the more typical concentrations that make up the middle portion of the air quality distribution. 13 

Therefore, compared to a standard that is directly tied to the middle of the air quality distribution, 14 

the 24-hour standard is less likely to appropriately limit the “typical” daily and annual exposures 15 

that are most strongly associated with the health effects observed in epidemiologic studies. In 16 

contrast, the annual standard, with its form based on the arithmetic mean concentration, is more 17 

likely to effectively limit the PM2.5 concentrations that comprise the middle portion of the air 18 

quality distribution, affording protection against the daily and annual PM2.5 exposures that 19 

strongly support associations with the most serious PM2.5-related effects in epidemiologic studies 20 

(e.g., mortality, hospitalizations).  21 

 For these reasons, we focus on alternative levels of the annual PM2.5 standard as the 22 

principle means of providing increased public health protection against the bulk of the 23 

distribution of short- and long-term PM2.5 exposures, and thus protecting against the exposures 24 

that provide strong support for associations with mortality and morbidity in key epidemiologic 25 

studies. We additionally consider the 24-hour standard, with its 98th percentile form, primarily as 26 

a means of providing supplemental protection against the short-term exposures to peak PM2.5 27 

concentrations that can occur in some areas (e.g., those with strong contributions from local or 28 

seasonal sources), even when overall mean PM2.5 concentrations remain relatively low.  29 

 To inform our consideration of potential alternative annual and 24-hour standard levels, 30 

we specifically note the key observations in section 3.5.3.1 (rather than repeating them here) and 31 

note more specifically, related to those observations that: 32 

 33 

Mean PM2.5 Concentrations in Key Epidemiologic Studies and Relationships between Mean 34 

PM2.5 Concentrations and Annual Design Values 35 
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• Areas meeting a particular annual PM2.5 standard would be expected to have average PM2.5 1 

concentrations (i.e., averaged across the area and over time) somewhat below the level of that 2 

standard (which is measured at the peak monitor). This is supported by analyses of 3 

monitoring data in CBSAs across the U.S., which show that maximum annual PM2.5 design 4 

values are often 10% to 20% higher than long-term mean PM2.5 concentrations in an area 5 

(section 2.3.3.1, Figure 2-28; Table 2-2). Additional analyses also support differences 6 

between annual PM2.5 design values and long-term mean PM2.5 concentrations in hybrid 7 

modeling studies, with the extent of the difference depending on the methods used to 8 

estimate mean PM2.5 concentrations. These analyses suggest that the area annual design 9 

values are generally higher than the study mean by 14-18% (hybrid modeling with 10 

population-weighting) or 40-50% higher (hybrid modeling without population-weighting) 11 

(section 2.3.3.2.4, Table 2-4).   12 

• Most key U.S. epidemiologic studies indicate consistently positive and statistically 13 

significant health effect associations based on air quality distributions with overall mean 14 

PM2.5 concentrations at or above 9.3 µg/m3 (9.9 µg/m3 based on U.S. studies that use 15 

monitors to estimate PM2.5 exposures). Other key epidemiologic studies (which do not 16 

incorporate population-weighting into their calculation of the study mean) report mean PM2.5 17 

concentrations to be as low as 8.1 µg/m3 with the air quality analyses suggesting that areas 18 

included in these studies would have corresponding area annual design values generally 40-19 

50% higher than the study reported mean concentrations.  20 

• Though the mean PM2.5 concentrations from Canadian studies are more difficult to directly 21 

compare to the annual design value used to determine compliance in the U.S., the overall 22 

mean PM2.5 concentrations in key Canadian epidemiologic studies are close to, though 23 

somewhat lower than, those from the U.S. studies. The range of monitor-based mean PM2.5 24 

concentrations is from 6.9 µg/m3 to 13.3 µg/m3 while the range of mean PM2.5 concentrations 25 

in studies that use hybrid modeling (all of which average up to postal codes and thus include 26 

some aspects of population-weighting) is 5.9 µg/m3 to 9.8 µg/m3. 27 

• Epidemiologic studies provide more limited support for health effect associations based on 28 

air quality distributions at lower PM2.5 percentile concentrations. In assessing the 25th 29 

percentile of data, PM2.5 concentrations in key U.S. epidemiologic studies that use hybrid 30 

modeling methods and do not apply some aspects of population-weighting range from 4.6 31 

µg/m3 to 9.2 µg/m3, while those that apply some aspects of population weighting range from 32 

6.7 µg/m3 to 9.1 µg/m3. In U.S. studies that use monitored values have 25th percentiles 33 

ranging from 11.5 µg/m3 to just below 13.0 µg/m3. In Canada two monitored studies report 34 

25th percentile concentrations around 6.5 µg/m3, while hybrid modeled studies in Canada, all 35 

of which average up to postal codes and thus include some aspects of population-weighting, 36 

report 25th percentile concentrations around 8.0 µg/m3 in two studies, and 4.3 µg/m3 in one 37 

study.  38 

 39 

Scientific Evidence and Associated Uncertainties Supporting Associations at Lower 40 

Concentrations 41 

• Recent evidence further demonstrates that associations with mortality remain robust in 42 

copollutants analyses (U.S. EPA, 2019, section 11.2.3), and that associations persist in 43 
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analyses restricted to long-term exposures below 12 g/m3 (Di et al., 2017b) or 10 g/m3 1 

(Shi et al., 2016) (i.e., indicating that risks are not disproportionately driven by the upper 2 

portions of the air quality distribution). 3 

• Studies that examine the shapes of concentration-response functions over the full distribution 4 

of ambient PM2.5 concentrations have not identified a threshold concentration, below which 5 

associations no longer exist (U.S. EPA, 2019, section 1.5.3, U.S. EPA, 2021a, section 2.2.3.1 6 

and 2.2.3.2). While such analyses are complicated by the relatively sparse data available at 7 

the lower end of the air quality distribution (U.S. EPA, 2019, section 1.5.3), analyses that 8 

assess the concentration-response relationship support a linear, no-threshold effect down to 9 

5.0 μg/m3, though uncertainties increase at concentrations of less than 8.0 μg/m3. 10 

• While there is no specific point in the air quality distribution of any epidemiologic study that 11 

represents a “bright line” at and above which effects have been observed and below which 12 

effects have not been observed, there is significantly greater confidence in the magnitude and 13 

significance of observed associations for the part of the air quality distribution corresponding 14 

to where the bulk of the health events in each study have been observed, generally at or 15 

around the mean concentration, with more limited support for health effect associations 16 

based on air quality distributions at lower PM2.5 percentile concentrations. 17 

• Controlled human exposure studies demonstrate consistent evidence of effects at higher 18 

concentrations (e.g., > 120 µg/m3) and provide support for biological plausibility for more 19 

serious effects (e.g., hospital admissions) (U.S. EPA, 2019, Figure 6-1).  20 

Scientific Evidence on Short-term Exposures and PM2.5 Exposures Shown to Cause Effects  21 

• While controlled human exposure studies support the plausibility of the serious 22 

cardiovascular effects that have been linked with ambient PM2.5 exposures (U.S. EPA, 2019, 23 

chapter 6), the PM2.5 exposure concentrations evaluated in most of these studies are well-24 

above the ambient concentrations typically measured in locations meeting the current 25 

primary standards (and thus well-above those likely to be measured in locations that would 26 

meet revised standards with lower annual or 24-hour levels) (Figure 2-19, Figure A-2, Figure 27 

A-3).  28 

 29 

PM2.5-Associated Risk Estimates  30 

• The risk assessment estimates that, compared to the current standards, potential alternative 31 

annual standards with levels from 11.0 down to 8.0 g/m3 could reduce PM2.5-associated 32 

mortality broadly across the United States. Meeting a revised annual standard with a lower 33 

level is estimated to reduce PM2.5-associated health risks in the 30 annually-controlled study 34 

areas by about 7-9% for a level of 11.0 µg/m3, 15-19% for a level of 10.0 µg/m3, 22-28% for 35 

a level of 9.0 µg/m3, and 30-37% for a level of 8.0 µg/m3, compared to the current annual 36 

standard.  37 

• Revising the level of the 24-hour standard to 30 g/m3 is estimated to lower PM2.5-associated 38 

risks across a more limited population and number of areas than revising the annual standard 39 

(section 3.4.2.3). Risk reduction predictions are largely confined to areas located in the 40 

western U.S., several of which are also likely to experience risk reductions upon meeting a 41 

revised annual standard.  42 
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• The at-risk assessment estimated that Black populations may experience disproportionally 1 

higher exposures and risk under simulated air quality conditions just meeting the current 2 

primary PM2.5 annual standard as compared to White populations. Meeting a revised annual 3 

standard with a lower level may also proportionally reduce exposure and risk in Black 4 

populations slightly more so than in White populations in simulated scenarios just meeting 5 

alternative annual standards. 6 

• Uncertainties in risk estimates (e.g., in the size of risk estimates) can result from a number of 7 

factors, including assumptions about the shape of the C-R relationship with mortality at low 8 

ambient PM concentrations, the potential for confounding and/or exposure measurement 9 

error in the underlying epidemiologic studies, and the methods used to adjust PM2.5 air 10 

quality. In considering such uncertainties, we recognize that the risk estimates can help to 11 

place the evidence for specific effects into a broader public health context, but should be 12 

considered along with the inherent uncertainties and limitations of such analyses when 13 

informing judgments about the potential for additional public health protection associated 14 

with PM2.5 exposure and related health effects. 15 

 The information summarized in these key observations could support various decisions on 16 

the levels of the annual and 24-hour PM2.5 standards, depending on the weight given to different 17 

aspects of the evidence, air quality and risk information, including its uncertainties. In this draft 18 

PA we seek to provide as broad an array of policy options as is supportable by the available 19 

evidence and quantitative information, recognizing that the selection of a specific approach to 20 

reaching final decisions on the primary PM2.5 standards will reflect the judgments of the 21 

Administrator as to what weight to place on the various types of evidence and information, and 22 

on associated uncertainties. Potential approaches to considering support for particular alternative 23 

annual and 24-hour standard levels are discussed below.  24 

 25 

Alternative Annual Standard Levels  26 

 As discussed above, the degree to which particular alternative annual standard levels 27 

below 12.0 g/m3 are supported will depend on the weight placed on various aspects of the 28 

scientific evidence, air quality and risk information, and its associated uncertainties. In selecting 29 

a particular level from 10.0 g/m3 to < 12.0 g/m3, consideration of the evidence could take into 30 

account individual study characteristics such as study design and statistical approaches, precision 31 

of reported associations, study size and location, and uncertainties in the study itself or in our 32 

analyses of study area air quality. For example, a level below 12 g/m3 and as low as about 10.0 33 

g/m3 could be supported to the extent weight is placed on the following:  34 

• Setting a standard expected to maintain the PM2.5 air quality distributions below those 35 

present in most key epidemiologic studies, recognizing the general relationships 36 

demonstrated in the air quality analyses between study mean calculation and the annual 37 

standard and noting the values of the study reported means as listed below: 38 



 

October 2021 3-198  Draft – Do Not Quote or Cite 

o The monitor-based key epidemiologic studies report mean PM2.5 concentrations from 1 

9.9 μg/m3 to 16.5 μg/m3; 2 

o The key epidemiologic studies that incorporate hybrid modeling and population-3 

weight study mean PM2.5 concentrations report means from 9.3 μg/m3 to 12.2 μg/m3. 4 

• Noting that given the differences between population densities, PM2.5 concentration 5 

gradients, and source distributions between the U.S. and Canada, it may be inappropriate to 6 

draw a direct comparison between the Canadian study means and the annual design value 7 

metric used for compliance in the U.S., but also noting that the study reported means from 8 

the Canadian studies are similar, though somewhat lower, than those in the U.S. 9 

• Setting a standard level within the starting range of the mean PM2.5 concentrations evaluated 10 

in accountability studies, recognizing that some of the studies that report public health 11 

improvements with improvements to air quality have starting concentrations that range 12 

between 10.0 µg/m3 to 12.0 µg/m3 (Table 3-12).  13 

• Setting a standard estimated to reduce PM2.5-associated health risks, such that a substantial 14 

portion of the risk reduction that would be accomplished is estimated at annual average PM2.5 15 

concentrations within the range of overall means for which key epidemiologic studies 16 

indicate consistently positive and statistically significant health effect associations (≥ about 8 17 

g/m3 ) while also noting important uncertainties inherent in the risk assessment as described 18 

in detail in sections 3.4.1.7 and 3.4.1.8. Further, the at-risk analyses indicate that the average 19 

percent reduction in PM2.5 concentrations and risk are slightly greater in the Black population 20 

than in the White population for each alternative standard evaluated (11.0 µg/m3 and 10.0 21 

µg/m3), when shifting from the current annual PM2.5 standard (12.0 µg/m3) in the full set of 22 

47 areas and the subset of 30 areas controlled by the annual standard (section 3.4).  23 

• Noting a number of uncertainties associated with the scientific evidence and risk information 24 

including: (1) there are few key epidemiologic studies (and only one key U.S. study) that 25 

report positive and statistically significant health effect associations for PM2.5 air quality 26 

distributions with overall mean concentrations below 9.6 g/m3, and areas meeting a standard 27 

with a level of 10.0 g/m3 would generally be expected to have lower long-term mean 28 

PM2.5 concentrations (and potentially around 8.0 g/m3 in some areas) (section 3.3.3.2.1); (2) 29 

there is increasing uncertainty in PM2.5 exposure estimates in some of the largest key studies 30 

at lower ambient concentrations (i.e., those that use hybrid model predictions to estimate 31 

exposures), given the more limited information available to develop and validate model 32 

predictions (sections 2.3.3 and 3.3.3.2.1); and (3)  there is increasing uncertainty in 33 

quantitative estimates of PM2.5-associated mortality risk for standard levels below 10.0 g/m3, 34 

given that a substantial proportion of the risk reductions estimated for lower standard 35 

levels occur at annual average PM2.5 concentrations below 8 g/m3, and thus below the lower 36 

end of the range of overall mean PM2.5 concentrations in key epidemiologic studies that 37 

consistently report positive and statistically significant associations (section 3.4.1.7).   38 

 In contrast, an annual standard with a level below 10.0 g/m3 and as low as 8.0 g/m3, 39 

could be supported to the extent greater weight is placed on the potential public health 40 

improvements that could result from additional reductions in ambient PM2.5 concentrations (i.e., 41 

beyond those achieved by a standard with a level of 10.0 g/m3) and less weight is placed on the 42 
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limitations in the evidence that contribute to greater uncertainty at lower concentrations. For 1 

example, a level below 10.0 g/m3 could be supported to the extent greater weight is placed on 2 

the following:  3 

• Setting the annual standard at or below most or all of the study reported means, including 4 

means of hybrid modeling studies that did not use population weighted approaches, such that 5 

the standard would be expected to maintain the PM2.5 air quality distributions further below 6 

those present in most key epidemiologic studies and noting that the relationships between 7 

study mean calculation and the annual standard in the draft PA analyses are approximations 8 

and less weight should be placed on them and the mathematical approach used to calculate 9 

the mean. 10 

• Results of the key Canadian epidemiologic studies, which report mean PM2.5 concentrations 11 

that are lower than those reported in U.S. studies and for which the PM2.5 concentrations 12 

generally range from 7.0 µg/m3 to 9.0 µg/m3 (monitor-based) and 6.0 µg/m3 to 10.0 µg/m3 13 

(hybrid model-based and all of which apply some aspects of population-weighting) (section 14 

3.3.3.2.1);  15 

• Consideration of the air quality distribution below the mean for which key epidemiologic 16 

studies have reported associations with health effects. The ambient PM2.5 concentrations 17 

around the 25th percentile of underlying data, which range from 11.5 µg/m3  to 12.9 µg/m3 in 18 

U.S. monitor-based studies, from 6.5 µg/m3 to 6.8 µg/m3 in Canadian monitor-based studies, 19 

from 4.6 µg/m3 to 9.2 µg/m3. In key U.S. epidemiologic studies that use hybrid modeling 20 

methods and do not apply some aspects of population-weighting range from 4.6 µg/m3 to 9.2 21 

µg/m3, while those that apply some aspects of population weighting range from 6.7 µg/m3 to 22 

9.1 µg/m3  while hybrid modeled studies in Canada, all of which average up to postal codes 23 

and thus include some aspects of population-weighting, report 25th percentile concentrations 24 

around 8.0 µg/m3 in two studies, and 4.3 µg/m3 in one study (section 3.3.3.2.1); 25 

• Noting studies that examined the shapes of concentration-response functions over the full 26 

distribution of ambient PM2.5 concentrations and concluded that while the concentration-27 

response relationship support a linear, no-threshold effect down to 5.0 μg/m3, uncertainties 28 

increase at concentrations of less than 8.0 μg/m3; and also noting that the PM2.5 exposure 29 

concentrations in an area with a design value of less than 8.0 μg/m3 would reflect a 30 

distribution of air quality that would be mostly associated with average daily concentrations 31 

below 8.0 μg/m3. 32 

• The potential for continued public health improvements with improvements in air quality 33 

below the lowest starting concentration evaluated in accountability studies, which was 34 

approximately 10.0 µg/m3 (Table 3-12); 35 

• Studies that restrict analyses to air quality associated with levels below the current annual 36 

standard and report positive and significant associations, often with effect estimates that are 37 

greater in magnitude than those reported in the main analysis. Although the mean of the 38 

restricted analyses are generally not reported, in one key U.S. epidemiologic study, the mean 39 

concentration when restricting annual average PM2.5 concentrations to below 12.0 µg/m3  was 40 

presumably lower than the overall mean concentration of 8.1 µg/m3 reported in the main 41 

analysis (Shi et al., 2016) (Table 3-10); 42 
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• The potential public health importance of the additional reductions in PM2.5-associated health 1 

risks estimated for a level below 10.0 µg/m3 g/m3 and the potential for continued 2 

improvements below the lowest level examined in the risk assessment (8.0 g/m3). Further, 3 

the at-risk analyses indicate that the average percent reduction in PM2.5 concentrations and 4 

risk are slightly greater in the Black population than in the White population for each 5 

alternative standard evaluated (9.0 µg/m3 and 8.0 µg/m3), when shifting from the current 6 

annual PM2.5 standard (12.0 µg/m3) in the full set of 47 areas and the subset of 30 areas 7 

controlled by the annual standard (section 3.4). 8 

Alternative 24-Hour Standard Levels  9 

 We additionally evaluate the degree to which the evidence supports considering potential 10 

alternative levels for the 24-hour PM2.5 standard, in conjunction with the current 98th percentile 11 

form of that standard. With respect to current and recent air quality relationships, we note that 12 

the risk assessment indicates that the annual standard is the controlling standard across most of 13 

the urban study areas evaluated and revising the level of the 24-hour standard to 30 g/m3 would 14 

be estimated to lower PM2.5-associated risks, compared to the current standards, largely in a few 15 

study areas located in the western U.S. (several of which are also likely to experience risk 16 

reductions upon meeting a revised annual standard). Additionally, recent air quality analyses 17 

indicate that almost all CBSAs with maximum annual PM2.5 design values at or below 12.0 18 

g/m3 also have maximum 24-hour PM2.5 design values below 35 g/m3 (and below 30 g/m3 in 19 

most areas) (chapter 2, Figure 2-18). The exceptions are a few CBSAs in the western U.S.  20 

 As in previous reviews, we recognize that the annual standard would generally be the 21 

controlling standard across much of the U.S., except for certain areas where there are high 22 

seasonal emissions (e.g., wood smoke) and conducive meteorology (e.g., temperature inversions) 23 

or where there are more unique source-oriented influences (e.g., near manufacturing sources). In 24 

such areas, the 24-hour standard is the generally controlling standard, though the number of these 25 

areas in the U.S. is small. Thus, as was the approach in multiple recent reviews, we focus on the 26 

annual standard as the principle means of limiting both long- and short-term PM2.5 27 

concentrations, recognizing that the 24-hour standard, with its 98th percentile form, would 28 

provide supplemental protection against short-term peak exposures, particularly for areas with 29 

high peak-to-mean ratios (e.g., areas with strong seasonal sources). Compared to the annual 30 

standard, we recognize that the 24-hour standard is less likely to appropriately limit the more 31 

typical PM2.5 exposures (i.e., corresponding to the middle portion of the air quality distribution) 32 

that are most strongly associated with the health effects observed in epidemiologic studies. Thus, 33 

as in previous reviews (78 FR 3161-3162, January 15, 2013; 85 FR 82715, December 18, 2020), 34 

we focus on the 24-hour standard as a means of providing supplemental protection against the 35 

short-term exposures to “peak” PM2.5 concentrations, such as can occur in areas with strong 36 

contributions from local or seasonal sources.  37 
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 Taking into account this approach, an important consideration is whether additional 1 

protection is needed against short-term exposures to peak PM2.5 concentrations in areas meeting 2 

both the current 24-hour standard and the current, or a revised, annual standard. To the extent 3 

that the evidence indicates that such exposures can lead to adverse health effects, it would be 4 

appropriate to consider alternative levels for the 24-hour standard. In considering this issue, we 5 

evaluate the evidence from key health studies. With regard to these studies, we particularly note 6 

the following:  7 

• Controlled human exposure studies provide evidence for health effects following single, 8 

short-term PM2.5 exposures to concentrations that typically correspond to upper end of the 9 

PM2.5 air quality distribution in the U.S. (i.e., “peak” concentrations). In the studies evaluated 10 

at near ambient PM2.5 concentrations, results are mixed but they do report statistically 11 

significant effects on one or more indicators of cardiovascular function following 2-hour 12 

exposures to PM2.5 concentrations at and above 120 μg/m3 (at and above 149 μg/m3 for 13 

vascular impairment, the effect shown to be most consistent across studies).   14 

• Animal toxicologic studies provide evidence of effects related to short-term exposures to 15 

PM2.5 at concentrations ranging from 100 to > 1,000 μg/m3 and providing further evidence to 16 

support the biological mechanisms and plausibility of various adverse effects associated with 17 

short-term exposures.  18 

• The body of epidemiologic evidence provides limited support for judging adequacy of the 19 

level of the 24-hour standard. As discussed in detail above (section 3.3.3.2.1), epidemiologic 20 

studies provide the strongest support for reported health effect associations for the part of the 21 

air quality distribution corresponding to the bulk of the underlying data (i.e., estimated 22 

exposures and/or health events), often around the overall mean concentrations evaluated 23 

rather than near the upper end of the distribution. Additionally, the magnitudes of the 24 

associations in restricted analyses are similar to or larger than the magnitudes of the 25 

associations based on the full cohorts (Table 3-10), suggesting that, at a minimum, short-term 26 

exposures to peak PM2.5 concentrations are not disproportionately responsible for reported 27 

health effect associations.   28 

Based on the evidence above, we assessed the protection provided by the current 29 

standards against the concentrations seen in the human exposure studies. The air quality analyses 30 

included in this draft PA show that 2-hour ambient concentrations of PM2.5 at monitoring sites 31 

meeting the current standards almost never exceed 30 μg/m3 (Figure 2-19). In fact, even the 32 

extreme upper end of the distribution of 2-hour PM2.5 concentrations at sites meeting the current 33 

standards remain well-below the PM2.5 exposure concentrations consistently shown to elicit 34 

effects (i.e., 99.9th percentile of 2-hour concentrations at these sites is 62 μg/m3 during the warm 35 

season). We also note some caution in placing too much weigh on the need to provide protection 36 

against any of the exposures observed in the clinical studies given that it is unclear how the 37 

results alone and the importance of the effects observed in these studies, particularly in the 38 

studies conducted at near-ambient PM2.5 concentrations, should be interpreted with respect to 39 

adversity to public health. 40 
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 When the information summarized above is considered in the context of the 24-hour 1 

standard, we reach the preliminary conclusion that, in conjunction with a lower annual standard 2 

level intended to increase protection against average short- and long-term PM2.5 exposures across 3 

the U.S., the evidence does not support the need for additional protection against short-term 4 

exposures to peak PM2.5 concentrations. In particular, while the epidemiologic studies do support 5 

the need to consider increasing protection against the typical daily and annual PM2.5 exposures 6 

that provide strong support for reported health effect associations, these studies do not provide 7 

the same support for a need for increasing protection against short-term, peak exposures. Further, 8 

the epidemiologic studies do not indicate that the reported health effect associations in these 9 

studies are strongly influenced by exposures to the peak concentrations in the air quality 10 

distribution. Also, while animal toxicologic studies provide evidence to support the biological 11 

mechanisms and plausibility of various adverse effects associated with short-term exposures, 12 

they provide limited support for judging adequacy of the level of the 24-hour standard. Human 13 

clinical studies support the occurrence of effects following single short-term exposures to PM2.5 14 

concentrations that correspond to the peak of the air quality distribution, though these 15 

concentrations are well above those typically measured in areas meeting the current standards, 16 

suggesting that the current standards are providing protection against these exposures. As such, 17 

the available evidence supports the need for the current 24-hour standard to protect against peak 18 

concentrations but does not clearly support the need for a lower level of that standard. Thus, in 19 

the context of a 24-hour standard that is meant to provide supplemental protection (i.e., beyond 20 

that provided by the annual standard alone) against short-term exposures to peak PM2.5 21 

concentrations, the evidence supports consideration of retaining the current 24-hour standard 22 

with its level of 35 g/m3. 23 

 However, we also recognize that a different policy approach than that described above 24 

could be applied to considering the level of the 24-hour standard. For example, consideration 25 

could be given to lower 24-hour standard levels in order to increase protection across the U.S. 26 

against the broader PM2.5 air quality distribution. If such an approach is evaluated in this 27 

reconsideration, consideration of 24-hour standard levels as low as 30 g/m3 could be supported 28 

(either alone or in conjunction with a lower annual standard level). The risk assessment estimates 29 

that a level of 30 g/m3 would increase protection compared to the current standards, though 30 

only in a small number of study areas largely confined to the western U.S. (section 3.4.2).  31 

 If this alternative approach to revising the primary PM2.5 standards is adopted, the 32 

uncertainty inherent in using the 24-hour standard to increase protection against the broad 33 

distribution of PM2.5 air quality should be carefully considered. Specifically, the degree of 34 

protection provided by any particular 24-hour standard against the typical PM2.5 exposures 35 

corresponding to the middle portion of the air quality distribution will vary across locations and 36 
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over time, depending on the relationship between those typical concentrations and the short-term 1 

peak PM2.5 concentrations that are directly targeted by the 24-hour standard (i.e., with its 98th 2 

percentile form). Thus, lowering the level of the 24-hour standard is likely to have a more 3 

variable impact on public health than lowering the level of the annual standard. Depending on 4 

the 24-hour standard level set, some areas could experience reductions that are greater than 5 

warranted, based on the evidence, while others could experience reductions that are less than 6 

warranted. Therefore, the rationale supporting this approach would need to recognize and 7 

account for the uncertainty inherent in using 24-hour standard, with a 98th percentile form, to 8 

increase protection against the broad distribution of PM2.5 air quality. 9 

3.6 AREAS FOR FUTURE RESEARCH AND DATA COLLECTION 10 

In this section, we identify key areas for additional research and data collection for fine 11 

particles, based on the uncertainties and limitations that remain in the evidence and technical 12 

information. Additional research in these areas could reduce uncertainties and limitations in 13 

future reviews of the primary PM2.5 standards. Important areas for future research include the 14 

following:  15 

• Further elucidating the physiological pathways through which exposures to the PM2.5 16 

concentrations present in the ambient air across much of the U.S. could be causing mortality 17 

and the morbidity effects shown in many epidemiologic studies. This could include the 18 

following:  19 

- Controlled human exposure studies that examine exposures near ambient 20 

PM2.5 concentrations (e.g., Wyatt et al. (2020a) longer exposure periods (e.g., 21 

24-hour as in Bräuner et al. (2008); 5-hour as in Hemmingsen et al. (2015b)), 22 

or repeated exposures, to concentrations typically measured in the ambient air 23 

across the U.S.  24 

- Studies that evaluate the health impacts of decreasing PM2.5 exposures (e.g., 25 

due to changes in policies or behavior, shifts in important emissions sources, 26 

or targeted interventions).  27 

- Additional animal toxicological studies that evaluate exposures to near 28 

ambient PM2.5 concentrations.  29 

• Additional research into “causal inference” methods in epidemiologic studies to evaluate the 30 

causal nature of relationships between PM2.5 exposure and mortality or morbidity. 31 

• Additional research into “accountability” or “quasi-experimental” epidemiologic studies with 32 

‘starting PM2.5 concentrations’ below 12.0 µg/m3.  33 

• Improving our understanding of the PM2.5 concentration-response relationships near the 34 

lower end of the PM2.5 air quality distribution, including the shapes of concentration-35 

response functions and the uncertainties around estimated functions for various health 36 

outcomes and populations (e.g., older adults, people with pre-existing diseases, children).  37 
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• Understanding of the potential for particle characteristics, other than size-fractionated mass, 1 

to influence PM toxicity (e.g., composition, oxidative potential, etc.) and the PM health 2 

effect associations observed in epidemiologic studies.  3 

• Improving our understanding of the uncertainties inherent in the various approaches used to 4 

estimate PM2.5 exposures in epidemiologic studies, including how those uncertainties may 5 

vary across space and time, and over the PM2.5 air quality distribution. Approaches to 6 

incorporating these uncertainties into quantitative estimates of PM2.5 concentration-response 7 

relationships should also be explored.   8 

• Additional health research on ultrafine particles, with a focus on consistently defining UFPs 9 

across studies and across disciplines (i.e., animal, controlled human exposure, and 10 

epidemiologic studies), on using consistent exposure approaches in experimental studies, and 11 

on improving exposure characterizations in epidemiologic studies. Also, further examine the 12 

potential for translocation of ultrafine particles from the respiratory tract into other 13 

compartments (i.e., blood) and organs (e.g., heart, brain), with particular emphasis on studies 14 

conducted in humans.  15 

• Additional work to measure ultrafine particle emissions and the composition of ultrafine 16 

particles, using comparable methods to measure emissions from various types of sources 17 

(e.g., mobile sources, fires, etc.).  18 

• Further evaluate the potential for some groups to be at higher risk of PM2.5-related effects 19 

than the general population and the potential for PM2.5 exposures to contribute to the 20 

development of underlying conditions that may then confer higher risk of PM2.5-related 21 

effects. For example, research to address this latter need could include efforts to understand 22 

the potential for long-term PM exposures to contribute to the development and progression of 23 

atherosclerosis in adults and/or asthma in children. It could also include research to 24 

understand the potential role of PM exposures in developmental outcomes (e.g., 25 

neurodevelopmental effects, reproductive and birth outcomes).  26 

• Research to further evaluate the combination of factors that contribute to differences in risk 27 

estimates between cities, potentially including differences in exposures, demographics, 28 

particle characteristics. 29 

• Research to improve our understanding of variability in PM2.5 exposures within and across 30 

various populations (e.g., defined by life stage, pre-existing condition, etc.), the most health-31 

relevant exposure durations, as well as the temporal and spatial variability in ambient PM2.5 32 

that is not captured by existing ambient monitors.  33 

• Future research to examine PM2.5 exposure and associated effects in pregnant women, and 34 

birth outcomes, as well as future research and data collection to examine developmental 35 

outcomes and different life stages  36 

In addition to research and data collection, additional information that could be reported 37 

in epidemiologic studies may help to reduce uncertainties and limitations in future reviews of the 38 

primary PM2.5 standards. This information includes: 39 

• Descriptive statistics of PM2.5 concentrations that are used in epidemiologic studies to 40 

evaluate associations between PM2.5 and health effects (e.g., minimum, maximum, 10th 41 

percentile, 25th percentile, mean, median, 75th percentile).  42 
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• More detailed information on the methods used to calculate the mean PM2.5 concentrations 1 

that are reported in the study (e.g., whether population-weighting was applied, how the PM2.5 2 

concentrations estimated from hybrid modeling are averaged prior to being assigned to health 3 

events).   4 

- Noting whether the mean PM2.5 concentration reported is the concentration 5 

across the area evaluated or if the mean PM2.5 concentration reported is based 6 

only PM2.5 concentrations used in analyses to assess the association between 7 

health outcomes and PM2.5.  8 

• In analyses restrict PM2.5 concentrations below specific concentrations (e.g., below annual 9 

averages of 12.0 µg/m3 or below daily averages of 35 µg/m3) reporting of the Mean PM2.5 10 

concentrations in the restricted analysis could be helpful. 11 
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4 RECONSIDERATION OF THE PRIMARY STANDARD 1 

FOR PM10 2 

This chapter presents and evaluates the policy implications of the scientific and technical 3 

information pertaining to reconsideration of the 2020 final decision on the primary PM10 4 

standard. In so doing, the chapter presents key aspects of the health effects evidence of PM10-2.5, 5 

as documented in the 2019 ISA, with support from the prior ISA and AQCDs, and associated 6 

public health implications. This information provides the basis for our evaluation of the scientific 7 

information regarding health effects of PM10 in ambient air and the potential for effects to occur 8 

under air quality conditions associated with the existing standard, as well as the associated 9 

implications for public health. Our evaluation is framed around key policy-relevant questions 10 

derived from the IRP (U.S. EPA, 2016, section 2.1) for the review completed in 2020, and the 11 

scientific conclusions regarding the relationship between short- and long-term PM10-2.5 exposure 12 

and health effects detailed in the 2019 ISA, while also taking into account conclusions reached in 13 

previous reviews. In this way, we identify key policy-relevant issues and summary conclusions 14 

regarding the public health protection provided by the current standard as the Administrator 15 

reconsiders the final 2020 decision on the primary PM10 standard. 16 

As described in Chapter 1, the scope of the updated scientific evaluation of the health 17 

effects evidence for PM10 is based on those health effects categories where the 2019 ISA 18 

concluded a causal relationship exists. Therefore, the draft ISA Supplement does not include an 19 

evaluation of additional studies for PM10-2.5 and the 2019 ISA continues to serve as the scientific 20 

foundation for assessing the adequacy of the primary PM10 standard in this reconsideration of the 21 

2020 final decision (U.S. EPA, 2019, section 1.7; U.S. EPA, 2021). As such, this chapter draws 22 

heavily from the 2020 PA in identifying and summarizing key issues related to this 23 

reconsideration of the primary PM10 standard.  24 

Within this chapter, background information on the current standard is summarized in 25 

section 4.1. The general approach for evaluating the available information in this 26 

reconsideration, including policy-relevant questions identified to frame our policy evaluation, is 27 

summarized in section 4.2. Key aspects of the available health effects evidence presented in the 28 

2019 ISA and considered in the 2020 PA are addressed in section 4.3. Section 4.4 summarizes 29 

the key evidence-based considerations identified in our evaluation and presents associated 30 

preliminary conclusions on the adequacy of the current standard. Key remaining uncertainties 31 

and areas for future research are identified in section 4.5. 32 
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4.1 BACKGROUND ON THE CURRENT STANDARD 1 

With the 2020 final decision on the PM NAAQS, the EPA retained the existing 24-hour 2 

primary PM10 standard, with its level of 150 µg/m3 and its one-expected-exceedance form on 3 

average over three years, to continue to provide public health protection against short-term 4 

exposures to PM10-2.5 (85 FR 82725, December 18, 2020). This decision was based on the 5 

scientific information available at that time, as well as the Administrator’s judgments regarding 6 

the health effects evidence and the appropriate degree of public health protection for the existing 7 

standard.  8 

The health effects evidence assessed in the 2019 ISA included an expanded body of 9 

scientific evidence linking short-term PM10-2.5 to health outcomes such as premature death and 10 

hospital visits (U.S. EPA, 2009, U.S. EPA, 2019). This evidence base assessed the causal nature 11 

of relationships between short-term exposure to PM10-2.5 and a broad range of health effects (U.S. 12 

EPA, 2020, section 1.4.2). These effects associated with short-term exposure ranged from 13 

hospital admissions and emergency department visits for cardiovascular effects (documented in 14 

epidemiologic studies that reported PM10-2.5 associations with cardiovascular hospital admissions 15 

and emergency department visits in study locations with mean 24-hour average PM10-2.5 16 

concentrations ranging from 7.4 to 13 µg/m3) and respiratory effects (documented in 17 

epidemiologic studies that reported PM10-2.5 associations with respiratory hospital admissions and 18 

emergency department visits in study locations with mean 24-hour average concentrations 19 

ranging from 5.6 to 16.2 µg/m3) to mortality (documented in epidemiologic studies that reported 20 

PM10-2.5 associations with mortality in study areas with mean 24-hour average concentrations 21 

ranging from 6.1 µg/m3 to 16.4 µg/m3). In addition to the epidemiologic studies, the evidence 22 

base included few controlled human exposure studies and animal toxicologic studies that 23 

provided insight into the biological plausibility of these effects. Collectively, the epidemiologic 24 

studies, controlled human exposure, and animal toxicological studies, with their inherent 25 

uncertainties, contributed to the causality determinations of “suggestive of, but not sufficient to 26 

infer, a causal relationship” between short-term exposures to PM10-2.5 and cardiovascular effects, 27 

respiratory effects, and mortality (U.S. EPA, 2009, U.S. EPA, 2019, section 1.4.2).  28 

Building on the evidence considered in the 2012 review, the primary focus in the 2020 29 

review was on multi-city and single-city epidemiologic studies that evaluated associations 30 

between short-term PM10-2.5 and mortality, cardiovascular effects (hospital admissions and 31 

emergency department visits), and respiratory effects. Despite differences in the approaches used 32 

to estimate ambient PM10-2.5 concentrations, the majority of the studies reported positive, though 33 

often not statistically significant, associations with short-term PM10-2.5 exposures. Most PM10-2.5 34 

effect estimates remained positive in copollutant models that included either gaseous pollutants 35 

or other particulate matter size fractions (e.g., PM2.5). In U.S. study locations likely to have met 36 
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the PM10 standard during the study period, a few studies reported positive associations between 1 

PM10-2.5 and mortality that were statistically significant and remained so in copollutant models 2 

(U.S. EPA, 2009, U.S. EPA, 2019).  3 

In addition to the epidemiologic studies, there were a small number of controlled human 4 

exposure studies assessed in the 2019 ISA that reported alterations in heart rate variability or 5 

increased pulmonary inflammation following short-term exposure to PM10-2.5, providing some 6 

support for the associations in the epidemiologic studies. Toxicological studies that examined the 7 

effects of PM10-2.5 used intratracheal instillation as opposed to inhalation. Therefore, these studies 8 

provided limited evidence for the biological plausibility of PM10-2.5-induced effects (U.S. EPA, 9 

2009, U.S. EPA, 2019).  10 

Although the scientific evidence available in the 2019 ISA expanded the understanding of 11 

health effects associated with PM10-2.5 exposures, a number of important uncertainties remained. 12 

These uncertainties, and their implications for interpreting the scientific evidence, include the 13 

following: 14 

•  The potential for confounding by copollutants, notably PM2.5, was addressed with 15 

copollutant models in a relatively small number of PM10-2.5 epidemiologic studies (U.S. 16 

EPA, 2009, U.S. EPA, 2019). This was particularly important given the relatively small 17 

body of experimental evidence (i.e., controlled human exposure and animal toxicological 18 

studies) available to support the independent effect of PM10-2.5 on human health. This 19 

increases the uncertainty regarding the extent to which PM10-2.5 itself, rather than one or 20 

more cooccurring pollutants, is responsible for the mortality and morbidity effects 21 

reported in epidemiologic studies. 22 

•  There was greater spatial variability in PM10-2.5 concentrations than PM2.5 concentrations, 23 

resulting in increased exposure error for PM10-2.5 (U.S. EPA, 2009, U.S. EPA, 2019). 24 

Available measurements did not provide sufficient information to adequately characterize 25 

the spatial distribution of PM10-2.5 concentrations (U.S. EPA, 2009, U.S. EPA, 2019). The 26 

limitations in estimates of ambient PM10-2.5 concentrations “would tend to increase 27 

uncertainty and make it more difficult to detect effects of PM10-2.5 in epidemiologic 28 

studies” (U.S. EPA, 2009, U.S. EPA, 2019). 29 

•  The distributions of PM10-2.5 concentrations over which reported health outcomes occur 30 

remain highly uncertain. Only a relatively small number of PM10-2.5 monitoring sites were 31 

operating at the time of the 2012 review and such sites had only been in operation for a 32 

relatively short period of time, limiting the spatial and temporal coverage for routine 33 

measurement of PM10-2.5 concentrations. Given these limitations in routine monitoring, 34 

epidemiologic studies employed a number of different approaches for estimating PM10-2.5 35 

concentrations. Given the relatively small number of PM10-2.5 monitoring sites, the 36 

relatively large spatial variability in ambient PM10-2.5 concentrations, the use of different 37 

approaches to estimating ambient PM10-2.5 concentrations across epidemiologic studies, 38 

and the limitations inherent in such estimates, the distributions of PM10-2.5 concentrations 39 

over which reported health outcomes occur remain highly uncertain (U.S. EPA, 2009, 40 

U.S. EPA, 2019). 41 
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•  There was relatively little information on the chemical and biological composition of 1 

PM10-2.5 and the effects associated with the various components (U.S. EPA, 2019). 2 

Without more information on the chemical speciation of PM10-2.5, the apparent variability 3 

in associations with health effects across locations was difficult to characterize (U.S. 4 

EPA, 2009, U.S. EPA, 2019). 5 

Consistent with the general approach routinely employed in NAAQS reviews, the initial 6 

consideration in the 2020 review of the primary PM10 standard was with regard to the adequacy 7 

of protection provided by the then-existing standard. Key aspects of that consideration are 8 

summarized in section 4.1.1 below. 9 

4.1.1 Considerations Regarding the Adequacy of the Existing Standards in the 2020 10 

Review 11 

In the 2020 final decision, the EPA retained the existing 24-hour primary PM10 standard 12 

with its level of 150 µg/m3 and its one-expected-exceedance form on average over three years to 13 

continue to provide public health protection against exposures to PM10-2.5 (85 FR 82727, 14 

December 18, 2020). In reaching his decision, the Administrator specifically noted that, while 15 

the health effects evidence was somewhat expanded since the prior reviews, the overall 16 

conclusions in the 2019 ISA, including uncertainties and limitations, were generally consistent 17 

with what was considered in the 2012 review (85 FR 82725, December 18, 2020). In addition, 18 

the Administrator recognized that there were still a number of uncertainties and limitations 19 

associated with the available evidence.  20 

With regard to the evidence on PM10-2.5-related health effects, the Administrator noted 21 

that epidemiologic studies continued to report positive associations with mortality and morbidity 22 

in cities across North America, Europe, and Asia, where PM10-2.5 sources and composition were 23 

expected to vary widely. While significant uncertainties remained in the 2020 review, the 24 

Administrator recognized that this expanded body of evidence had broadened the range of effects 25 

that have been linked with PM10-2.5 exposures. The studies evaluated in the 2019 ISA expanded 26 

the scientific foundation presented in the 2009 ISA and led to revised causality determinations 27 

(and new determinations) for long-term PM10-2.5 exposures and mortality, cardiovascular effects, 28 

metabolic effects, nervous system effects, and cancer (85 FR 82726, December 18, 2020). 29 

Drawing from his consideration of this evidence, the Administrator concluded that the scientific 30 

information available since the time of the last review supported a decision to maintain a primary 31 

PM10 standard to provide public health protection against PM10-2.5 exposures, regardless of 32 

location, source of origin, or particle composition (85 FR 82726, December 18, 2020). 33 

With regard to uncertainties in the available evidence, the Administrator first noted that a 34 

number of limitations were identified in the 2012 review related to: (1) estimates of ambient 35 

PM10-2.5 concentrations used in epidemiologic studies; (2) limited evaluation of copollutant 36 
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models to address the potential for confounding; and (3) limited experimental studies supporting 1 

biological plausibility for PM10-2.5-related effects. Despite the expanded body of evidence for 2 

PM10-2.5 exposures and health effects, the Administrator recognized that uncertainties in the 2020 3 

review continued to include those associated with the exposure estimates used in epidemiologic 4 

studies, the independence of the PM10-2.5 health effect associations, and the biologically plausible 5 

pathways for PM10-2.5 health effects (85 FR 82726, December 18, 2020). These uncertainties 6 

contributed to the 2019 ISA determinations that the evidence is “suggestive of, but not sufficient 7 

to infer” causal relationships (85 FR 82726, December 18, 2020).  8 

Further, consistent with the approach in reaching the 2012 decision, the approach for the 9 

2020 PM NAAQS review did not include quantitative assessments of estimated exposures or 10 

risks allowed by the existing standard or potential alternative standards. Further, the available 11 

evidence in the 2019 ISA did not provide support for evaluating air quality distributions in 12 

locations of individual epidemiologic studies as was done in the 2012 review (78 FR 3176, 13 

January 15, 2013). The substantial uncertainty in such analyses, if conducted based on the 14 

available PM10-2.5 health studies, would have been of limited utility for informing conclusions on 15 

the primary PM10 standard.  16 

In the 2020 decision, for all of the reasons discussed above and recognizing the CASAC 17 

conclusion that the evidence provided support for retaining the current standard, the 18 

Administrator concluded that it was appropriate to retain the existing primary PM10 standard, 19 

without revision. His decision was consistent with the CASAC advice related to the primary 20 

PM10 standard. Specifically, the CASAC agreed with the 2020 PA conclusions that, while these 21 

effects are important, the “evidence does not call into question the adequacy of the public health 22 

protection afforded by the current primary PM10 standard” and “supports consideration of 23 

retaining the current standard in this review” (Cox, 2019a, p. 3 of letter). Thus, the Administrator 24 

concluded that the primary PM10 standard (in all of its elements) was requisite to protect public 25 

health with an adequate margin of safety against effects that have been associated with PM10-2.5. 26 

In light of this conclusion, the EPA retained the existing PM10 standard. 27 

4.2 GENERAL APPROACH AND KEY ISSUES IN THIS 28 

RECONSIDERATION OF THE 2020 FINAL DECISION  29 

As is the case for all such reviews, this reconsideration of the 2020 final decision on the 30 

primary PM10 standard is most fundamentally based on using the Agency’s assessment of the 31 

scientific evidence and quantitative information, if available, to inform the Administrator’s 32 

judgments regarding a primary standard that is requisite to protect public health with an adequate 33 

margin of safety. The approach for this reconsideration builds on the substantial assessments and 34 

evaluations performed over previous reviews (U.S. EPA, 2011, U.S. EPA, 2020). As noted 35 
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above, the draft ISA Supplement does not include an evaluation of studies for PM10-2.5 and the 1 

2019 ISA continues to serve as the scientific foundation for this reconsideration. Given that there 2 

is no new evidence for PM10-2.5-related health effects assessed in the draft ISA Supplement that 3 

would inform quantitative assessments or preliminary conclusions on the current primary PM10 4 

standard since the completion of the 2020 review, this draft PA draws from the evaluation of the 5 

health effects evidence for PM10-2.5-related effects in the 2019 ISA and considerations of such 6 

effects in the 2020 PA (U.S. EPA, 2020). 7 

The evaluations in this draft PA of the health effects evidence assessed in the 2019 ISA 8 

are intended to inform the Administrator’s public health policy judgments and conclusions as a 9 

part of this reconsideration of the 2020 final decision, including his decision as to whether to 10 

retain or revise the primary PM10 standard. The draft PA evaluations consider the potential 11 

implications of various aspects of the scientific evidence and the associated uncertainties and 12 

limitations. In so doing, the approach for this draft PA involves evaluating the available scientific 13 

and technical information to address a series of key policy-relevant questions using evidence-14 

based considerations. Consideration of the full set of evidence in this reconsideration will inform 15 

the answer to the following initial overarching question: 16 

• Does the scientific evidence support or call into question the adequacy of the 17 

protection afforded by the current 24-hour primary PM10 standard against health 18 

effects associated with exposures to PM10-2.5?  19 

In reflecting on this question, we consider the body of scientific evidence, assessed in the 20 

2019 ISA, including whether it supports or calls into question the scientific conclusions reached 21 

in previous reviews regarding health effects related to exposure to PM10-2.5 in ambient air. 22 

Information available in the 2019 ISA that may be informative to public health judgments 23 

regarding significance or adversity of key effects will also be considered. Further, in considering 24 

this question with regard to the primary PM10 standard, as in all NAAQS reviews, we give 25 

particular attention to exposures and health risks to at-risk populations (including at-risk 26 

lifestages). Evaluation of the scientific information with regard to this consideration of the 27 

current standard will focus on key policy-relevant issues by addressing a series of questions 28 

including the extent to which the available scientific evidence supports retaining or altering the 29 

conclusions in the prior reviews regarding health effects attributed to PM10-2.5 exposures. 30 

Furthermore, this draft PA will examine whether the previously identified uncertainties have 31 

been reduced and if new uncertainties have been identified.  32 

The general approach to reaching preliminary conclusions on the current primary PM10 33 

standard is summarized in Figure 4-1: 34 
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 1 

Figure 4-1. Overview of general approach for the reconsideration of the 2020 final decision 2 

on the primary PM10 standard.  3 

 4 
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The Agency’s approach to reviewing the primary standards is consistent with the 1 

requirements of the provisions of the CAA related to the review of the NAAQS and with how the 2 

EPA and the courts have historically interpreted the CAA. As discussed in section 1.1 above, 3 

these provisions require the Administrator to establish primary standards that, in the 4 

Administrator’s judgment, are requisite (i.e., neither more nor less stringent than necessary) to 5 

protect public health with an adequate margin of safety. Consistent with the Agency’s approach 6 

across all NAAQS reviews, the approach of this draft PA to informing these judgments is based 7 

on a recognition that the available health effects evidence generally reflects continuums that 8 

include ambient air exposures for which scientists generally agree health effects are likely to 9 

occur through lower levels at which the likelihood and magnitude of response become 10 

increasingly uncertain. The CAA does not require the Administrator to establish a primary 11 

standard at a zero-risk level or at background concentration levels, but rather at a level that 12 

reduces risk sufficiently so as to protect public health, including the health of sensitive groups,1 13 

with an adequate margin of safety. 14 

The decisions on the adequacy of the current primary PM10 standard and on any 15 

alternative standards considered in a review are largely public health policy judgments made by 16 

the Administrator. The four basic elements of the NAAQS (i.e., indicator, averaging time, form, 17 

and level) are generally considered collectively in evaluating the health protection afforded by 18 

the current standard, and by any alternatives considered. The Administrator’s final decisions in a 19 

review draw upon the scientific evidence for health effects, quantitative analyses of population 20 

exposures and/or health risks, as available, and judgments about how to consider the 21 

uncertainties and limitations that are inherent in the scientific evidence and quantitative analyses. 22 

4.3 HEALTH EFFECTS EVIDENCE 23 

This section draws from the EPA’s synthesis and assessment of the scientific evidence 24 

presented in the 2019 ISA (U.S. EPA, 2019) to consider the following policy-relevant questions:  25 

• To what extent does the available scientific evidence strengthen, or otherwise alter, our 26 

conclusions from previous reviews regarding health effects attributable to long- or 27 

short-term PM10-2.5 exposures? Have previously identified uncertainties been reduced? 28 

What important uncertainties remain and have new uncertainties been identified? 29 

Answers to these questions will inform our response to the overarching question on the adequacy 30 

of the current primary PM10 standard, posed at the beginning of this chapter. In section 4.3.1 31 

 
1 More than one population group may be identified as sensitive or at-risk in a NAAQS review. Decisions on 

NAAQS reflect consideration of the degree to which protection is provided for these sensitive population groups. 

To the extent that any particular population group is not among the identified sensitive groups, a decision that 

provides protection for the sensitive groups would be expected to also provide protection for other population 

groups. 
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below, we consider the nature of the effects attributable to long-term and short-term PM10-2.5 1 

exposures.  2 

4.3.1 Nature of Effects 3 

 As noted above, for the health effect categories and exposure duration combinations 4 

evaluated, the 2019 ISA concludes that the evidence supports causality determinations for 5 

PM10-2.5 that are “suggestive of, but not sufficient to infer, a causal relationship.” These health 6 

effect categories, along with their corresponding causality determinations from the 2009 ISA, are 7 

highlighted below in Table 4-1 (adapted from U.S. EPA, 2019, Table 1-4).  8 

Table 4-1. Key Causality Determinations for PM10-2.5 Exposures 9 

Health Outcome 
Exposure 
Duration 

2009 PM ISA 2019 PM ISA 

Mortality 
Long-term Inadequate 

Suggestive of, but not 
sufficient to infer 

Short-term Suggestive of, but not sufficient to infer 

Cardiovascular 
effects 

Long-term Inadequate 

Short-term Suggestive of, but not sufficient to infer 

Respiratory effects Short-term Suggestive of, but not sufficient to infer 

Cancer Long-term Inadequate 

Nervous System 
effects 

Long-term --- 

Metabolic effects Long-term --- 

 10 

 While the evidence supporting the causal nature of relationships between exposure to 11 

PM10-2.5 has been strengthened for some of the health effect categories listed in Table 4-1 since 12 

the 2009 ISA, the 2019 ISA concludes that overall “the uncertainties in the evidence identified in 13 

the 2009 PM ISA have, to date, still not been addressed” (U.S. EPA, 2019, section 1.4.2, p. 1-14 

41). Specifically, epidemiologic studies available in the 2012 review relied on various methods 15 

to estimate PM10-2.5 concentrations, and these methods had not been systematically compared to 16 

evaluate spatial and temporal correlations in PM10-2.5 concentrations. Methods included (1) 17 

calculating the difference between PM10 and PM2.5 concentrations at co-located monitors, (2) 18 

calculating the difference between county-wide averages of monitored PM10- and PM2.5-based on 19 

monitors that are not necessarily co-located, and (3) direct measurement of PM10-2.5 using a 20 

dichotomous sampler (U.S. EPA, 2019, section 1.4.2). As described in the 2019 ISA, there 21 

continues to be variability across epidemiologic studies in the approaches used to estimate PM10-22 
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2.5 concentrations. Additionally, some studies estimate long-term PM10-2.5 exposures as the 1 

difference between PM10 and PM2.5 concentrations based on information from spatiotemporal or 2 

land use regression (LUR) models, in addition to monitors. The various methods used to estimate 3 

PM10-2.5 concentrations have not been systematically evaluated (U.S. EPA, 2019, section 4 

3.3.1.1), contributing to uncertainty regarding the spatial and temporal correlations in PM10-2.5 5 

concentrations across methods and in the PM10-2.5 exposure estimates used in epidemiologic 6 

studies (U.S. EPA, 2019, section 2.5.1.2.3). Given the greater spatial and temporal variability of 7 

PM10-2.5 and the lower number of PM10-2.5 monitoring sites, compared to PM2.5, this uncertainty is 8 

particularly important for the coarse size fraction.  9 

 Beyond the uncertainty associated with PM10-2.5 exposure estimates in epidemiologic 10 

studies, the limited information on the potential for confounding by copollutants and the limited 11 

support available for the biological plausibility of health effects following PM10-2.5 exposures 12 

also continue to contribute to uncertainty in the PM10-2.5 health evidence. Uncertainty related to 13 

potential confounding stems from the relatively small number of epidemiologic studies that have 14 

evaluated PM10-2.5 health effect associations in copollutants models with both gaseous pollutants 15 

and other PM size fractions. On the other hand, uncertainty related to the biological plausibility 16 

of effects attributed to PM10-2.5 exposures results from the small number of controlled human 17 

exposure and animal toxicology2 studies that have evaluated the health effects of experimental 18 

PM10-2.5 inhalation exposures. The evidence supporting the 2019 ISA’s “suggestive of, but not 19 

sufficient to infer, a causal relationship” causality determinations for PM10-2.5, including 20 

uncertainties in this evidence, is summarized in sections 4.3.1.1 to 4.3.1.6 below. 21 

4.3.1.1 Mortality  22 

Long-term exposures 23 

Due to the dearth of studies examining the association between long-term PM10−2.5 24 

exposure and mortality, the 2009 ISA concluded that the evidence was “inadequate to determine 25 

if a causal relationship exists” (U.S. EPA, 2009, U.S. EPA, 2019). As reported in the 2019 ISA, 26 

some recent cohort studies conducted in the U.S. and Europe report positive associations 27 

between long-term PM10-2.5 exposure and total (nonaccidental) mortality, though results are 28 

inconsistent across studies (U.S. EPA, 2019, Table 11-11). The examination of copollutant 29 

models in these studies remains limited and, when included, PM10-2.5 effect estimates were often 30 

attenuated after adjusting for PM2.5 (U.S. EPA, 2019, Table 11-11). Across studies, PM10-2.5 31 

exposure concentrations were estimated using a variety of approaches, including direct 32 

 
2 Compared to humans, rats and mice have small nasal passages, allowing smaller fractions of inhaled PM10-2.5 to 

penetrate into the thoracic regions of the lungs of rats and mice (U.S. EPA, 2019, section 4.1.6), contributing to 

the relatively limited evaluation of PM10-2.5 exposures in animal studies.  
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measurements from dichotomous samplers, calculating the difference between PM10 and PM2.5 1 

concentrations measured at collocated monitors, and calculating the difference between area-2 

wide concentrations of PM10 and PM2.5. As discussed above, temporal and spatial correlations 3 

between these approaches have not been evaluated, contributing to uncertainty regarding the 4 

potential for exposure measurement error (U.S. EPA, 2019, section 3.3.1.1 and Table 11-11). 5 

The 2019 ISA concludes that this uncertainty “reduces the confidence in the associations 6 

observed across studies” (U.S. EPA, 2019, p. 11-125). The 2019 ISA additionally concludes that 7 

the evidence for long-term PM10-2.5 exposures and cardiovascular effects, respiratory morbidity, 8 

and metabolic disease evidence provides limited biological plausibility for PM10-2.5-related 9 

mortality (U.S. EPA, 2019, sections 11.4.1 and 11.4). Taken together, the 2019 ISA concludes 10 

that, “this body of evidence is suggestive of, but not sufficient to infer, a causal relationship 11 

between long-term PM10-2.5 exposure and total mortality” (U.S. EPA, 2019, p. 11-125).  12 

Short-term exposures 13 

The 2009 ISA concluded that the evidence is "suggestive of a causal relationship between 14 

short-term exposure to PM10-2.5 and mortality” (U.S. EPA, 2009). The 2019 ISA included 15 

multicity epidemiologic studies conducted primarily in Europe and Asia which continue to 16 

provide consistent evidence of positive associations between short-term PM10-2.5 exposure and 17 

total (nonaccidental) mortality (U.S. EPA, 2019, Table 11-9). Although these studies contribute 18 

to increasing confidence in the PM10-2.5-mortality relationship, the use of a variety of approaches 19 

to estimate PM10-2.5 exposures continues to contribute uncertainty to the associations observed. 20 

Studies considered in the 2019 ISA continue to expand the assessment of potential copollutant 21 

confounding of the PM10-2.5-mortality relationship and provide evidence that PM10-2.5 22 

associations generally remain positive in copollutant models, though associations are attenuated 23 

in some instances (U.S. EPA, 2019, section 11.3.4.1, Figure 11-28, Table 11-10). The 2019 ISA 24 

concludes that, overall, the assessment of potential copollutant confounding is limited due to the 25 

lack of information on the correlation between PM10-2.5 and gaseous pollutants and the small 26 

number of locations in which copollutant analyses have been conducted. Associations with 27 

cause-specific mortality provide some support for associations with total (nonaccidental) 28 

mortality, though associations with cause-specific mortality, particularly respiratory mortality, 29 

are more uncertain (i.e., wider confidence intervals) and less consistent (U.S. EPA, 2019, section 30 

11.3.7). The 2019 ISA concludes that the evidence for PM10-2.5-related cardiovascular and 31 

respiratory effects provides only limited support for the biological plausibility of a relationship 32 

between short-term PM10−2.5 exposure and cardiovascular mortality (U.S. EPA, 2019, section 33 

11.3.7). Based on the overall evidence, the 2019 ISA concludes that, “this body of evidence is 34 

suggestive of, but not sufficient to infer, a causal relationship between short-term PM10-2.5 35 

exposure and total mortality” (U.S. EPA, 2019, p. 11-120).  36 
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4.3.1.2 Cardiovascular Effects 1 

Long-term exposures 2 

In the 2009 ISA, the evidence describing the relationship between long-term exposure to 3 

PM10-2.5 and cardiovascular effects was characterized as “inadequate to infer the presence or 4 

absence of a causal relationship.” The limited number of epidemiologic studies reported 5 

contradictory results and experimental evidence demonstrating an effect of PM10-2.5 on the 6 

cardiovascular system was lacking (U.S. EPA, 2019, section 6.4).  7 

The evidence relating long-term PM10-2.5 exposures to cardiovascular mortality remains 8 

limited, with no consistent pattern of associations across studies and, as discussed above, 9 

uncertainty stemming from the use of various approaches to estimate PM10-2.5 concentrations 10 

(U.S. EPA, 2019, Table 6-70). The evidence for associations with cardiovascular morbidity has 11 

grown since the 2009 ISA and, while results across studies are not entirely consistent, some 12 

epidemiologic studies report positive associations with ischemic heart disease (IHD) and 13 

myocardial infarction (MI) (U.S. EPA, 2019, Figure 6-34); stroke (U.S. EPA, 2019, Figure 6-14 

35); atherosclerosis; venous thromboembolism (VTE); and blood pressure and hypertension 15 

(U.S. EPA, 2019, Section 6.4.6). PM10-2.5 cardiovascular mortality effect estimates are often 16 

attenuated, but remain positive, in models that adjust for PM2.5. For morbidity outcomes, 17 

associations are inconsistent in models that adjust for PM2.5, NO2, and chronic noise pollution 18 

(U.S. EPA, 2019, p. 6-276). The lack of toxicological evidence for long-term PM10-2.5 exposures 19 

represents a substantial data gap (U.S. EPA, 2019, section 6.4.10), resulting in the 2019 ISA 20 

conclusion that “evidence from experimental animal studies is of insufficient quantity to 21 

establish biological plausibility” (U.S. EPA, 2019, p. 6-277). Based largely on the observation of 22 

positive associations in some epidemiologic studies, the 2019 ISA concludes that “evidence is 23 

suggestive of, but not sufficient to infer, a causal relationship between long-term PM10-2.5 24 

exposure and cardiovascular effects” (U.S. EPA, 2019, p. 6-277).  25 

Short-term exposures 26 

The 2009 ISA concluded that the available evidence for short-term PM10-2.5 exposure and 27 

cardiovascular effects was “suggestive of a causal relationship.” This conclusion was based on 28 

several epidemiologic studies reporting associations between short-term PM10-2.5 exposure and 29 

cardiovascular effects, including IHD hospitalizations, supraventricular ectopy, and changes in 30 

heart rate variability (HRV). In addition, dust storm events resulting in high concentrations of 31 

crustal material were linked to increases in total cardiovascular disease emergency department 32 

visits and hospital admissions. However, the prior reviews noted the potential for exposure 33 

measurement error and copollutant confounding in these epidemiologic studies. In addition, there 34 

was only limited evidence of cardiovascular effects from a small number of experimental studies 35 

(e.g., animal toxicological studies and controlled human exposure studies) that examined short-36 
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term PM10-2.5 exposures (U.S. EPA, 2009, U.S. EPA, 2019). In the 2019 ISA, key uncertainties 1 

include the potential for exposure measurement error, copollutant confounding, and limited 2 

evidence of biological plausibility for cardiovascular effects following inhalation exposure (U.S. 3 

EPA, 2019, section 6.3.13).  4 

The evidence for short-term PM10-2.5 exposure and cardiovascular outcomes has expanded 5 

since the 2009 ISA, though important uncertainties remain. The 2019 ISA notes that there are a 6 

small number of epidemiologic studies reporting positive associations between short-term 7 

exposure to PM10-2.5 and cardiovascular-related morbidity outcomes. However, the evidence is 8 

limited to suggest that these associations were biologically plausible, or independent of 9 

copollutant confounding. The 2019 ISA also concludes that it remains unclear how the 10 

approaches used to estimate PM10-2.5 concentrations in epidemiologic studies may impact 11 

exposure measurement error. Taken together, the 2019 ISA concludes that “the evidence is 12 

suggestive of, but not sufficient to infer, a causal relationship between short-term PM10-2.5 13 

exposures and cardiovascular effects” (U.S. EPA, 2019, p.6-254). 14 

4.3.1.3 Respiratory Effects 15 

Short-term exposures 16 

Based on a small number of epidemiologic studies observing associations with some 17 

respiratory effects and limited evidence from experimental studies to support biological 18 

plausibility, the 2009 ISA concluded that the relationship between short-term exposure to PM10-19 

2.5 and respiratory effects is “suggestive of a causal relationship” (U.S. EPA, 2009). 20 

Epidemiologic findings were consistent for respiratory infection and combined respiratory-21 

related diseases, but not for COPD. Studies were characterized by overall uncertainty in the 22 

exposure assignment approach and limited information regarding potential copollutant 23 

confounding. Controlled human exposure studies of short-term PM10-2.5 exposures found no lung 24 

function decrements and inconsistent evidence for pulmonary inflammation. Animal 25 

toxicological studies were limited to those using non-inhalation (e.g., intra-tracheal instillation) 26 

routes of PM10-2.5 exposure.  27 

Recent epidemiologic findings consistently link PM10-2.5 exposure to asthma exacerbation 28 

and respiratory mortality, with some evidence that associations remain positive (though 29 

attenuated in some studies of mortality) in copollutant models that include PM2.5 or gaseous 30 

pollutants. Studies provide limited evidence for positive associations with other respiratory 31 

outcomes, including COPD exacerbation, respiratory infection, and combined respiratory-related 32 

diseases (U.S. EPA, 2019, Table 5-36). As noted above for other endpoints, one source of 33 

uncertainty in these epidemiologic studies is the lack of a systematic evaluation of the various 34 

methods used to estimate PM10-2.5 concentrations as well as the resulting uncertainty in the 35 

spatial and temporal variability in PM10-2.5 concentrations compared to PM2.5 (U.S. EPA, 2019, 36 
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sections 2.5.1.2.3 and 3.3.1.1). Taken together, the 2019 ISA concludes that “the collective 1 

evidence is suggestive of, but not sufficient to infer, a causal relationship between short-term 2 

PM10-2.5 exposure and respiratory effects” (U.S. EPA, 2019, p. 5-270). 3 

4.3.1.4 Cancer 4 

Long-term exposures 5 

In the 2012 review, few studies examined cancer following inhalation exposures to PM10-6 

2.5. Thus, the 2009 ISA determined the evidence was “inadequate to assess the relationship 7 

between long-term PM10-2.5 exposures and cancer” (U.S. EPA, 2009). The scientific information 8 

assessed in the 2019 ISA of long-term PM10-2.5 exposure and cancer remains limited, with a few 9 

recent epidemiologic studies reporting positive, but imprecise, associations with lung cancer 10 

incidence (U.S. EPA, 2019). Additionally, uncertainty remains in these studies with respect to 11 

exposure measurement error due to the use of PM10-2.5 predictions that have not been validated 12 

by monitored PM10-2.5 concentrations (U.S. EPA, 2019, sections 3.3.2.3 and 10.3.4). Relatively 13 

few experimental studies of PM10-2.5 have been conducted, though available studies indicate that 14 

PM10-2.5 exhibits two key characteristics of carcinogens: genotoxicity and oxidative stress. While 15 

limited, such experimental studies provide some evidence of biological plausibility for the 16 

findings in a small number of epidemiologic studies (U.S. EPA, 2019, section 10.3.4). Taken 17 

together, the small number of epidemiologic and experimental studies, along with uncertainty 18 

with respect to exposure measurement error, contribute to the determination in the 2019 ISA that, 19 

“the evidence is suggestive of, but not sufficient to infer, a causal relationship between long-term 20 

PM10−2.5 exposure and cancer” (U.S. EPA, 2019, p. 10-87).  21 

4.3.1.5 Metabolic Effects 22 

Long-term exposures 23 

The 2009 ISA did not make a causality determination for PM10-2.5-related metabolic 24 

effects. One epidemiologic study is assessed in the 2019 ISA that reports an association between 25 

long-term PM10-2.5 exposure and diabetes incidence, while additional cross-sectional studies 26 

report associations with effects on glucose or insulin homeostasis (U.S. EPA, 2019, section 7.4). 27 

As discussed above for other outcomes, uncertainties with the epidemiologic evidence include 28 

the potential for copollutant confounding and exposure measurement error (U.S. EPA, 2019, 29 

Tables 7-14 and 7-15). The evidence base to support the biological plausibility of metabolic 30 

effects following PM10-2.5 exposures is limited, but a cross-sectional study that investigated 31 

biomarkers of insulin resistance and systemic and peripheral inflammation may support a 32 

pathway leading to type 2 diabetes (U.S. EPA, 2019, sections 7.4.1 and 7.4.3). Based on the 33 

expanded, though still limited evidence base, the 2019 ISA concludes that, “[o]verall, the 34 
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evidence is suggestive of, but not sufficient to infer, a causal relationship between [long]-term 1 

PM10-2.5 exposure and metabolic effects” (U.S. EPA, 2019, p. 7-56). 2 

4.3.1.6 Nervous system effects 3 

Long-term exposures 4 

The 2009 ISA did not make a causality determination for PM10-2.5-related nervous system 5 

effects. In the 2019 ISA, available epidemiologic studies report associations between PM10-2.5 6 

and impaired cognition and anxiety in adults in longitudinal analyses (U.S. EPA, 2019, Table 8-7 

25, section 8.4.5). Associations of long-term exposure with neurodevelopmental effects are not 8 

consistently reported in children (U.S. EPA, 2019, sections 8.4.4 and 8.4.5). Uncertainties in 9 

these studies include the potential for copollutant confounding, as no studies examined 10 

copollutants models (U.S. EPA, 2019, section 8.4.5), and for exposure measurement error, given 11 

the use of various model-based subtraction methods to estimate PM10-2.5 concentrations (U.S. 12 

EPA, 2019, Table 8-25). In addition, there is only limited animal toxicological evidence 13 

supporting the biological plausibility of nervous system effects (U.S. EPA, 2019, sections 8.4.1 14 

and 8.4.5). Overall, the 2019 ISA concludes that, “the evidence is suggestive of, but not 15 

sufficient to infer, a causal relationship between long-term PM10-2.5 exposure and nervous system 16 

effects (U.S. EPA, 2019, p. 8-75).  17 

4.3.1.7 Preliminary Conclusions Drawn from the Evidence  18 

 With the evidence available in this reconsideration, as assessed in the 2019 ISA (U.S. 19 

EPA, 2019) and summarized in subsections 4.3.1.1 to 4.3.1.6 above, we revisit the policy-20 

relevant questions posed at the beginning of this section:  21 

• To what extent does the available scientific evidence strengthen, or otherwise alter, our 22 

conclusions from previous reviews regarding health effects attributable to long- or 23 

short-term PM10-2.5 exposures? Have previously identified uncertainties been reduced? 24 

What important uncertainties remain and have new uncertainties been identified? 25 

 For each of these categories of effects listed above, the 2019 ISA concludes that the 26 

evidence is “suggestive of, but not sufficient to infer, a causal relationship” (U.S. EPA, 2019). 27 

As summarized in the sections above, key uncertainties in the evidence result from limitations in 28 

the approaches used to estimate ambient PM10-2.5 concentrations in epidemiologic studies, limited 29 

examination of the potential for confounding by co-occurring pollutants, and limited support for 30 

the biological plausibility of the serious effects reported in many epidemiologic studies. The 31 

evidence base for several PM10-2.5-related health effects has expanded over time, broadening our 32 

understanding of the range of health effects linked to PM10-2.5 exposures. This includes additional 33 

evidence for the relationships between long-term exposures and cardiovascular effects, metabolic 34 
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effects, nervous system effects, cancer, and mortality. However, the 2019 ISA identifies a 1 

number of key limitations in the evidence, including the following: 2 

• The use of a variety of methods to estimate PM10-2.5 exposures in epidemiologic studies 3 

and the lack of systematic evaluation of these methods, together with the relatively high 4 

spatial and temporal variability in ambient PM10-2.5 concentrations and the small number 5 

of monitoring sites, results in uncertainty in exposure estimates.  6 

• The limited number of studies that evaluate PM10-2.5 health effect associations in 7 

copollutant models, together with evidence from some studies for attenuation of 8 

associations in such models, results in uncertainty in the independence of PM10-2.5 health 9 

effect associations from co-occurring pollutants. 10 

• The limited number of controlled human exposure and animal toxicology studies of 11 

PM10-2.5 inhalation contribute to uncertainty in the biological plausibility of the PM10-2.5-12 

related effects reported in epidemiologic studies. 13 

These uncertainties contribute to the conclusions in the 2019 ISA that the evidence for the PM10-14 

2.5-related health effects discussed in this section for both short- and long-term exposures is 15 

“suggestive of, but not sufficient to infer, a causal relationship.” 16 

4.4  PRELIMINARY CONCLUSIONS ON THE ADEQUACY OF THE 17 

CURRENT PRIMARY PM10 STANDARD 18 

This section describes our preliminary conclusions regarding the adequacy of the current 19 

primary PM10 standard. Our approach to reaching preliminary conclusions considers the EPA’s 20 

assessment of the scientific evidence for PM10-2.5-related health effects in the 2019 ISA. We 21 

revisit the overarching question for this chapter:  22 

• Does the available scientific evidence support or call into question the adequacy of 23 

the protection afforded by the current primary PM10 standard against health effects 24 

associated with exposures to PM10-2.5?  25 

As an initial matter, we note that the scope of the updated scientific evaluation of the 26 

health effects evidence for PM10 is based on those health effects categories where the 2019 ISA 27 

concludes a causal relationship exists. Therefore, the draft ISA Supplement does not include an 28 

evaluation of additional studies for PM10-2.5 and the 2019 ISA continues to serve as the scientific 29 

foundation for assessing the adequacy of the primary PM10 standard in this reconsideration of the 30 

2020 final decision (U.S. EPA, 2019, section 1.7; U.S. EPA, 2021). As such, this section 31 

describing our preliminary conclusions regarding the adequacy of the current primary PM10 32 

standard draws heavily from the conclusions in the 2020 PA related to the primary PM10 33 

standard (U.S. EPA, 2020, section 4.4). Lastly, we recognize that a final decision on the primary 34 

PM10 standard in this reconsideration will be largely a public health policy judgement in which 35 

the Administrator weighs the evidence, including its associated uncertainties.  36 
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 With respect to the indicator, we note that the evidence continues to support retaining the 1 

PM10 indicator given that the varying concentrations of PM10-2.5 permitted in urban versus non-2 

urban areas under a PM10 standard, based on the varying levels of PM2.5 present (i.e., lower 3 

PM10-2.5 concentrations allowed in urban areas, where PM2.5 concentrations tend to be higher), 4 

appropriately reflect differences in the strength of PM10-2.5 health effects evidence. 5 

 Regarding evidence for PM10-2.5-related health effects, we note that the evidence for 6 

several PM10-2.5-related health effects has expanded, particularly for long-term exposures, 7 

broadening our understanding of the range of effects linked to PM10-2.5 exposures. The 8 

epidemiologic studies considered in the 2019 ISA continue to report positive associations with 9 

mortality or morbidity in cities across North America, Europe, and Asia, where PM10-2.5 sources 10 

and composition are expected to vary widely. Such studies provide an important part of the body 11 

of evidence supporting the strengthened causality determinations (and new determinations) for 12 

long-term PM10-2.5 exposures and mortality, cardiovascular effects, metabolic effects, nervous 13 

system effects and cancer (U.S. EPA, 2019). Although most of these studies examined PM10-2.5 14 

health effect associations in urban areas, some studies have also linked mortality and morbidity 15 

with relatively high ambient concentrations of particles of non-urban crustal origin from dust 16 

storm events (U.S. EPA, 2019). Drawing from this evidence, we note continued support for 17 

maintaining a standard that provides some measure of protection against exposures to PM10-2.5, 18 

regardless of location, source of origin, or particle composition (78 FR 3176, January 15, 2013). 19 

Thus, the scientific evidence evaluated for this reconsideration does not call into question the 20 

decision in the 2020 review to maintain a primary standard that provides some measure of public 21 

health protection against PM10-2.5 exposures, regardless of location, source of origin, or particle 22 

composition. 23 

 With regard to uncertainties, the 2019 ISA notes that important uncertainties remain in the 24 

evidence base for PM10-2.5-related health effects. As summarized in section 4.3.1 above, these 25 

include uncertainties in the PM10-2.5 exposure estimates used in epidemiologic studies, in the 26 

independence of PM10-2.5 health effect associations, and in the biological plausibility of the 27 

PM10-2.5-related effects. Thus, the evidence available in the 2019 ISA for consideration in 28 

reaching preliminary conclusions in this reconsideration is subject to the same broad 29 

uncertainties present in the 2012 review (U.S. EPA, 2019). Consistent with the assessment of the 30 

evidence in the 2009 ISA, these uncertainties contribute to the determinations in the 2019 ISA 31 

that the evidence for key PM10-2.5-related health effects is “suggestive of, but not sufficient to 32 

infer” causal relationships (U.S. EPA, 2019). Drawing from this information, we reach the 33 

preliminary conclusion that, as in previous reviews, such uncertainties raise questions regarding 34 

the degree to which additional public health improvements would be achieved by revising the 35 

existing PM10 standard.  36 
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 When the above information is taken together, we reach the preliminary conclusion that 1 

the available evidence does not call into question the scientific judgments that informed the 2 

decision in the 2020 review to retain the current primary PM10 standard in order to protect 3 

against PM10-2.5 exposures. Specifically, while the evidence supports maintaining a PM10 4 

standard to provide some measure of protection against PM10-2.5 exposures, uncertainties in the 5 

evidence lead to questions regarding the potential public health implications of revising the 6 

existing PM10 standard. Thus, consistent with the approach taken in the previous reviews, we 7 

reach the preliminary conclusion that the evidence does not call into question the adequacy of the 8 

public health protection afforded by the current primary PM10 standard. Furthermore, the 9 

available evidence in this reconsideration of the 2020 final decision supports retaining the 10 

current standard. As such, we have not evaluated alternative standards in this updated PA.  11 

4.5 AREAS FOR FUTURE RESEARCH AND DATA COLLECTION 12 

As discussed above, a number of key uncertainties and limitations in the health evidence 13 

have been considered, consistent with those identified in the 2009 ISA and 2019 ISA. In this 14 

section, we highlight areas for future health-related research and data collection activities from 15 

the 2020 PA to address these uncertainties and limitations in the evidence (U.S. EPA, 2020, 16 

section 4.5). These efforts, if undertaken, could provide important evidence for informing future 17 

reviews of the PM NAAQS. Key areas for future research efforts are summarized below. 18 

• The body of experimental inhalation studies of exposure to PM10-2.5 (e.g., controlled 19 

human exposure and animal toxicology studies) is relatively sparse. While coarse PM 20 

inhalation studies in rats and mice are complicated by substantial differences in dosimetry 21 

(i.e., compared to humans), additional experimental studies of short- or long-term PM10-22 

2.5 exposures could play an important role in weight of evidence judgments in future 23 

ISAs. Experimental evaluation of effects that are plausibly related to the serious health 24 

outcomes documented in epidemiologic studies could be particularly informative. Such 25 

effects could include changes in markers of cardiovascular or respiratory function, similar 26 

to the effects that have been evaluated following PM2.5 exposures (e.g., vascular function, 27 

blood pressure, heart rate and heart rate variability, markers of potential for coagulation, 28 

systemic and respiratory inflammation, respiratory function, etc.).  29 

• The potential for exposure error is of particular concern for PM10-2.5, given its less 30 

homogeneous atmospheric distribution compared to fine particles (U.S. EPA, 2019, U.S. 31 

EPA, 2009 section 1.2.1.5) and the relatively sparse PM10-2.5 monitoring network. 32 

Therefore, efforts to develop and validate new exposure estimation approaches, or to 33 

further validate existing approaches, would be informative. 34 

• Existing epidemiologic studies have rarely examined associations with PM10-2.5 in 35 

copollutant models, contributing to uncertainty in the degree to which reported health 36 

effect associations are independent of potential confounding variables. Additional 37 

epidemiologic studies that evaluate copollutants models would be informative.  38 
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• Epidemiologic studies use a variety of approaches to measure/estimate PM10-2.5 1 

concentrations, including: (1) difference method with co-located monitors, (2) difference 2 

method with area-wide averages of monitored PM10 and PM2.5, (3) difference method 3 

with area-wide averages of modeled PM10 and PM2.5 or (4) direct measurement of 4 

PM10-2.5 using a dichotomous sampler. It is important that we better understand how these 5 

methods compare to one another, both in terms of absolute estimated concentrations and 6 

in terms of the spatial and temporal correlations in those estimated concentrations 7 

between methods.  8 

• Measurement capabilities and the availability of PM10-2.5 ambient concentration data have 9 

greatly increased since the 2009 ISA (U.S. EPA, 2019, U.S. EPA, 2009, section 10 

2.5.1.1.3). Starting in 2011, PM10-2.5 has been monitored at NCore stations, IMPROVE 11 

stations, and several sites run by State and local agencies. Furthermore, there has been an 12 

increase in the deployment of PM2.5 FEM monitors that also measure PM10-2.5. To date, 13 

epidemiologic studies have used a variety of approaches to measure/estimate PM10-2.5 14 

concentrations but have not used direct measurements from NCore or IMPROVE stations 15 

to evaluate health effects associations with PM10-2.5 exposure. A body of epidemiologic 16 

studies that evaluate health effect associations using monitoring data from these stations 17 

could allow more direct comparisons of results across studies.  18 

• Evaluate and expand the PM10-2.5 network, along with speciation of PM10-2.5 including 19 

multi-elements, major ions, carbon (including carbonate carbon), and bioaerosols. 20 

• Characterize PM10-2.5 in different health-relevant exposure environments (e.g., city center, 21 

suburban, roadside, agricultural, and rural areas) for mass, elements (including potential 22 

toxic species), carbonaceous materials (including selected organic compounds and 23 

carbonate), water-soluble ions, and bioaerosols (including endotoxins, 1,3 beta glucans, 24 

and total protein).  25 

• Additional areas of interest for future research include:  26 

o Further evaluation of the potential for particular PM10-2.5 components, groups of 27 

components, or other particle characteristics to contribute to exposure-related 28 

health effects.  29 

o Research to improve our understanding of concentration-response relationships 30 

and the confidence bounds around these relationships, especially at lower ambient 31 

PM10-2.5 concentrations. 32 

o Identifying novel populations that could be at-risk of PM10-2.5-related health 33 

effects.  34 

o Modeling to estimate PM10-2.5 mass and composition in areas with sparse or less-35 

than-daily monitoring.36 
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5 RECONSIDERATION OF THE SECONDARY 1 

STANDARDS FOR PM 2 

This chapter presents and evaluates the policy implications of the scientific and technical 3 

information pertaining to this reconsideration of the 2020 final decision on the secondary PM 4 

standards. In so doing, the chapter presents key aspects of the evidence for the welfare effects of 5 

PM documented in the 2019 ISA and draft ISA Supplement, with support from the prior ISA and 6 

AQCDs, and associated public welfare implications, as well as key aspects of quantitative 7 

analyses of recent air quality that is presented in the appendix associated with this chapter. As 8 

described in detail in section 1.4.2, the draft ISA Supplement focuses on a thorough evaluation of 9 

some studies that became available after the literature cutoff date of the 2019 ISA that could 10 

either further inform the adequacy of the current PM NAAQS or address key scientific topics 11 

that have evolved since the literature cutoff date for the 2019 ISA. The selection of the welfare 12 

effects to evaluate within the draft ISA Supplement were based on the causality determinations 13 

reported in the 2019 ISA and the subsequent use of scientific evidence in the 2020 PA. 14 

Specifically, for welfare effects, the focus within the draft ISA Supplement is on visibility 15 

effects. The draft ISA Supplement does not include an evaluation of studies on climate or 16 

materials effects. Together, the scientific evidence and quantitative information provides the 17 

foundation for our evaluation of the scientific information regarding welfare effects of PM in 18 

ambient air and the potential for welfare effects to occur under air quality conditions associated 19 

with the current standards, as well as the associated public welfare implications. Our evaluation 20 

is framed around key policy-relevant questions derived from the questions included in the IRP 21 

(U.S. EPA, 2016) for the review completed in 2020 and also takes into account the conclusions 22 

reached in the review. In this way we identify key policy-relevant considerations and summary 23 

conclusions regarding the public welfare protection provided by the currents standards for the 24 

Administrator’s consideration in this reconsideration of the 2020 final decision on the secondary 25 

PM standards. 26 

Within this chapter, background information on the current standards, including key 27 

considerations in reaching the final decision in the 2020 review, is summarized in section 5.1. 28 

The general approach for considering the information in this reconsideration of the 2020 final 29 

decision, including policy-relevant questions identified to frame our policy evaluation, is 30 

summarized in section 5.2. Key aspects of the welfare effects evidence, quantitative information, 31 

and associated public welfare implications and uncertainties are addressed in section 5.3. Section 32 

5.3.1 presents our consideration of the available scientific evidence and quantitative information 33 

for visibility effects, while section 5.3.2 considers the scientific evidence for each of the non-34 
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visibility welfare effects (climate effects and materials effects) separately.1 Section 5.4 1 

summarizes the key evidence- and quantitative-based considerations identified in our evaluation 2 

and presents associated summary conclusions of this analysis. Key remaining uncertainties and 3 

areas for future research are identified in section 5.5. 4 

5.1 BACKGROUND ON THE CURRENT STANDARDS 5 

The current secondary PM standards were affirmed in 2020 based on the scientific and 6 

technical information available at that time, as well as the Administrator’s judgments regarding 7 

the available welfare effects evidence, the appropriate degree of public welfare protection for the 8 

existing standards, and available air quality information on visibility impairment that may be 9 

allowed by such a standard (85 FR 82684, December 18, 2020). The welfare effects evidence 10 

base available in the 2020 review included several decades of extensive research on the visibility 11 

and non-visibility effects (climate effects, materials effects, and ecological effects) of PM, 12 

conducted both in and outside of the U.S., that documents the impacts of PM (U.S. EPA, 2019; 13 

U.S. EPA, 2009; U.S. EPA, 2004b; U.S. EPA, 2004a). With the 2020 decision, the EPA retained 14 

the secondary 24-hour PM2.5 standard, with its level of 35 µg/m3, the annual PM2.5 standard, with 15 

its level of 15.0 µg/m3, and the 24-hour PM10 standard, with its level of 150 µg/m3. The sections 16 

below focus on the key considerations, and the Administrator’s conclusions, for climate and 17 

materials effects (section 5.1.1) and visibility effects (section 5.1.2) in the 2020 review.  18 

5.1.1 Non-Visibility Effects 19 

In light of the robust evidence base, the 2019 ISA concluded there to be causal 20 

relationships between PM and climate effects and material effects (U.S. EPA, 2019, sections 21 

13.3.9 and 13.4.2). For climate effects, the 2019 ISA concluded that aerosols2 alter climate 22 

processes directly through radiative forcing and by indirect effects on cloud brightness, changes 23 

 
1 Other welfare effects of PM, such as ecological effects, are being considered in the separate, on-going review of 

the secondary NAAQS for oxides of nitrogen, oxides of sulfur and PM. Accordingly, the public welfare 

protection provided by the secondary PM standards against ecological effects such as those related to deposition 

of nitrogen- and sulfur-containing compounds in vulnerable ecosystems is being considered in that separate 

review. Thus, the Administrator’s conclusion in this reconsideration of the 2020 final decision will be focused 

only and specifically on the adequacy of public welfare protection provided by the secondary PM standards from 

effects related to visibility, climate, and materials.  

2 In the climate sciences research community, PM is encompassed by what is typically referred to as aerosol. An 

aerosol is defined as a solid or liquid suspended in a gas, but PM refers to the solid or liquid phase of an aerosol. 

In this reconsideration of the 2020 final decision on the secondary PM NAAQS the discussion on climate effects 

of PM uses the term PM throughout for consistency with the 2019 ISA (U.S. EPA, 2019) as well as to emphasize 

that the climate processes altered by aerosols are generally altered by the PM portion of the aerosol. Exceptions to 

this practice include the discussion of climate effects in the 2012 review, when aerosol was used when discussing 

suspending aerosol particles, and for certain acronyms that are widely used by the climate community that include 

the term aerosol (e.g., aerosol optical depth, or AOD). 
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in precipitation, and possible changes in cloud lifetimes (U.S. EPA, 2019, section 13.3.9). 1 

Additionally, the major aerosol components with the potential to affect climate processes (i.e., 2 

black carbon (BC), organic carbon (OC), sulfates, nitrates and mineral dusts) vary in their 3 

reflectivity, forcing efficiencies, and direction of climate forcing (U.S. EPA, 2019, section 4 

13.3.5). For materials effects, the 2019 ISA considered effects associated with the deposition of 5 

PM (i.e., dry and wet deposition), including both physical damage (materials effects) and 6 

aesthetic qualities (soiling effects). The deposition of PM can physically affect materials, adding 7 

to the effects of natural weathering processes, by promoting or accelerating the corrosion of 8 

metals; by degrading paints; and by deteriorating building materials such as stone, concrete, and 9 

marble (U.S. EPA, 2019, section 13.4.2). Additionally, the deposition of PM from ambient air 10 

can reduce the aesthetic appeal of buildings and objects through soiling. 11 

The 2020 decision on the adequacy of the secondary standards for climate and materials 12 

effects was a public welfare policy judgment made by the Administrator, which drew upon the 13 

available scientific evidence for PM-attributable climate and materials effects and recognized 14 

that the evidence did not support a quantitative assessment of exposures and public welfare risks 15 

based on impacts to climate and materials. Noting the strong evidence indicating that aerosols 16 

affect climate, the Administrator further considered what the available information indicated 17 

regarding the adequacy of protection provided by the secondary PM standards. He noted that a 18 

number of uncertainties in the scientific information affected our ability to quantitatively 19 

evaluate the standards in this regard. For example, the 2019 ISA and 2020 PA noted the spatial 20 

and temporal heterogeneity of PM components that contribute to climate forcing, uncertainties in 21 

the measurement of aerosol components, inadequate consideration of aerosol impacts in climate 22 

modeling, insufficient data on local and regional microclimate variations and heterogeneity of 23 

cloud formations (U.S. EPA, 2019, section 13.3.9). In light of these uncertainties and the lack of 24 

sufficient data, the 2020 PA concluded that “the data remain insufficient to conduct quantitative 25 

analyses for PM effects on climate in the current review” (U.S. EPA, 2020, pp. 5-34 to 5-35) and 26 

that there was insufficient information available to base a national ambient air quality standard 27 

on climate impacts associated with ambient air concentrations of PM or its constituents (U.S. 28 

EPA, 2020, section 5.4). 29 

With regard to materials effects, the Administrator noted that the 2020 PA noted that 30 

quantitative relationships were lacking between characteristics of PM and frequency of 31 

repainting and repair of surfaces and that considerable uncertainty exists in the contributions of 32 

co-occurring pollutants to materials damage and soiling processes (U.S. EPA, 2020, p. 5-35). 33 

The 2020 PA concluded that none of the evidence available called into question the adequacy of 34 

the existing secondary PM standards to protect against material effects (U.S. EPA, 2020, section 35 

5.4). 36 
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The 2020 final decision was based on a thorough review in the 2019 ISA of the scientific 1 

information on PM-induced climate and materials effects. The decision also took into account: 2 

(1) assessments in the 2020 PA of the most policy-relevant information in the 2019 ISA 3 

regarding evidence of adverse effects of PM to climate and materials, (2) uncertainties in the 4 

available evidence to inform a quantitative assessment of PM-related climate and materials 5 

effects, (3) CASAC advice and recommendations, and (4) public comments received during the 6 

development of these documents and on the proposal notice. 7 

Consistent with the general approach routinely employed in NAAQS reviews, the initial 8 

consideration in the 2020 review of the secondary standards was with regard to the adequacy of 9 

protection provided by the then-existing standards. Key aspects of that consideration are 10 

summarized in section 5.1.1.1 below. 11 

5.1.1.1 Considerations Regarding Adequacy of the Existing Standards for Non-12 

Visibility Effects in the 2020 Review 13 

In considering non-visibility welfare effects in the 2020 review, as discussed above, the 14 

Administrator concluded that, while it is important to maintain an appropriate degree of control 15 

of fine and coarse particles to address non-visibility welfare effects, “it is generally appropriate 16 

to retain the existing standards and that there is insufficient information to establish any distinct 17 

secondary PM standards to address climate and materials effects of PM” (85 FR 82744, 18 

December 18, 2020). 19 

With regard to climate, the Administrator recognized that there were a number of 20 

improvements and refinements to climate models since the 2012 review. However, while the 21 

evidence continued to support a causal relationship between PM and climate effects, the 22 

Administrator noted that significant limitations continued to exist related to quantifying the 23 

contributions of direct and indirect effects of PM and PM components on climate forcing (U.S. 24 

EPA, 2020, sections 5.2.2.1.1 and 5.4). He also recognized that the models continued to exhibit 25 

considerable variability in estimates of PM-related climate impacts as regional scales (e.g., ~100 26 

km) as compared to simulations at global scales. Therefore, the resulting uncertainty led the 27 

Administrator to conclude that the available scientific information in the 2020 review remained 28 

insufficient to quantify climate impacts associated with particular concentrations of PM in 29 

ambient air (U.S. EPA, 2020, section 5.2.2.2.1) or to evaluate or consider a level of PM air 30 

quality in the U.S. to protect against climate effects and that there was insufficient information 31 

available to base a national ambient standard on climate impacts (85 FR 82744, December 18, 32 

2020).  33 

With regard to materials effects, the Administrator noted that the evidence available in 34 

the 2019 ISA continued to support a causal relationship between materials effects and PM 35 

deposition (U.S. EPA, 2019, section 13.4). He recognized that the deposition of fine and coarse 36 
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particles to materials can lead to physical damage and/or impaired aesthetic qualities. Particles 1 

can contribute to materials damage by adding to the natural weathering processes and by 2 

promoting the corrosion of metals, the degradation of building materials, and the weakening of 3 

material components. While some new information was available in the 2019 ISA, the 4 

information was from studies primarily conducted outside of the U.S. in areas where PM 5 

concentrations in ambient air are typically higher than those observed in the U.S. (U.S. EPA, 6 

2020, section 13.4). Additionally, the information assessed in the 2019 ISA did not support 7 

quantitative analyses of PM-related materials effects in the 2020 review (U.S. EPA, section 8 

5.2.2.2.2). Given the limited amount of information available and its inherent uncertainties and 9 

limitations, the Administrator concluded that he was unable to relate soiling or damage to 10 

specific levels of PM in ambient air or to evaluate or consider a level of air quality to protect 11 

against such materials effects, and that there was insufficient information available to support a 12 

distinct national ambient standard based on materials effects (85 FR 82744, December 18, 2020). 13 

In the 2020 decision, for all of the reasons discussed above and recognizing the CASAC 14 

conclusion that the evidence provided support for retaining the current secondary PM standards, 15 

the Administrator concluded that it was appropriate to retain the existing secondary PM 16 

standards, without revision. His decision was consistent with the CASAC advice related to non-17 

visibility effects. Specifically, the CASAC agreed with the 2020 PA conclusions that, while these 18 

effects are important, “the available evidence does not call into question the protection afforded 19 

by the current secondary PM standards” and recommended that the secondary standards “should 20 

be retained” (Cox, 2019a, p. 3 of letter). For climate and materials effects, this conclusion 21 

reflected his judgment that, although it remains important to maintain secondary PM2.5 and PM10 22 

standards to provide some degree of control over long- and short-term concentrations of both 23 

fine and coarse particles, there was insufficient information to establish distinct secondary PM 24 

standards to address non-visibility PM-related welfare effects (85 FR 82744, December 18, 25 

2020). Thus, the Administrator concluded that it was appropriate to retain all aspects of the 26 

existing 24-hour PM2.5, annual PM2.5, and 24-hour PM10 secondary standards. With regard to the 27 

secondary annual PM2.5 standard, the Administrator concluded that it was appropriate to retain a 28 

level of 15.0 µg/m3 while revising only the form of the standard to remove the option for spatial 29 

averaging (85 FR 82744, December 18, 2020). 30 

5.1.2 Visibility Effects 31 

Visibility refers to the visual quality of a human’s view with respect to color rendition 32 

and contrast definition. It is the ability to perceive landscape form, colors, and textures. Visibility 33 

involves optical and psychophysical properties involving human perception, judgment, and 34 

interpretation. Light between the observer and the object can be scattered into or out of the sight 35 
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path and absorbed by PM or gases in the sight path. Given the strength of the evidence base, the 1 

2019 ISA concluded that, “the evidence is sufficient to conclude that a causal relationship exists 2 

between PM and visibility impairment” (U.S. EPA, 2019, section 13.2.6). Visibility impairment 3 

is caused by light scattering and absorption by suspended particles and gases, including water 4 

content of aerosols.3 The available evidence in the 2012 review indicated that specific 5 

components of PM have been shown to contribute to visibility impairment. For example, at 6 

sufficiently high relative humidity values, sulfate and nitrate are the PM components that scatter 7 

more light and thus contribute most efficiently to visibility impairment. Elemental carbon (EC) 8 

and OC are also important contributors, especially in the northwestern U.S. where their 9 

contribution to PM2.5 mass is higher. Crustal materials can be significant contributors to visibility 10 

impairment, particularly for remote areas in the arid southwestern U.S. (U.S. EPA, 2009, section 11 

2.5.1; 2019 ISA, section 13.2.4.1). 12 

Visibility impairment can have implications for people’s enjoyment of daily activities 13 

and for their overall sense of well-being (U.S. EPA, 2009, section 9.2). Consistent with the 14 

evidence available in the 2012, the 2019 ISA evaluated available visibility preference studies that 15 

were part of the overall body of evidence, and these preference studies were considered in the 16 

2020 PA (U.S. EPA, 2020, pp. 5-15 to 5-17). These preference studies provided information 17 

about the potential public welfare implications of visibility impairment from surveys in which 18 

participants were asked questions about their preferences or the values they placed on various 19 

visibility conditions, as displayed to them in scenic photographs or in images with a range of 20 

known light extinction levels.4 21 

The 2020 decision on the adequacy of the secondary standards with regard to visibility 22 

effects was a public welfare policy judgment made by the Administrator, which drew upon the 23 

available scientific evidence for PM-related visibility effects and on analyses of visibility 24 

impairment, as well as judgments about the appropriate weight to place on the range of 25 

uncertainties inherent in the evidence and analyses. Consistent with the approach in the 2012 26 

review, the analyses utilized a PM2.5 visibility index based on an algorithm, known as the 27 

 
3 All particles scatter light and, although a larger particle scatters more light than a similarly shaped smaller particle 

of the same composition, the light scattered per unit of mass is greatest for particles with diameters from ~0.3-1.0 

µm (U.S. EPA, 2009, section 2.5.1; 2019 ISA, section 13.2.1). Particles with hygroscopic components (e.g., 

particulate sulfate and nitrate) contribute more to light extinction at higher relative humidity than at lower relative 

humidity because they change size in the atmosphere in response to relative humidity. 

4 Preference studies were available in four urban areas. Three western preference studies were available, including 

one in Denver, Colorado (Ely et al., 1991), one in the lower Fraser River valley near Vancouver, British 

Columbia, Canada (Pryor, 1996), and one in Phoenix, Arizona (BBC Research & Consulting, 2003). A pilot focus 

group study was also conducted for Washington, DC (Abt Associates, 2001), and a replicate study with 26 

participants was also conducted for Washington, DC (Smith and Howell, 2009). More details about these studies 

are available in Appendix D. 
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IMPROVE algorithm,5 that provides for the estimation of light extinction (bext), in units of Mm-1, 1 

using routinely monitored components of fine (PM2.5) and coarse (PM10-2.5) PM. The quantitative 2 

analyses focused on PM2.5 based on conclusions in the 2019 ISA that fine particles scatter more 3 

light than coarse particles on a per unit mass basis and include sulfates, nitrates, organics, light-4 

absorbing carbon, and soil (Malm et al., 1994). The 2019 ISA also concluded that hygroscopic 5 

particles like ammonium sulfate, ammonium nitrate, and sea salt increase in size as relative 6 

humidity increases, leading to increased light scattering (U.S. EPA, 2019, section 13.2.3). 7 

Included in this decision were judgments on the weight to place on the visibility preference 8 

studies; on the weight to give associated uncertainties, including those related to variability in 9 

visibility preferences across the studies in different areas of the U.S.; variability in in occurrence 10 

of visibility impairment in areas of the U.S., especially in urban areas; and on the extent to which 11 

such effects in such areas may be considered adverse to public welfare. 12 

The 2020 final decision was based on a thorough review in the 2019 ISA of the scientific 13 

information on PM-related visibility effects. The decision also took into account: (1) assessments 14 

in the 2020 PA of the most policy-relevant information in the 2019 ISA regarding evidence of 15 

adverse effects of PM on visibility; (2) air quality analyses of the PM2.5 visibility index and 16 

design values based on the form and averaging time of the existing standard; (3) CASAC advice 17 

and recommendations; and (4) public comments received during the development of these 18 

documents and on the 2020 proposal notice. 19 

Consistent with the general approach routinely employed in NAAQS reviews, the initial 20 

consideration in the 2020 review of the secondary PM standards was with regard to the adequacy 21 

of the protection provided by the then-existing standards. Key aspects of that consideration are 22 

summarized in section 5.1.2.1 below.  23 

5.1.2.1 Consideration Regarding the Adequacy of the Existing Standards for 24 

Visibility Effects in the 2020 Review 25 

In considering the visibility effects in the 2020 review, the Administrator noted the long-26 

standing body of evidence for PM-related visibility impairment. This evidence, which is based 27 

on the fundamental relationship between light extinction and PM mass, demonstrated that 28 

ambient PM can impair visibility in both urban and remote areas, and had changed very little 29 

since the 2012 review (U.S. EPA, 2019, section 13.1; U.S. EPA, 2009a, section 9.2.5). The 30 

evidence related to public perception of visibility impairment was from studies from four areas in 31 

North America. These studies provided information to inform our understanding of levels of 32 

 
5 The algorithm is referred to as the IMPROVE algorithm as it was developed specifically to use monitoring data 

generated at IMPROVE network sites and with equipment specifically designed ot support the IMPROVE 

program and was evaluated using IMPROVE optical measurements at the subset of monitoring sites that make 

those measurements (Malm et al., 1994). 
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visibility impairment that the public judged to be “acceptable” (U.S. EPA, 2010b; 85 FR 24131, 1 

April 30, 2020). In considering these public preference studies, the Administrator noted that, as 2 

described in the 2019 ISA, no new visibility studies had been conducted in the U.S. and there 3 

was little newly available information with regard to acceptable levels of visibility impairment in 4 

the U.S. The Administrator recognized that visibility impairment can have implications for 5 

people’s enjoyment of daily activities and their overall well-being, and therefore, considered the 6 

degree to which the current secondary standards protect against PM-related visibility 7 

impairment. 8 

Consistent with the 2012 review, in the 2020 review, the Administrator first concluded 9 

that a target level of protection for a secondary PM standard is most appropriately defined in 10 

terms of a visibility index that directly takes into account the factors (i.e., species composition 11 

and relative humidity) that influence the relationship between PM2.5 in ambient air and PM-12 

related visibility impairment. In defining a target level of protection, the Administrator 13 

considered the specific aspects of such an index, including the appropriate indicator, averaging 14 

time, form and level (78 FR 82742-82744, December 18, 2020). 15 

First, with regard to indicator, the Administrator noted that in the 2012 review, the EPA 16 

used an index based on estimates of light extinction by PM2.5 components calculated using an 17 

adjusted version of the IMPROVE algorithm, which allows the estimation of light extinction 18 

using routinely monitored components of PM2.5 and PM10-2.5, along with estimates of relative 19 

humidity. The Administrator recognized that, while there have been some revisions to the 20 

IMPROVE algorithm since the time of the 2012 review, our fundamental understanding of the 21 

relationship between PM in ambient air and light extinction had changed little and the various 22 

IMPROVE algorithms appropriately reflected this relationship across the U.S. In the absence of 23 

a monitoring network for direct measurement of light extinction, he concluded that calculated 24 

light extinction indicator that utilizes the IMPROVE algorithms continued to provide a 25 

reasonable basis for defining a target level of protection against PM-related visibility impairment 26 

(78 FR 82742-82744, December 18, 2020). 27 

In further defining the characteristics of a visibility index, the Administrator next 28 

considered the appropriate averaging time, form, and level of the index. Given the available 29 

scientific information in the review, and in considering the CASAC’s advice and public 30 

comments, the Administrator concluded that, consistent with the decision in the 2012 review, a 31 

visibility index with a 24-hour averaging time and a form based on the 3-year average of annual 32 

90th percentile values remained reasonable. With regard to the averaging time and form of such 33 

an index, the Administrator noted analyses conducted in the last review that demonstrated 34 

relatively strong correlations between 24-hour and subdaily (i.e., 4-hour average) PM2.5 light 35 

extinction (78 FR 3226, January 15, 2013), indicating that a 24-hour averaging time is an 36 
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appropriate surrogate for the sub-daily time periods of the perception of PM-related visibility 1 

impairment and the relevant exposure periods for segments of the viewing public. This decision 2 

in the 2020 review also recognized that a 24-hour averaging time may be less influenced by 3 

atypical conditions and/or atypical instrument performance (78 FR 3226, January 15, 2013). The 4 

Administrator recognized that there was no new information to support updated analyses of this 5 

nature, and therefore, he believed these analyses continued to provide support for consideration 6 

of a 24-hour averaging time for a visibility index in this review. With regard to the statistical 7 

form of the index, the Administrator noted that, consistent with the 2012 review: (1) A multi-8 

year percentile form offers greater stability from the occasional effect of interannual 9 

meteorological variability (78 FR 3198, January 15, 2013; U.S. EPA, 2011, p. 4–58); (2) a 90th 10 

percentile represents the median of the distribution of the 20 percent worst visibility days, which 11 

are targeted in Federal Class I areas by the Regional Haze Program; and (3) public preference 12 

studies did not provide information to identify a different target than that identified for Federal 13 

Class I areas (U.S. EPA, 2011, p. 4–59). Therefore, the Administrator judged that a visibility 14 

index based on estimates of light extinction, with a 24-hour averaging time and a 90th percentile 15 

form, averaged over three years, remained appropriate (78 FR 82742-82744, December 18, 16 

2020). 17 

With regard to the level of a visibility index, consistent with the 2012 review, the 18 

Administrator judged that it was appropriate to establish a target level of protection of 30 19 

deciviews (dv),6 7 reflecting the upper end of the range of visibility impairment judged to be 20 

acceptable by at least 50% of study participants in the available public preference studies (78 FR 21 

3226, January 15, 2013). As described above, the 2011 PA identified a range of levels from 20 to 22 

30 dv based on the responses in the public preference studies available at that time. At the time 23 

of the 2012 review, the Administrator noted a number of uncertainties and limitations in public 24 

preference studies, including the small number of stated preference studies available, the 25 

relatively small number of study participants, the extent to which the study participants may not 26 

be representative of the broader study area population in some of the studies, and the variations 27 

in the specific materials and methods used in each study. In considering the available preference 28 

studies, with their inherent uncertainties and limitations, the prior Administrator concluded that 29 

the substantial degree of variability and uncertainty in the public preference studies should be 30 

reflected in a target level of protection based on the upper end of the range of candidate 31 

protection levels (CPLs). 32 

 
6 Deciview (dv) refers to a scale for characterizing visibility that is defined directly in terms of light extinction. The 

deciview scale is frequently used in the scientific and regulatory literature on visibility. 

7 For comparison, 20 dv, 25 dv, and 30 dv are equivalent to 64, 112, and 191 megameters (Mm-1), respectively. 
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Given that there were no new preference studies available in 2020 review, the 1 

Administrator’s judgments were based on the same studies, with the same range of levels, 2 

available in the 2012 review. As identified in the 2020 PA (U.S. EPA, 2020, section 5.5), there 3 

were a number of limitations and uncertainties associated with these studies, including the 4 

following: 5 

• Available studies may not represent the full range of preferences for visibility in the U.S. 6 

population, particularly given the potential variability in preferences based on the 7 

conditions commonly encountered and the scenes being viewed. 8 

• Available preference studies were conducted 15 to 30 years ago and may not accurately 9 

represent the current day preferences of people in the U.S. 10 

• The variety of methods used in the preference studies may potentially influence the 11 

responses as to what level of impairment is deemed acceptable. 12 

• Factors that are not captured in the methods of the preference studies, such as the time of 13 

day when light extinction is the greatest or the frequency of impairment episodes, may 14 

influence people’s judgment on acceptable visibility (U.S. EPA, 2020, section 5.2.1.1). 15 

Therefore, in considering the scientific information, with its uncertainties and limitations, 16 

as well as public comments on the level of the target level of protection against visibility 17 

impairment, the Administrator concluded that it is appropriate to again use a level of 30 dv for 18 

the visibility index (78 FR 82742-82744, December 18, 2020). 19 

Having concluded that the protection provided by a standard defined in terms of a PM2.5 20 

visibility index, with a 24-hour averaging time, and a 90th percentile form, averaged over 3 years, 21 

set at a level of 30 dv, was requisite to protect public welfare with regard to visual air quality, the 22 

Administrator next considered the degree of protection from visibility impairment afforded by 23 

the existing suite of secondary PM standards.  24 

In this context, the Administrator considered the updated analyses of visibility 25 

impairment presented in the 2020 PA (U.S. EPA, 2020, section 5.2.1.2), which reflected a 26 

number of improvements since the 2012 review. Specifically, the updated analyses examined 27 

multiple versions of the IMPROVE equation, including the version incorporating revisions since 28 

the time of the 2012 review. These updated analyses provided a further understanding of how 29 

variation in the inputs to the algorithms affect the estimates of light extinction (U.S. EPA, 2020, 30 

Appendix D). Additionally, for a subset of monitoring sites with available PM10-2.5 data, the 31 

updated analyses better characterized the influence of coarse PM on light extinction than in the 32 

2012 review (U.S. EPA, 2020, section 5.2.1.2). 33 

The results of the updated analyses in the 2020 PA were consistent with those from the 34 

2012 review. Regardless of which version of the IMPROVE equation was used, the analyses 35 

demonstrated that, based on 2015–2017 data, the 3-year visibility metric was at or below about 36 

30 dv in all areas meeting the current 24-hour PM2.5 standard, and below 25 dv in most of those 37 
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areas. In locations with available PM10-2.5 monitoring, which met both the current 24-hour 1 

secondary PM2.5 and PM10 standards, 3-year visibility index metrics were at or below 30 dv 2 

regardless of whether the coarse fraction was included as an input to the algorithm for estimating 3 

light extinction (U.S. EPA, 2020, section 5.2.1.2). While the inclusion of the coarse fraction had 4 

a relatively modest impact on the estimates of light extinction, the Administrator recognized the 5 

continued importance of the PM10 standard given the potential for larger impacts on light 6 

extinction in areas with higher coarse particle concentrations, which were not included in the 7 

analyses in the 2020 PA due to a lack of available data (U.S. EPA, 2019, section 13.2.4.1; U.S. 8 

EPA, 2020, section 5.2.1.2). He noted that the air quality analyses showed that all areas meeting 9 

the existing 24-hour PM2.5 standard, with its level of 35 µg/m3, had visual air quality at least as 10 

good as 30 dv, based on the visibility index. Thus, the secondary 24-hour PM2.5 standard would 11 

likely be controlling relative to a 24-hour visibility index set at a level of 30 dv. Additionally, 12 

areas would be unlikely to exceed the target level of protection for visibility of 30 dv without 13 

also exceeding the existing secondary 24-hour standard. Thus, the Administrator judged that the 14 

24-hour PM2.5 standard provided sufficient protection in all areas against the effects of visibility 15 

impairment, i.e., that the existing 24-hour PM2.5 standard would provide at least the target level 16 

of protection for visual air quality of 30 dv which he judged appropriate (78 FR 82742-82744, 17 

December 18, 2020). 18 

5.2 GENERAL APPROACH AND KEY ISSUES IN THIS 19 

RECONSIDERATION OF THE 2020 FINAL DECISION 20 

This reconsideration of the 2020 final decision on the secondary PM standards is most 21 

fundamentally based on using the Agency’s assessment of the scientific evidence and associated 22 

quantitative analyses to inform the Administrator’s judgments regarding secondary standards that 23 

are requisite to protect public welfare from known or anticipated adverse effects. This draft PA is 24 

intended to help bridge the gap between the scientific evidence and information assessed in the 25 

2019 ISA and draft ISA Supplement and the judgments required of the Administrator in 26 

determining whether it is appropriate to retain or revised the secondary PM NAAQS. The 27 

approach planned for this reconsideration of the 2020 final decision on the secondary PM 28 

standards will build on previous reviews, including the substantial assessments and evaluations 29 

performed in those reviews, and taking into account scientific information and air quality data to 30 

inform our understanding of the key policy-relevant issues in this reconsideration. 31 
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The evaluations in this draft PA, of the scientific assessments in the 2019 ISA and draft 1 

ISA Supplement8 augmented by quantitative air quality analyses, are intended to inform the 2 

Administrator’s public welfare policy judgments and conclusions, including his decisions as to 3 

whether to retain or revise these standards. The draft PA considers the potential implications of 4 

various aspects of the scientific evidence, the air quality information, and the associated 5 

uncertainties and limitations. In so doing, the approach for this draft PA involves evaluating the 6 

scientific and technical information to address a series of key policy-relevant questions using 7 

both evidence- and quantitative-based considerations. Together, consideration of the full set of 8 

evidence and information in this reconsideration will inform the answer to the following initial 9 

overarching question for the reconsideration: 10 

• Do the scientific evidence and quantitative information support or call into question 11 

the adequacy of the protection afforded by the current secondary PM standards? 12 

In reflecting on this question in the remaining sections of this chapter, we consider the 13 

body of scientific evidence assessed in the 2019 ISA and draft ISA Supplement and considered 14 

as basis for developing or interpreting air quality analyses, including whether it supports or calls 15 

into question the scientific conclusions reached in the 2020 review regarding welfare effects 16 

related to exposure to PM in ambient air. Information in this reconsideration of the 2020 final 17 

decision that may be informative to public policy judgments on the significance or adversity of 18 

key effects on the public welfare is also considered. Additionally, the quantitative information, 19 

whether newly developed in this reconsideration or predominantly developed in the past and 20 

interpreted in light of current information, is considered, including with regard to the extent to 21 

which it may continue to support judgments made in previous reviews. 22 

The approach to reaching conclusions on the current secondary PM standards and, as 23 

appropriate, on potential alternative standards, including consideration of policy-relevant 24 

questions that frame the current reconsideration, is illustrated in Figure 5-1. 25 

 26 

 
8 As noted above and described in detail in section 1.4.2, the draft ISA Supplement focuses on a thorough evaluation 

of some studies that became available after the literature cutoff date of the 2019 ISA that could either further 

inform the adequacy of the current PM NAAQS or address key scientific topics that have evolved since the 

literature cutoff date for the 2019 ISA. The selection of the welfare effects to evaluate within the draft ISA 

Supplement were based on the causality determinations reported in the 2019 ISA and the subsequent use of 

scientific evidence in the 2020 PA. Specifically, for welfare effects, the focus within the draft ISA Supplement is 

on visibility effects. The draft ISA Supplement does not include an evaluation of studies on climate or materials 

effects. 
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 1 

Figure 5-1. Overview of general approach for the reconsideration of the 2020 final decision 2 

on the secondary PM standards. 3 

  4 
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The Agency’s approach in its reconsideration of the 2020 final decision on the secondary 1 

standards is consistent with the requirements of the provisions of the CAA related to the review 2 

of NAAQS and with how the EPA and the courts have historically interpreted the CAA. As 3 

discussed in section 2.1 above, these provisions require the Administrator to establish secondary 4 

standards that, in the Administrator’s judgment, are requisite (i.e., neither more nor less stringent 5 

than necessary) to protect the public welfare from known or anticipated adverse effects 6 

associated with the presence of the pollutant in ambient air. In so doing, the Administrator 7 

considers advice from the CASAC and public comment. 8 

Consistent with the Agency’s approach across all NAAQS reviews, the approach of this 9 

draft PA to informing the Administrator’s judgments in this reconsideration of the 2020 final 10 

decision on the secondary PM standards is based on a recognition that the evidence generally 11 

reflects continuums that include ambient air exposures for which scientists generally agree that 12 

effects are likely to occur through lower levels at which the likelihood and magnitude of 13 

response become increasingly uncertain. The CAA does not require that standards be set at a 14 

zero-risk level, but rather at a level that reduces risk sufficiently so as to protect the public 15 

welfare from known or anticipated adverse effects. The Agency’s decisions on the adequacy of 16 

the current secondary standards and, as appropriate, on any potential alternative standards 17 

considered in a review, are largely public welfare policy judgments made by the Administrator. 18 

The four basic elements of the NAAQS (i.e., indicator, averaging time, form, and level) are 19 

considered collectively in evaluating the protection afforded by the current standard, or any 20 

alternative standards considered. Thus, the Administrator’s final decisions in such reviews draw 21 

upon the scientific information and analyses about welfare effects, environmental exposures and 22 

risks, and associated welfare significance, as well as judgments about how to consider the range 23 

and magnitude of uncertainties that are inherent in the scientific evidence and analyses. 24 

5.3 WELFARE EFFECTS AND QUANTITATIVE INFORMATION 25 

In considering the evidence for welfare effects attributable to PM presented in the 2019 26 

ISA and the draft ISA Supplement, this section poses the following policy-relevant questions:  27 

• Does the scientific evidence and quantitative information support or call into 28 

question the adequacy of the welfare protection afforded by the current secondary 29 

PM standards? 30 

In answering this question, we have posed a series of more specific questions to aid in 31 

considering the scientific evidence and quantitative information, as discussed below. In 32 

considering the scientific and technical information, we reflect upon both the information in 33 

previous reviews and information that is assessed and presented in the 2019 ISA (U.S. EPA, 34 

2019) and in the draft ISA Supplement (U.S. EPA, 2021), focusing on welfare effects for which 35 
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the evidence supports either a “causal” or a “likely to be causal” relationship as described in the 1 

Preamble to the ISA (U.S. EPA, 2015). Table 5-1 lists such causality determinations from the 2 

2019 ISA for welfare effects. As in previous reviews, the evidence is sufficient to support a 3 

causal relationship between PM and visibility effects (section 5.3.1), climate effects (section 4 

5.3.2) and materials effects (section 5.3.2). 5 

While the 2019 ISA provides the broad scientific foundation for this reconsideration, we 6 

recognized that additional literature has become available since the cutoff date of the 2019 ISA 7 

that expands the body of evidence related to visibility effects that can inform the Administrator’s 8 

judgments on the adequacy of the current secondary PM standards. As such, the draft ISA 9 

Supplement builds on the information in the 2019 ISA with a target identification and evaluation 10 

of new scientific information regarding visibility effects (U.S. EPA, 2021, section 1.2). As 11 

described in chapter 1, the selection of the welfare effects to evaluate within the draft ISA 12 

Supplement were based on the causality determinations reported in the 2019 ISA and the 13 

subsequent use of scientific evidence in the 2020 PA. The draft ISA Supplement focuses on U.S. 14 

and Canadian studies that provide new information on public preference for visibility impairment 15 

and/or developed new methodologies or conducted quantitative analyses of light extinction (U.S. 16 

EPA, 2021, section 1.2). Such studies of visibility effects and quantitative relationships between 17 

visibility impairment and PM in ambient air were considered to be of greatest utility in informing 18 

the Administrator’s conclusions on the adequacy of the current secondary PM standards. The 19 

visibility effects evidence presented within the 2019 ISA, along with the targeted identification 20 

and evaluation of new scientific information in the draft ISA Supplement, provides the scientific 21 

basis for the reconsideration of the 2020 final decision on the primary PM2.5 standards. For 22 

climate and materials effects, the 2020 PA concluded that there were substantial uncertainties 23 

associated with the quantitative relationships with PM concentrations and the concentration 24 

patterns that limited the ability quantitatively assess the public welfare protection provided by 25 

the standards from these effects. Therefore, for climate and materials effects, we draw heavily 26 

from the 2020 PA in our evaluation of the information related to these effects and in reaching 27 

preliminary conclusions in this draft PA. 28 

Table 5-1. Key causality determinations for PM-related welfare effects. 29 

Effect 2009 PM ISA 2019 PM ISA 

Visibility effects Causal Causal 

Climate effects Causal Causal 

Materials effects Causal Causal 

 30 
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5.3.1 Visibility Effects 1 

In the sections below, we consider the nature of visibility-related effects attributable to 2 

PM (section 5.3.1.1) and the quantitative information (section 5.3.1.2). 3 

5.3.1.1 Nature of Effects 4 

In considering the evidence of visibility welfare effects attributable to PM as presented in 5 

the 2019 ISA and the draft ISA Supplement, this section addresses the following policy-relevant 6 

question:  7 

• Does the available scientific evidence alter our conclusions from the 2020 review 8 

regarding the nature of visibility effects attributable to PM in ambient air? 9 

Visibility refers to the visual quality of a human’s view with respect to color rendition 10 

and contrast definition. It is the ability to perceive landscape form, colors, and textures. Visibility 11 

involves optical and psychophysical properties involving human perception, judgment, and 12 

interpretation. Light between the observer and the object can be scattered into or out of the sight 13 

path and absorbed by PM or gases in the sight path. As recognized above, the conclusion of the 14 

2019 ISA that “the evidence is sufficient to conclude that a causal relationship exists between 15 

PM and visibility impairment” is consistent with conclusions of causality in the 2012 review 16 

(U.S. EPA, 2019, section 13.2.6). These conclusions are based on strong and consistent evidence 17 

that ambient PM can impair visibility in both urban and remote areas (U.S. EPA, 2009, section 18 

9.2.5).  19 

These subsequent questions consider the characterization and quantification of light 20 

extinction and preferences associated with varying degrees of visibility impairment. 21 

• To what extent is information available that changes or enhances our understanding 22 

of the physics of light extinction and/or its quantification (e.g., through light 23 

extinction or other monitoring methods or through algorithms such as IMPROVE)? 24 

Our understanding of the relationship between light extinction and PM mass has changed 25 

little since the 2009 ISA (U.S. EPA, 2009). The combined effect of light scattering and 26 

absorption by particles and gases is characterized as light extinction, i.e., the fraction of light that 27 

is scattered or absorbed per unit of distance in the atmosphere. Light extinction is measured in 28 

units of 1/distance, which is often expressed in the technical literature as visibility per 29 

megameter (abbreviated Mm-1). Higher values of light extinction (usually given in terms of Mm-1 30 

or dv) correspond to lower visibility. When PM is present in the air, its contribution to light 31 

extinction is typically much greater than that of gases (U.S. EPA, 2019, section 13.2.1). The 32 

impact of PM on light scattering depends on particle size and composition, as well as relative 33 

humidity. All particles scatter light, as described by the Mie theory, which relates light scattering 34 

to particle size, shape and index of refraction (U.S. EPA, 2019, section 13.2.3; Van de Hulst, 35 
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1981; Mie, 1908). Fine particles scatter more light than coarse particles on a per unit mass basis 1 

and include sulfates, nitrates, organics, light-absorbing carbon, and soil (Malm et al., 1994). 2 

Hygroscopic particles like ammonium sulfate, ammonium nitrate, and sea salt increase in size as 3 

relative humidity increases, leading to increased light scattering (U.S. EPA, 2019, section 4 

13.2.3). 5 

Direct measurements of PM light extinction, scattering, and absorption are considered 6 

more accurate for quantifying visibility impairment than PM mass-based estimates because they 7 

do not depend on assumptions about particle characteristics (e.g., size, shape, density, component 8 

mixture, etc.). Measurements of light extinction can be made with high time resolution, allowing 9 

for characterization of subdaily temporal patterns of visibility impairment. Measurement 10 

methods include transmissometers for measurement of light extinction and the determination of 11 

visual range and integrating nephelometers for measurement of light scattering, as well as 12 

teleradiometers and telephotometers, and photography and photographic modeling (U.S. EPA, 13 

2009; U.S. EPA, 2004b). While some recent research confirms and adds to the body of 14 

knowledge regarding direct measurements as is described in the 2019 ISA and draft ISA 15 

Supplement, no major new developments have been made with these measurement methods 16 

since prior reviews (U.S. EPA, 2019, section 13.2.2.2; U.S. EPA, 2021, section 4.2). 17 

A theoretical relationship between light extinction and PM characteristics has been 18 

derived from Mie theory (U.S. EPA, 2019, Equation 13-5) and can be used to estimate light 19 

extinction by combining mass scattering efficiencies of particles with particle concentrations 20 

(U.S. EPA, 2019, section 13.2.3; U.S. EPA, 2009, sections 9.2.2.2 and 9.2.3.1). However, 21 

routine ambient air monitoring rarely includes measurements of particle size and composition 22 

information with sufficient detail for these calculations. Accordingly, a much simpler algorithm 23 

has been developed to make estimating light extinction more practical. 24 

The algorithm, known as the IMPROVE algorithm,9 estimates light extinction (bext, 25 

measured in units of Mm-1), using routinely monitored components of fine (PM2.5) and coarse 26 

(PM10-2.5) PM. Relative humidity data are also needed to estimate the contribution by liquid 27 

water that is in solution with the hygroscopic components of PM. To estimate each component’s 28 

contribution to light extinction, their concentrations are multiplied by extinction coefficients and 29 

are additionally multiplied by a water growth factor that accounts for their expansion with 30 

moisture. Both the extinction efficiency coefficients and water growth factors of the IMPROVE 31 

algorithm have been developed by a combination of empirical assessment and theoretical 32 

 
9 The algorithm is referred to as the IMPROVE algorithm as it was developed specifically to use monitoring data 

generated at IMPROVE network sites and with equipment specifically designed ot support the IMPROVE 

program and was evaluated using IMPROVE optical measurements at the subset of monitoring sites that make 

those measurements (Malm et al., 1994). 
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calculation using particle size distributions associated with each of the major aerosol components 1 

(U.S. EPA, 2019, section 13.2.3.1, section 13.2.3.3). 2 

The original IMPROVE algorithm (Equation D-1 in Appendix D), so referenced here to 3 

distinguish it from subsequent variations developed later, was found to underestimate the highest 4 

light scattering values and overestimate the lowest values at IMPROVE monitors throughout the 5 

U.S. (Malm and Hand, 2007; Ryan et al., 2005; Lowenthal and Kumar, 2004) and at sites in 6 

China (U.S. EPA, 2019, section 13.2.3.3). To resolve these biases, a revised IMPROVE equation, 7 

shown in Equation D-2 in Appendix D, was developed (Pitchford et al., 2007) that divides PM 8 

components into smaller and larger sizes of particles in PM2.5, with separate mass scattering 9 

efficiencies and hygroscopic growth functions for each size category. The revised IMPROVE 10 

equation was described in detail in the 2009 ISA (U.S. EPA, 2009) and at that time, it both 11 

reduced bias at the lowest and highest scattering values and improved the accuracy of the 12 

calculated light bext. However, poorer precision was observed with the revised IMPROVE 13 

equation compared to the original IMPROVE equation (U.S. EPA, 2009).10 Recent research 14 

suggests that changes in PM composition in ambient air can impact the accuracy of estimating 15 

light extinction using the IMPROVE algorithms (U.S. EPA, 2021, section 4.2.2). As an example, 16 

a study by Prenni et al. (2019) found that the relationship between directly measured light 17 

scattering and estimated light scattering using the revised IMPROVE equation has changed over 18 

time in recent years. In particular, Prenni et al. (2019) compared estimated light extinction using 19 

the revised IMPROVE equation with measured light extinction using nephelometers from 2001-20 

2016 and found that the revised IMPROVE equation underestimated light extinction at many 21 

sites, especially for locations that experienced large decreases in sulfate and organic mass 22 

concentrations. They further found that the underestimation results from splitting the components 23 

into smaller and larger sizes of particles, with too much of the mass being allocated to the 24 

smaller size fraction which has a lower dry mass scattering efficiency (U.S. EPA, 2021, section 25 

4.2.2; Prenni et al., 2019). 26 

Since the 2012 review, Lowenthal and Kumar (2016) have tested and evaluated a number 27 

of modifications to the revised IMPROVE equation based on evaluations of monitoring data 28 

from remote IMPROVE sites. In these locations, they observed that the multiplier to estimate the 29 

concentration of organic matter, [OM], from the concentration of organic carbon, [OC], was 30 

 
10 In the most recent IMPROVE report, a combination of the original and revised IMPROVE equations (the 

modified original IMPROVE equation) was used (Hand et al., 2011). This equation uses the sea salt term of the 

revised equation but does not subdivide the components into two size classes. Further, it uses a factor of 1.8 to 

estimate organic matter from organic carbon concentrations and also replaces the constant value of 10 Mm-1 used 

for Rayleigh scattering in the original and revised equations with a site-specific term based on elevation and mean 

temperature. 
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closer to 2.1 than the value of 1.8 used in the revised IMPROVE equation.11 They also observed 1 

that water soluble organic matter absorbs water as a function of relative humidity, which is not 2 

accounted for in either the original or revised IMPROVE equations and was therefore 3 

underestimated in these equations. They further suggested that light scattering by sulfate was 4 

overestimated because the assumption that all sulfate is fully neutralized ammonium sulfate is 5 

not always true (U.S. EPA, 2019, section 13.2.3.3). Modifications based on these points are 6 

reflected in Equation D-3 in Appendix D. 7 

In summary, rather than altering our understanding from previous reviews, we continue 8 

to recognize that direct measurements are better at characterizing light extinction than estimating 9 

light extinction with an algorithm. However, in the absence of advances in the monitoring 10 

methods and/or network for directly measuring light extinction, the use of the IMPROVE 11 

equation for estimating light extinction continues to be supported by the evidence, with some 12 

refinements to the inputs of the IMPROVE equation. Accordingly, as in previous reviews, this 13 

reconsideration focuses on calculated light extinction when quantifying visibility impairment 14 

resulting from recent concentrations of PM in ambient air. 15 

• What does the information indicate with regard to factors that influence light 16 

extinction and visibility, as well as variation in these factors and resulting light 17 

extinction across the U.S.? 18 

The 2019 ISA provides a comprehensive discussion of the spatial and temporal patterns 19 

of PM2.5 composition and its contribution to light extinction from IMPROVE and CSN 20 

monitoring sites, which are mostly rural and urban, respectively.12 The data from these sites for 21 

the periods of 2005-2008 and 2011-2014 were used in the 2019 ISA to identify differences in 22 

species contributing to light extinction in urban and rural areas by region and season. This is an 23 

expansion over the analysis in the 2009 ISA, in that the measurements at that time were 24 

primarily based measurements from monitors located in rural areas and at remote sites (U.S. 25 

EPA, 2019, section 13.2.4.1, Figures 13-1 through 13-14). 26 

Focusing on the more recent time period of 2011-2014, some major differences in 27 

estimated light extinction are apparent among regions of the U.S. Annual average calculated bext 28 

was considerably greater in the East and Midwest than in the Southwest. Based on IMPROVE 29 

 
11 In areas near sources, PM is often less oxygenated, and therefore, in these locations, much of the organic PM mass 

is present as OC (Jimenez et al., 2009). In areas further away from PM sources, organic PM mass is often more 

oxygenated as a result of photochemical activity and interactions with other PM and gaseous components in the 

atmosphere (Jimenez et al., 2009). Under these conditions, the multiplier to convert OC to OM may be higher 

than in locations with less aged organic PM. 

12 Monitors were grouped into 28 IMPROVE regions and 31 CSN regions based on site location and PM 

concentrations for major species. For comparison purposes, and where possible, CSN regions were defined 

similarly to those for the IMPROVE network (Hand et al., 2011; U.S. EPA, 2019, section 13.2.4.1). 
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data, annual average bext was greater than 40 Mm-1 in the Southeast, East Coast, Mid-South, 1 

Central Great Plains, and Appalachian regions, with the highest annual average bext (greater than 2 

50 Mm-1) in the Ohio River Valley,13 while annual average bext was below 40 Mm-1 for all 3 

Western IMPROVE regions. Annual average bext values were also generally higher in the East 4 

than the West based on CSN data, although the highest annual average bext was in the 5 

Sacramento/San Joaquin Valley and Los Angeles areas (U.S. EPA, 2019, section 13.2.4.1, Figure 6 

13-1, Figure 13-3, Figure 13-5). 7 

Consistent with the analysis in the 2019 ISA, a recent study analyzed national and 8 

regional trends in light extinction based on reconstructed total light extinction estimated from 9 

IMPROVE data using 5-year aggregates of annual mean bext (Mm-1) for 2000-2004 and 2014-10 

2018 (U.S. EPA, 2021, section 4.2.2). Hand et al. (2020) found that, for 2000-2004, the highest 11 

levels of bext occurred in the Appalachian Mountains and Ohio River valley (~100 Mm-1 or 12 

greater), with decreasing values in the central U.S (~70 Mm-1). Values of bext in the East 13 

significantly decreased over time, reduced to ~50 Mm-1 in the 2014-2018 time period, likely 14 

corresponding to decreases in sulfate concentrations over time. However, for 2014-2018, the 15 

highest values of bext were in the central U.S. (50-60 Mm-1), which is an area with high 16 

agricultural activity and nitrate and ammonium concentrations. During both time periods, lower 17 

bext occurred in the western U.S. (20-30 Mm-1), with improvements in bext closer to the West 18 

Coast in 2014-2018 compared to 2004-2008. 19 

Moreover, Hand et al. (2020) also explored changes in bext over time as relative trends (% 20 

yr-1) and found spatial variability in long-term and short-term trends. Generally, similar 21 

magnitudes and spatial variability were found for both long-term and short-term trends, with the 22 

strongest reductions in bext across the eastern U.S. (-4% yr-1 or greater) and along the West Coast, 23 

particularly in Southern California. There was less improvement in the Intermountain West14 (-24 

2% yr-1), although air quality in these areas have been increasingly impacted by wildfire activity 25 

and biomass smoke in recent years (Hand et al., 2020). Decreased trends also occurred across the 26 

Southwest, but at a lower rate than in the Eastern U.S. Over the entire continental U.S., on 27 

average, bext decreased at a rate of -2.8% yr-1 from 2002 to 2018 and -18% yr-1 from 1992 to 28 

2018, with much of the improvement occurring in the eastern U.S. (U.S. EPA, 2021, section 29 

4.2.2; Hand et al., 2020). 30 

Components of PM2.5 contributing to light extinction vary regionally. For example, in the 31 

analysis completed in the 2019 ISA, in the Eastern regions, ammonium sulfate accounted for 32 

approximately 35 to 60% of the annual average bext, with the greatest contributions typically 33 

 
13 A bext value of 40 Mm-1 corresponds to a visual range of about 100 km. 

14 The Intermountain West area includes Idaho, Montana, northern Wyoming, and portions of northern California. 
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occurring in the summer (U.S. EPA, 2019, section 13.2.4.1). The second greatest contribution to 1 

light extinction came from particulate organic matter (POM), ranging from about 20 to 30% of 2 

annual average bext with less seasonal variation on average than ammonium sulfate. Ammonium 3 

nitrate also contributed approximately 10% to 35% of annual average bext, with much higher 4 

concentrations in the winter than in the summer (U.S. EPA, 2019, section 13.2.4.1). In the 5 

Northwest, POM was the largest contributor to annual average bext, up to 70%, in most urban and 6 

rural regions with the greatest contributions in the fall. This seasonal contribution of POM may 7 

be related to wildfires. A few exceptions included Boise and sites in North Dakota, where 8 

ammonium nitrate was the greatest contributor, and sites in the Alaska IMPROVE region, where 9 

ammonium sulfate was the greatest contributor (U.S. EPA, 2019, section 13.2.4.1). In the 10 

Southwest, based on IMPROVE data, ammonium sulfate or POM were generally the greatest 11 

contributors to annual average bext, with nearly equivalent contributions in several regions. Based 12 

on CSN data, ammonium nitrate was often the greatest contributor, with especially high bext 13 

contributions in the winter. While PM10-2.5 mass scattering was relatively small in the eastern and 14 

northwestern U.S., in the Southwest, PM10-2.5 mass scattering contributed to more than 20% of 15 

light extinction (U.S. EPA, 2019, section 13.2.4.1). 16 

Differences also exist between the urban CSN and the mainly rural IMPROVE data. 17 

Light extinction is generally higher in CSN regions than the geographically corresponding 18 

IMPROVE regions. Annual average bext was greater than 50 Mm-1 in 11 CSN regions, compared 19 

to only one IMPROVE region, and was greater than 20 Mm-1 in all CSN regions, compared to 20 

just over half of the IMPROVE regions. Light absorbing carbon was the greatest contributor to 21 

light extinction in several Western CSN regions but was not a large contributor in any of the 22 

IMPROVE regions (U.S. EPA, 2019, Figure 13-11). Ammonium nitrate also accounted for more 23 

light extinction in the CSN regions, while it was only a top contributor to bext in one IMPROVE 24 

region (U.S. EPA, 2019, section 13.2.4.1). 25 

From the 2005-2008 time period to the 2011-2014 time period, the annual average bext in 26 

most CSN regions in the Eastern U.S. decreased by more than 20 Mm-1. This corresponds to an 27 

improvement in average visual range in most Eastern U.S. regions of more than 6 Mm-1 (or 15 28 

km) from 2005-2008 to 2011-2014. Additionally, the contribution of ammonium sulfate to light 29 

extinction has also changed over this period. Due to decreased atmospheric sulfate 30 

concentrations, the impact on visibility impairment is evident with a smaller fraction of the total 31 

bext accounted for by ammonium sulfate in 2011-2014 compared to 2005-2008 (U.S. EPA, 2019, 32 

section 13.2.4.1). 33 

Additionally, Hand et al. (2020) observed that changes in PM composition in ambient air 34 

also affect trends for annual, regional mean speciated bext at IMPROVE monitoring locations 35 

across the U.S. In the East, annual mean total bext decreased by -4.3% yr-1 during from 2002 to 36 
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2018, much of which is attributable to reductions of light extinction from ammonium sulfate. 1 

Light extinction was also decreased for ammonium nitrate, although at a lower rate and a lower 2 

magnitude than ammonium sulfate. Light extinction by POM, EC, and fine dust also decreased 3 

over time, while light extinction by coarse PM increased slightly. In the Intermountain West and 4 

Southwest, annual mean total bext decreased by -0.9% yr-1 from 2002 to 2018. The composition 5 

of PM in these regions are different than in the East, and while light extinction from ammonium 6 

sulfate and ammonium nitrate generally decreased over these time periods, their contribution to 7 

light extinction in the Intermountain West and Southwest is less than in the East. Light extinction 8 

by POM, EC, and fine dust decreased over time, while the trend for coarse PM remained 9 

relatively the same, although the composition of the particles responsible for light extinction in 10 

these areas shifted towards a more carbon-dominated composition over time. It is also important 11 

to note that the trends observed in the Intermountain West and Southwest regions are likely 12 

influenced by biomass smoke, as wildfire smoke emissions are the largest contributor to light 13 

extinction by POM and the impacts of wildfires on air quality in these regions has increased in 14 

recent years (Hand et al., 2020). Light extinction levels in the West Coast region were higher 15 

than in the Intermountain West and Southwest regions, but generally decreased over time (-1.5% 16 

yr-1). Light extinction by ammonium nitrate decreased at the highest rate in the West Coast 17 

region, and was the only area were the rate decreased at a greater rate than ammonium sulfate. 18 

Light extinction by EC and fine dust also decreased, while the trend for POM generally remained 19 

flat and light extinction by coarse mass increased slightly. The mix of positive and negative 20 

trends in the West Coast region are likely due to the influence of biomass smoke in northern 21 

California and Oregon, in particular during 2017 and 2018, as well as reductions in NOX 22 

emissions in Southern California and reductions in light extinction by ammonium sulfate across 23 

the region (U.S. EPA, 2021, section 4.2.2; Hand et al., 2020). 24 

Since the completion of the 2019 ISA, additional research has emerged that explores the 25 

impact of wildfire smoke and biomass smoke on PM composition in the U.S. The increases in 26 

PM emissions from these sources coincides with decreases in SO2 and NOX emissions, which 27 

influences the contribution of different PM species to light extinction. The evidence suggests that 28 

PM emissions from wildfire and biomass smoke can impact visibility impairment due to general 29 

changes in the dominant PM species in the ambient air during these events, as well as the 30 

influence of particle size and aging of the PM over time (U.S. EPA, 2021, section 4.2.2; Laing et 31 

al., 2016; Kleinman et al., 2020).  32 

In summary, the spatial and temporal analysis of PM monitoring network data in the 33 

2019 ISA and recent evidence presented in the draft ISA Supplement emphasize that the extent 34 

of light extinction by PM2.5 depends on PM2.5 composition and relative humidity. Regional 35 

differences in PM2.5 composition greatly influence light extinction spatially and temporally. 36 
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Changes in PM2.5 composition over time can also affect light extinction based on concentrations 1 

of specific PM components in ambient air. 2 

• To what extent are recent studies available that might inform judgments about the 3 

potential adversity to public welfare of PM-attributable visibility impairment and 4 

the nature of the relationship between PM-attributable visibility impairment and 5 

public perceptions of such impairment?  6 

In the 2012 review, visibility preference studies were available from four areas in North 7 

America,15 as described in section 5.1.2 above. Study participants were queried regarding 8 

multiple images that, depending on the study, were either photographs of the same location and 9 

scenery that had been taken on different days on which measured extinction data were available 10 

or digitized photographs onto which a uniform “haze” had been superimposed. Results of these 11 

studies indicated a wide range of judgments on what study participants considered to be 12 

acceptable visibility across the different study areas, depending on the setting depicted in each 13 

photograph. As a part of the 2010 UFVA, each study was evaluated separately, and figures were 14 

developed to display the percentage of participants that rated the visual air quality depicted as 15 

“acceptable” (U.S. EPA, 2010). Figure 5-2 represents a graphical summary of the results of the 16 

studies in the four cities and identifies a range encompassing the PM2.5 visibility index values 17 

from images that were judged to be acceptable by at least 50% of study participants across all 18 

four of the urban preference studies (U.S. EPA, 2010, p. 4-24).16 As shown in Figure 5-2, much 19 

lower visibility (considerably more haze resulting in higher values of light extinction) was 20 

considered acceptable in Washington, D.C. than was in Denver. The median judgment for the 21 

study groups in the two areas differed by 9.2 dv (which roughly corresponds to about 30 µg/m3 22 

of PM) (U.S. EPA, 2010).  23 

 
15 As noted above, preference studies were available in four urban areas in the last review: Denver, Colorado (Ely et 

al., 1991, Pryor, 1996), Vancouver, British Columbia, Canada (Pryor, 1996), Phoenix, Arizona (BBC Research & 

Consulting, 2003), and Washington, DC (Abt Associates, 2001; Smith and Howell, 2009). More details about 

these studies are available in Appendix D. 

16 Figure 5-2 shows the results of a logistical regression analysis using a logit model of the acceptable or 

unacceptable ratings from participants of the studies. The logit model is a generalized linear model used for 

binomial regression analysis which fits explanatory data about binary outcomes (in this case, a person rating an 

image as acceptable or unacceptable) to a logistic function curve. A detailed description is available in Appendix 

J of the 2010 UFVA (U.S. EPA, 2010).  
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 1 

Figure 5-2. Relationship of viewer acceptability ratings to light extinction. (Source: U.S. 2 

EPA, 2011, Figure 4-2; U.S. EPA, 2010, Figure 2-16) 3 

 4 

Since the completion of the 2012 review, there has been very little research on visibility 5 

preferences, with one visibility preference study conducted in the Grand Canyon, AZ (Malm et 6 

al., 2019) and one in Beijing, China (Fajardo et al., 2013). The Grand Canyon study reported a 7 

lower range of acceptable visibility impairment among participants than was found in preference 8 

studies previously conducted in the U.S. (Malm et al., 2019). The Malm et al. (2019) study 9 

design is similar to that used in the public preference studies discussed above, but differs from 10 

those studies in that this study was conducted in a Federal Class I area, as opposed to in an urban 11 

area, with a scene depicted in the photographs that did not include urban features.17 The Malm et 12 

al. (2019) study also used a much lower range of superimposed “haze” than the preference 13 

studies discussed above, which may bias the participant responses given the generally lower 14 

visibility range presented compared to the other studies.18 15 

 
17 The Grand Canyon study used a single scene looking west down the canyon with a small landscape feature of a 

100-km-distant mountain (Mount Trumbull), along with other closer landscape features. The scenes presented in 

the previously available visibility preference studies are presented in more detail in Table D-9 in Appendix D. 

18 The Grand Canyon study superimposed light extinction ranging from 3 dv to 20 dv on the image slides shown to 

participants compared to the previously available preference studies. In those studies, the visibility ranges 

 



October 2021 5-25 Draft – Do Not Quote or Cite 

The study conducted in Beijing found a higher range of acceptable visibility impairment 1 

among participants than was found in preference studies previously conducted in the U.S. This 2 

finding may be related to the common occurrence of higher PM2.5 concentrations in Beijing (with 3 

associated visibility impairment) than is typical in the U.S. (U.S. EPA, 2019, section 13.2.5).  4 

Similarly, there is little recent information regarding acceptable levels of visibility 5 

impairment in the U.S. One study explored alternate methods for evaluating “acceptable” levels 6 

of visual air quality from the preference studies, including the use of scene-specific visibility 7 

indices as potential indicators of visibility levels as perceived by the observer (Malm et al., 8 

2019). In addition to measures of atmospheric haze, such as atmospheric extinction, used in 9 

previously available preference studies, other indices for visual air quality include color and 10 

achromatic contrast of single landscape figures, average and equivalent contrast of an entire 11 

scene, edge detection algorithms such as the Sobel index, and just-noticeable difference or 12 

change indexes. The results reported by Malm et al. (2019) suggest that scene-dependent metrics, 13 

such as contrast, may be useful alternate predictors of preference levels compared to universal 14 

metrics like light extinction (U.S. EPA, 2021, section 4.2.1). This is because extinction alone is 15 

not a measure of “haze,” but of light attenuation per unit distance, and visible “haze” is 16 

dependent on both light extinction and distance to a landscape feature (U.S. EPA, 2021, section 17 

4.2.1). 18 

• To what extent have important uncertainties in the evidence from the last review 19 

been addressed, and have new uncertainties emerged? 20 

Since the 2012 review, some refinements have been made to the IMPROVE equation to 21 

better estimate light extinction, but there has been no expansion of monitoring efforts for direct 22 

measurement of light extinction. At the time of the 2012 review, it was noted that a PM2.5 light 23 

extinction monitoring program could help with characterizing visibility conditions and the 24 

relationships between PM component concentrations and light extinction.  25 

Little new research is available that helps to expand our understanding of visibility 26 

preferences or our characterization of visibility conditions. Uncertainties and limitations 27 

consistent with those identified in the past reviews persist in this reconsideration. 28 

• Given the potential for people to have different preferences based on the visibility they are 29 

used to based on conditions that they commonly encounter, and the potential for them to 30 

also have different preferences for different types of scenes, the preference studies may 31 

not capture the range of preferences of people in the U.S. 32 

• Most of t7he preference studies were conducted 15 to 30 years ago and may not reflect the 33 

visibility preferences of the U.S. population today. Given that air quality has improved 34 

 
presented were as low as 9 dv and as high as 45 dv. The visibility ranges presented in the previously available 

visibility preference studies are described in more detail in Table D-9 in Appendix D. 
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over the last several decades, the older studies may not reflect current preferences of 1 

people in the U.S. Newer studies may not capture the extent to which preferences may be 2 

changing over time. 3 

• The preference studies have used different methods to evaluate what level of visibility 4 

impairment is acceptable. Variability in study methodology may influence an individual’s 5 

response as to what level of visibility impairment is deemed acceptable, and thereby 6 

influence the results of the study. 7 

• Many factors that are not captured by the methods used in the preference studies may 8 

influence people’s judgments on acceptable visibility. For example, an individual’s 9 

perception of an acceptable level of visibility impairment could be influenced by the 10 

duration of visibility impairment experienced, the time of day during which light 11 

extinction is greatest, and the frequency of episodes of visibility impairment, as well as 12 

the intensity of the visibility impairment (i.e., the focus of the studies). 13 

• Methods for quantitatively evaluating people’s judgments on acceptability are evolving 14 

but are still inconsistent in their application across studies. Variability in quantitative 15 

methods for comparing visual air quality in public preference studies may influence the 16 

consistency and comparability of results and the interpretation of these results in the 17 

context of regional or national preferences for visibility impairment in urban, non-urban, 18 

and Federal Class I areas. 19 

Overall, the body of evidence regarding visibility effects remains largely unchanged since 20 

the time of the 2012 review. While one new study provides refinements to the methods for 21 

estimating light extinction, uncertainties and limitations in the scientific evidence during the 22 

previous reviews remain. 23 

5.3.1.2 Quantitative and Air Quality Information 24 

Beyond our consideration of the scientific evidence, discussed in section 5.3.1.1 above, 25 

we have also considered quantitative analyses of PM air quality and visibility impairment with 26 

regard to the extent they could inform conclusions on the adequacy of the public welfare 27 

protection provided by the current secondary PM standards. In the 2012 review, quantitative 28 

analyses focused on daily visibility impairment, given the short-term nature of PM-related 29 

visibility effects. Such quantitative analyses conducted as part of the 2012 review informed the 30 

decision on the secondary standards in that review (U.S. EPA, 2010, U.S. EPA, 2011; 78 FR 31 

3189-3192, January 15, 2013). The information available since the 2012 review includes an 32 

updated equation for estimating light extinction, summarized in section 5.3.1.1 above and 33 

described in the 2019 ISA, as well as more recent air monitoring data, that together allow for 34 

development of an updated assessment with the potential to substantially add to our 35 

understanding of PM-related visibility impairment. Thus, we have conducted updated analyses 36 

for this reconsideration based on the technical information, tools, and methods. 37 
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• How much visibility impairment is estimated to occur in areas that meet the current 1 

secondary PM standards? What are the factors contributing to the estimates in areas 2 

with higher values? 3 

Consistent with the analyses conducted in the 2012 and 2020 reviews, we have conducted 4 

analyses examining the relationship between PM mass concentrations and calculated light 5 

extinction using the 3-year design values19 for the current secondary standards and a 3-year 6 

average visibility metric based on light extinction estimated using IMPROVE equations using air 7 

quality data for 2017 to 2019.20 These analyses are intended to inform our understanding of 8 

visibility impairment in the U.S. under recent air quality conditions, particularly those conditions 9 

that meet the current standards, and the relative influence of various factors on light extinction. 10 

Given the relationship of visibility with short-term PM, we focus particularly on the short-term 11 

PM standards. 12 

Given that visibility-related effects are often associated with short-term PM 13 

concentrations, and recognizing the relatively larger role of PM2.5 and its components in light 14 

extinction and as inputs to the IMPROVE equation, we have given somewhat more attention to 15 

consideration of the 24-hour PM2.5 standard. Analyses were conducted using three versions of 16 

the IMPROVE equation (Equations D-1 through D-3 in Appendix D) to estimate light extinction 17 

to better understand the influence of variability in inputs across the three equations. This analysis 18 

included 60 monitoring sites that are geographically distributed across the U.S. in both urban and 19 

rural areas (see Figure D-1 in Appendix D). These sites are those that have a valid 24-hour PM2.5 20 

design value for the 2017-2019 period and met strict criteria for PM species for this analysis.21 21 

We present results for these 60 sites using the original IMPROVE equation, with modifications 22 

to the equation consistent with those made in evaluating light extinction in the 2012 review 23 

(described in detail in section D.1 of Appendix D). We then present results for these 60 sites with 24 

light extinction calculated using the Lowenthal and Kumar (2016) IMPROVE equation described 25 

in section 5.3.1.1 above. 26 

 
19 A design value is a statistic that summarizes the air quality data for a given area in terms of the indicator, 

averaging time, and form of the standard. Design values can be compared to the level of the standard and are 

typically used to designate areas as meeting or not meeting the standard and assess progress towards meeting the 

NAAQS. 

20 This is the 3-year visibility metric that was used to evaluate visibility impairment in the 2012 and 2020 reviews. 

Given that there has been little new research since the time of the 2012 review to better inform our understanding 

of visibility preferences in the U.S., there is no new information available to inform selection of a visibility metric 

for evaluating visibility impairment in the current review different from the one identified in the 2012 review.  

21 For this analysis, completeness criteria for speciated PM data at these sites included having all 12 quarters in the 

2017-2019 period with at least 11 days in each quarter with a valid PM2.5 and PM10-2.5 mass, sulfate, nitrate, 

organic carbon, elemental carbon, sea salt (chlorine or chloride), and fine soil (aluminum, silica, calcium, iron, 

and titanium) measurement. 
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In considering the relationship between the 24-hour PM2.5 mass-based design value and  1 

the 3-year visibility metric using recent air quality data, we first examine the relationship using 2 

the original IMPROVE equation, consistent with the methods used in the 2012 review (Kelly et 3 

al., 2012; 78 FR 3201, January 15, 2013; Appendix D). In those areas that meet the current 24-4 

hour PM2.5 standard, all sites have light extinction estimates at or below 26 dv (Figure 5-3; 78 FR 5 

3218, January 15, 2013). For the four locations that exceed the current 24-hour PM2.5 standard, 6 

light extinction estimates range from 22 dv to 29 dv (Figure 5-3). These findings are consistent 7 

with the findings of the analysis using the same IMPROVE equation in the 2012 review with 8 

data from 102 sites with data from 2008-2010 and in the 2020 review with data from 67 sites 9 

with data from 2015-2017. This indicates similar findings from this analysis as was the case with 10 

the similar analysis in the 2012 and 2020 reviews, i.e., the updated quantitative analysis shows 11 

that the 3-year visibility metric was no higher than 30 dv22 at sites meeting the current secondary 12 

PM standards, and at most such sites the 3-year visibility index values are much lower (e.g., an 13 

average of 20 dv across the 60 sites). 14 

 15 

 
22 For comparison purposes in these air quality analyses, we use a 3-year visibility metric with a level of 30 dv, 

which is the highest level of visibility impairment judged to be acceptable by at least 50 percent of the 

participants in the preference studies that were available at the time of the 2012 review (78 FR 3191, January 15, 

2013). 
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 1 

Figure 5-3. Comparison of 90th percentile of daily light extinction, averaged over three 2 

years, and 98th percentile of daily PM2.5 concentrations, averaged over three years, for 3 

2017-2019 using the original IMPROVE equation. (Note: Dashed lines indicate the level 4 

of current 24-hour PM2.5 standard (35 µg/m3) and the target level of protection identified for 5 

the 3-year visibility metric (30 dv).) 6 

 7 

When light extinction was calculated using the refined equation from Lowenthal and 8 

Kumar (2016), the resulting 3-year visibility metrics are slightly higher at all sites compared to 9 

light extinction estimates calculated using the original IMPROVE equation (Figure 5-4). As 10 

noted in section 5.3.1.1, this version of the IMPROVE equation uses a multiplier of 2.1 to 11 

convert the measured OC to OM for input into the equation and also accounts for water 12 

absorption by water soluble organic matter as a function of relative humidity, likely contributing 13 

to the slightly higher estimates of light extinction. As noted in section 5.3.1.1, the Lowenthal and 14 

Kumar (2016) refinements to the IMPROVE equation are based on evaluations of monitoring 15 

data from remote IMPROVE sites. More remote areas tend to have more aged organic particles 16 
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than urban areas, and these adjustments to the IMPROVE equation account for the higher 1 

concentration of organic matter as a result of more aged organic particles at these sites. It is 2 

important to note that, since the Lowenthal and Kumar (2016) refinements to the IMPROVE 3 

equation likely result in one of the higher estimates of light extinction, this equation may 4 

overestimate light extinction in non-remote areas, including those urban areas in our analyses. 5 

Using the Lowenthal and Kumar (2016) equation, for those sites that meet the current 24-6 

hour PM2.5 standard, the 3-year visibility metric is at or below 28 dv when light extinction is 7 

calculated. For those sites that exceed the current 24-hour PM2.5 standard, three of these sites 8 

have a 3-year visibility metric ranging between 26 dv and 30 dv, while one site in Fresno, 9 

California that exceeds the current 24-hour PM2.5 standard and has a 3-year visibility index value 10 

of 32 dv (compared to 29 dv when light extinction is calculated with the original IMPROVE 11 

equation) (see Table D-3 in Appendix D). At this site, it is likely that the 3-year visibility metric 12 

using the Lowenthal and Kumar (2016) equation would be below 30 dv if PM2.5 concentrations 13 

were reduced such that the 24-hour PM2.5 level of 35 µg/m3 was attained. 14 

 15 
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 1 

Figure 5-4. Comparison of 90th percentile of daily light extinction, averaged over three 2 

years, and 98th percentile of daily PM2.5 concentrations, averaged over three years, for 3 

2015-2017 using the Lowenthal and Kumar equation. (Note: Dashed lines indicate the 4 

level of current 24-hour PM2.5 standard (35 µg/m3) and the target level of protection 5 

identified for the 3-year visibility metric (30 dv).) 6 

 7 

In considering visibility impairment under recent air quality conditions, we recognize that 8 

the differences in the inputs to equations estimating light extinction can influence the resulting 9 

values. For example, given the varying chemical composition of emissions from different 10 

sources, the 2.1 multiplier in the Lowenthal and Kumar (2016) equation may not be appropriate 11 

for all source types. At the time of the 2012 review, the EPA judged that a 1.6 multiplier for 12 

converting OC to OM was more appropriate, for the purposes of estimating visibility index at 13 

sites across the U.S., than the 1.4 or 1.8 multipliers used in the original and revised IMPROVE 14 

equations, respectively. A multiplier of 1.8 or 2.1 would account for the more aged and 15 

oxygenated organic PM that tends to be found in more remote regions than in urban regions, 16 
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whereas a multiplier of 1.4 may underestimate the contribution of organic PM found in remote 1 

regions when estimating light extinction (78 FR 3206, January 15, 2013; U.S. EPA, 2012a, p. 2 

IV-5). The information and analyses indicate that it may be appropriate to select inputs to the 3 

IMPROVE equation (e.g., the multiplier for OC to OM) on a regional basis rather than a national 4 

basis when calculating light extinction. This is especially true when comparing sites with 5 

localized PM sources (such as sites in urban or industrial areas) to sites with PM derived largely 6 

from biogenic precursor emissions (that contribute to widespread secondary organic aerosol 7 

formation), such as those in the southeastern U.S. We note, however, that conditions involving 8 

PM from such different sources have not been well studied in the context of applying a multiplier 9 

to estimate light extinction, contributing uncertainty to estimates of light extinction for such 10 

conditions. 11 

At the time of the 2012 review, the EPA noted that PM2.5 is the size fraction of PM 12 

responsible for most of the visibility impairment in urban areas (77 FR 38980, June 29, 2012). 13 

Data available at the time of the 2012 review suggested that, generally, PM10-2.5 was a minor 14 

contributor to visibility impairment most of the time (U.S. EPA, 2010) although the coarse 15 

fraction may be a major contributor in some areas in the desert southwestern region of the U.S. 16 

Moreover, at the time of the 2012 review, there were few data available from PM10-2.5 monitors 17 

to quantify the contribution of coarse PM to calculated light extinction. Since that time, an 18 

expansion in PM10-2.5 monitoring efforts has increased the availability of data for use in 19 

estimating light extinction with both PM2.5 and PM10-2.5 concentrations included as inputs in the 20 

equations. The analysis in the 2020 review addressed light extinction at 20 of the 67 PM2.5 sites 21 

where collocated PM10-2.5 monitoring data were available. Since the 2020 review, PM10-2.5 22 

monitoring data are available at more locations and the analyses presented in this draft PA 23 

include those for light extinction estimated with coarse and fine PM at all 60 sites. Generally, the 24 

contribution of the coarse fraction to light extinction at these sites is minimal, contributing less 25 

than 1 dv to the 3-year visibility metric (U.S. EPA, 2020, section 5.2.1.2). However, we note that 26 

in our analysis, only a few sites were in locations that would be expected to have high 27 

concentrations of coarse PM, such as the Southwest. These results are consistent with those in 28 

the analyses in the 2019 ISA, which found that mass scattering from PM10−2.5 was relatively 29 

small (less than 10%) in the eastern and northwestern U.S., whereas mass scattering was much 30 

larger in the Southwest (more than 20%) particularly in southern Arizona and New Mexico (U.S. 31 

EPA, 2019, section 13.2.4.1, p. 13-36). 32 

In summary, the findings of these updated quantitative analyses are generally consistent 33 

with those in the 2012 and 2020 reviews. The 3-year visibility metric was generally below 26 dv 34 

in most areas that meet the current 24-hour PM2.5 standard. Small differences in the 3-year 35 

visibility metric were observed between the variations of the IMPROVE equation, which may 36 
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suggest that it may be more appropriate to use one version over another in different regions of 1 

the U.S. based on PM characteristics such as particle size and composition to more accurately 2 

estimate light extinction.  3 

5.3.2 Non-Visibility Effects 4 

5.3.2.1 Nature of Effects 5 

In considering the evidence for non-visibility welfare effects attributable to PM as 6 

presented in the 2019 ISA, this section poses the following policy-relevant questions:  7 

• To what extent has the scientific evidence improved our understanding of the nature 8 

and magnitude of non-visibility welfare effects of PM in ambient air, including the 9 

variability associated with such effects? To what extent have important uncertainties 10 

in the evidence from the last review been addressed, and have new uncertainties 11 

emerged? 12 

As an initial matter, we note that the draft ISA Supplement does not include an evaluation 13 

of additional studies for climate and materials effects and the causality determinations from PM-14 

related climate and materials effects presented in the 2019 ISA continue to serve as the scientific 15 

foundation for these effects. As such, the sections below that address these questions for PM and 16 

climate effects (section 5.3.2.1.1) and materials effects (section 5.3.2.1.2) draw from the 17 

evaluation of the welfare effects evidence for PM-related climate and materials effects in the 18 

2019 ISA and considerations of such effects in the 2020 PA (U.S. EPA, 2020).   19 

5.3.2.1.1 Climate Effects 20 

In considering the evidence of climate effects attributable to PM, this section poses the 21 

following policy-relevant question: 22 

• To what extent is information available that changes or enhances our understanding 23 

of the climate impacts of PM-related aerosols, particularly regarding a quantitative 24 

relationship between PM concentrations and effects on climate (e.g., through 25 

radiative forcing)? 26 

In the 2012 review, the 2009 PM ISA concluded that there was “sufficient evidence to 27 

determine a causal relationship between PM and climate effects – specifically on the radiative 28 

forcing of the climate system, including both direct effects of PM on radiative forcing and 29 

indirect effects that involve cloud feedbacks that influence precipitation formation and cloud 30 

lifetimes” (U.S. EPA, 2009, section 9.3.10).23 Since the 2012 review, climate impacts have been 31 

 
23 Radiative forcing (RF) for a given atmospheric constituent is defined as the perturbation in net radiative flux, at 

the tropopause (or the top of the atmosphere) caused by that constituent, in watts per square meter (Wm-2), after 

allowing for temperatures in the stratosphere to adjust to the perturbation but holding all other climate responses 

constant, including surface and tropospheric temperatures (Fiore et al., 2015, Myhre et al., 2013). A positive 
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extensively studied and the 2019 ISA concludes that “overall the evidence is sufficient to 1 

conclude that a causal relationship exists between PM and climate effects” (U.S. EPA, 2019, 2 

section 13.3.9). Recent research reinforces and strengthens the evidence evaluated in the 2009 3 

ISA. Recent evidence provides greater specificity about the details of these radiative forcing 4 

effects and increased understanding of additional climate impacts driven by PM radiative effects. 5 

The Intergovernmental Panel on Climate Change (IPCC) assesses the role of anthropogenic 6 

activity in past and future climate change. In the 2012 review, the 2009 ISA relied heavily on the 7 

Fourth IPCC Assessment Report (AR4); since the 2012 review, the IPCC issued an updated 8 

report, as described in the 2019 ISA. The Fifth IPCC Assessment Report (AR5; IPCC, 2013) 9 

reports on the key scientific advances in understanding the climate effects of PM since AR4. The 10 

2019 ISA draws substantially upon AR5 in summarizing these effects. 11 

Atmospheric PM has the potential to affect climate in multiple ways, including absorbing 12 

and scattering of incoming solar radiation, alterations in terrestrial radiation, effects on the 13 

hydrological cycle, and changes in cloud properties (U.S. EPA, 2019, section 13.3.1). 14 

Atmospheric PM interacts with incoming solar radiation. Many species of PM (e.g., sulfate and 15 

nitrate) efficiently scatter solar energy. By enhancing reflection of solar energy back to space, 16 

scattering PM exerts a cooling effect on the surface below. Certain species of PM such as black 17 

carbon (BC), brown carbon (BrC), or dust can also absorb incoming sunlight. A recent study 18 

found that whether absorbing PM warms or cools the underlying surface depends on several 19 

factors, including the altitude of the PM layer relative to cloud cover and the albedo of the 20 

surface (Ban-Weiss et al., 2014). PM also perturbs incoming solar energy by influencing cloud 21 

cover and cloud lifetime. For example, PM provides nuclei upon which water vapor condenses, 22 

forming cloud droplets. Finally, absorbing PM deposited on snow and ice can diminish surface 23 

albedo and lead to regional warming (U.S. EPA, 2019, section 13.3.2). 24 

PM has direct and indirect effects on climate processes. PM interactions with solar 25 

radiation through scattering and absorption, collectively referred to as aerosol-radiation 26 

interactions (ARI), are also known as the direct effects of PM on climate, as opposed to the 27 

indirect effects that involve aerosol-cloud interactions (ACI). The direct effects of PM on climate 28 

result primarily from particles scattering light away from Earth and sending a fraction of solar 29 

energy back into space, decreasing the transmission of visible radiation to the surface of the 30 

Earth and resulting in a decrease in the heating rate of the surface and the lower atmosphere. The 31 

IPCC AR5, taking into account both model simulations and satellite observations, reports a 32 

radiative forcing from aerosol-radiation interactions (RFari) from anthropogenic PM of -0.35 ± 33 

 
forcing indicates net energy trapped in the Earth system and suggests warming of the Earth’s surface, whereas a 

negative forcing indicates net loss of energy and suggests cooling (U.S. EPA, 2019, section 13.3.2.2). 
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0.5 watts per square meter (Wm-2) (Boucher, 2013), which is slightly reduced compared to AR4. 1 

Estimates of effective radiative forcing24 from aerosol-radiation interactions (ERFari), which 2 

include the rapid feedback effects of temperature and cloud cover, rely mainly on model 3 

simulations, as this forcing is complex and difficult to observe (U.S. EPA, 2019, section 4 

13.3.4.1). The IPCC AR5 best estimate for ERFari is -0.45 ± 0.5 Wm-2, which reflects this 5 

uncertainty (Boucher, 2013).  6 

By providing cloud condensation nuclei, PM increases cloud droplet number, thereby 7 

increasing cloud droplet surface area and albedo (Twomey, 1977). The climate effects of these 8 

perturbations are more difficult to quantify than the direct effects of aerosols with RF but likely 9 

enhance the cooling influence of clouds by increasing cloud reflectivity (traditionally referred to 10 

as the first indirect effect) and lengthening cloud lifetime (the second indirect effect). These 11 

effects are reported as the radiative forcing from aerosol-cloud interactions (RFaci) and the 12 

effective radiative forcing from aerosol-cloud interactions (ERFaci) (U.S. EPA, 2019, section 13 

13.3.3.2). IPCC AR5 estimates ERFaci at -0.45 Wm-2, with a 90% confidence interval of -1.2 to 14 

0 Wm-2 (U.S. EPA, 2019, section 13.3.4.2).25 Studies have also calculated the combined 15 

effective radiative forcing from aerosol-radiation and aerosol-cloud interactions (ERFari+aci) 16 

(U.S. EPA, 2019, section 13.3.4.3). IPCC AR5 reports a best estimate of ERFari+aci of -0.90 (-17 

1.9 to -0.1) Wm-2, consistent with these estimates (Boucher, 2013). 18 

PM can also strongly reflect incoming solar radiation in areas of high albedo, such as 19 

snow- and ice-covered surfaces. The transport and subsequent deposition of absorbing PM such 20 

as BC to snow- and ice-covered regions can decrease the local surface albedo, leading to surface 21 

heating. The absorbed energy can then melt the snow and ice cover and further depress the 22 

albedo, resulting in a positive feedback loop (U.S. EPA, 2019, section 13.3.3.3; Bond et al., 23 

2013; U.S. EPA, 2012b). Deposition of absorbing PM, such as BC, may also affect surface 24 

temperatures over glacial regions (U.S. EPA, 2019, section 13.3.3.3). The IPCC AR5 best 25 

estimate of RF from the albedo effect is +0.04 Wm-2, with an uncertainty range of +0.02 to +0.09 26 

Wm-2 (Boucher, 2013). 27 

While research on PM-related effects on climate has expanded since the 2012 review, 28 

there are still significant uncertainties associated with the accurate measurement of PM 29 

contributions to the direct and indirect effects of PM on climate.  30 

 
24 Effective radiative forcing (ERF), new in the IPCC AR5, takes into account not just the instantaneous forcing but 

also a set of climate feedbacks, involving atmospheric temperature, cloud cover, and water vapor, that occur 

naturally in response to the initial radiative perturbation (U.S. EPA, 2019, section 13.3.2.2). 

25 While the 2019 ISA includes estimates of RFaci and ERFaci from a number of studies (U.S. EPA, 2019, sections 

13.3.4.2, 13.3.4.3, 13.3.3.3), this draft PA focuses on the single best estimate with a range of uncertainty, as 

reported in IPCC AR5 (Boucher, 2013). 
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• To what extent does the information provide evidence of a quantitative relationship 1 

between specific PM constituents (i.e., BC, OC, sulfate) and climate-related effects? 2 

Since the 2012 review, a number of studies have examined the individual climate effects 3 

associated with key PM components, including sulfate, nitrate, OC, BC, and dust, along with 4 

updated quantitative estimates of the radiative forcing associated with the individual species. 5 

Sulfate particles form through oxidation of SO2 by OH in the gas phase and in the 6 

aqueous phase by a number of pathways, including in particular those involving ozone and H2O2 7 

(U.S. EPA, 2019, section 13.3.5.1). The main source of anthropogenic sulfate is from coal-fired 8 

power plants, and global trends in the anthropogenic SO2 emissions are estimated to have 9 

increased dramatically during the 20th and early 21st centuries, although the recent 10 

implementation of more stringent air pollution controls on sources has led to a reversal in such 11 

trends in many places (U.S. EPA, 2019, section 13.3.5.1). Sulfate particles are highly reflective. 12 

Consistent with other recent estimates, on a global scale, the IPCC AR5 estimates that sulfate 13 

contributes more than other PM types to RF, with RFari of -0.4 (-0.6 to -0.2) Wm-2, where the 14 

5% and 95% uncertainty range is represented by the numbers in the parentheses (Myhre et al., 15 

2013). This uncertainty range indicates the challenges associated with estimating SO2 from 16 

sources in developing regions and estimating the lifetime of sulfate against wet deposition. 17 

Sulfate is also a major contributor to the influence of PM on clouds (Takemura, 2012). A total 18 

effective radiative forcing (ERFari+aci) for anthropogenic sulfate has been estimated to be nearly 19 

-1.0 Wm-2 (Adams et al., 2001, Zelinka et al., 2014). 20 

Nitrate particles form through the oxidation of nitrogen oxides and occur mainly in the 21 

form of ammonium nitrate. Ammonium preferentially associates with sulfate rather than nitrate, 22 

leading to formation of ammonium sulfate at the expense of ammonium nitrate (Adams et al., 23 

2001). As anthropogenic emissions of SO2 decline, more ammonium will be available to react 24 

with nitrate, potentially leading to future increases in ammonium nitrate particles in the 25 

atmosphere (U.S. EPA, 2019, section 13.3.5.2; Hauglustaine et al., 2014; Lee et al., 2013; 26 

Shindell et al., 2013). Warmer global temperatures, however, may decrease nitrate abundance 27 

given that it is highly volatile at higher temperatures (Tai et al., 2010). The IPCC AR5 estimates 28 

RFari of nitrate of -0.11 (-0.3 to -0.03) Wm-2 (Boucher, 2013), which is one-fourth of the RFari 29 

of sulfate.  30 

Primary organic carbonaceous PM, including BrC, are emitted from wildfires, 31 

agricultural fires, and fossil fuel and biofuel combustion. Secondary organic aerosols (SOA) 32 

form when anthropogenic or biogenic nonmethane hydrocarbons are oxidized in the atmosphere, 33 

leading to less volatile products that may partition into PM (U.S. EPA, 2019, section 13.3.5.3). 34 

Organic particles are generally reflective, but in the case of BrC, a portion is significantly 35 

absorbing at shorter wavelengths (<400 nm). The IPCC AR5 estimates an RFari for primary 36 
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organic PM from fossil fuel combustion and biofuel use of -0.09 (-0.16 to -0.03) Wm-2 and an 1 

RFari estimate for SOA from these sources of -0.03 (-0.27 to +0.20) Wm-2 (Myhre et al., 2013). 2 

The wide range in these estimates, including inconsistent signs for forcing, reflect uncertainties 3 

in the optical properties of organic PM and its atmospheric budgets, including the production 4 

pathways of anthropogenic SOA (Scott et al., 2014; Myhre et al., 2013; McNeill et al., 2012; 5 

Heald et al., 2010). The IPCC AR5 also estimates an RFari of -0.2 Wm-2 for primary organic PM 6 

arising from biomass burning (Boucher, 2013). 7 

Black carbon (BC) particles occur as a result of inefficient combustion of carbon-8 

containing fuels. Like directly emitted organic PM, BC is emitted from biofuel and fossil fuel 9 

combustion and by biomass burning. BC is absorbing at all wavelengths and likely has a large 10 

impact on the Earth’s energy budget (Bond et al., 2013). The IPCC AR5 estimates a RFari from 11 

anthropogenic fossil fuel and biofuel use of +0.4 (+0.5 to +0.8) Wm-2 (Myhre et al., 2013). 12 

Biomass burning contributes an additional +0.2 (+0.03 to +0.4) Wm-2 to BC RFari, while the 13 

albedo effect of BC on snow and ice adds another +0.04 (+0.02 to +0.09) Wm-2 (Myhre et al., 14 

2013; U.S. EPA, 2019, section 13.3.5.4, section 13.3.4.4). 15 

Dust, or mineral dust, is mobilized from dry or disturbed soils as a result of both 16 

meteorological and anthropogenic activities. Dust has traditionally been classified as scattering, 17 

but a recent study found that dust may be substantially coarser than currently represented in 18 

climate models, and thus more light-absorbing (Kok et al., 2017). The IPCC AR5 estimates 19 

RFari as -0.1 ± 0.2 Wm-2 (Boucher, 2013), although the results of the study by Kok et al. (2017) 20 

would suggest that in some regions dust may have led to warming, not cooling (U.S. EPA, 2019, 21 

section 13.3.5.5). 22 

Recent research expands upon the evidence from the 2012 review. Consistent with the 23 

evidence in the 2012 review, the key PM components, including sulfate, nitrate, OC, BC, and 24 

dust, that contribute to climate processes vary in their reflectivity, forcing efficiencies, and 25 

direction of forcing.  26 

• To what extent does the evidence change or improve our understanding of the spatial 27 

and temporal variation in climate responses to PM? 28 

Radiative forcing due to PM elicits a number of responses in the climate system that can 29 

lead to significant effects on weather and climate over a range of spatial and temporal scales, 30 

mediated by a number of feedbacks that link PM and climate. Since the 2012 review, the 31 

evidence base has expanded with respect to the mechanisms of climate responses and feedbacks 32 

to PM radiative forcing, described below, although considerable uncertainties continue to exist. 33 

We focus our discussion primarily on the climate impacts in the U.S. 34 

Unlike well-mixed, long-lived greenhouse gases in the atmosphere, PM has a very 35 

heterogenous distribution across the Earth. As such, patterns of RFari and RFaci tend to correlate 36 
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with PM loading, with the greatest forcings centralized over continental regions. The climate 1 

response is more complicated since the perturbation to one climate variable (e.g., temperature, 2 

cloud cover, precipitation) can lead to a cascade of effects on other variables. While the initial 3 

PM radiative forcing may be concentrated regionally, the eventual climate response can be much 4 

broader spatially or be concentrated in remote regions (U.S. EPA, 2019, section 13.3.6). The 5 

complex climate system interactions lead to variation among climate models, with some studies 6 

showing relatively close correlation between forcing and surface response temperatures (e.g., 7 

Leibensperger et al., 2012), while other studies show much less correlation (e.g., Levy et al., 8 

2013). Many studies have examined observed trends in PM and temperature in the U.S. Climate 9 

models have suggested a range of factors which can influence large-scale meteorological 10 

processes and may affect temperature, including local feedback effects involving soil moisture 11 

and cloud cover, changes in the hygroscopicity of the PM, and interactions with clouds alone 12 

(U.S. EPA, 2019, section 13.3.7). While evidence described in the 2019 ISA suggests that PM 13 

influenced temperature trends across the southern and eastern U.S. in the 20th century, 14 

uncertainties continue to exist and further research is needed to better characterize the effects of 15 

PM on regional climate in the U.S. 16 

• To what extent have important uncertainties identified in prior reviews been 17 

reduced and/or have new uncertainties emerged? 18 

Since 2009, significant progress has been made in evaluating PM-related climate effects 19 

and uncertainties. The IPCC AR5 states that “climate-relevant aerosol processes are better 20 

understood, and climate-relevant aerosol properties are better observed, than at the time of the 21 

AR4” (Boucher, 2013). However, significant uncertainties remain that make it difficult to 22 

quantify the climate effects of PM. Such uncertainties include those related to our understanding 23 

of: 24 

• The magnitude of PM radiative forcing and the portion of that associated with 25 

anthropogenic emissions;  26 

• The contribution of regional differences in PM concentrations, and of individual 27 

components, to radiative forcing;  28 

• The mechanisms of climate responses and feedbacks resulting from PM-related radiative 29 

forcing; and, 30 

• The process by which PM interacts with clouds and how to represent such interactions in 31 

climate models. 32 

While research has progressed significantly since the 2012 review, substantial 33 

uncertainties still remain with respect to key processes linking PM and climate, because of the 34 

small scale of PM-relevant atmospheric processes compared to the resolution of state-of-the-art 35 

models, and because of the complex cascade of indirect impacts and feedbacks in the climate 36 
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system that result from an initial PM-related radiative perturbation (U.S. EPA, 2019, section 1 

13.3.9). 2 

5.3.2.1.2 Materials Effects 3 

In considering the evidence on materials effects attributable to PM, this section poses the 4 

following policy-relevant question: 5 

• To what extent is information available to link PM to materials effects, including 6 

degradation of surfaces, and deterioration of materials such as metal, stone, concrete 7 

and marble? 8 

In the 2012 review, the 2009 ISA concluded that there was “a causal relationship between 9 

PM and effects on materials” (U.S. EPA, 2009, sections 2.5.4 and 9.5.4). Rather than altering our 10 

conclusions from the 2012 review, the evidence in the 2019 ISA continues to support prior 11 

conclusions regarding materials effects associated with PM deposition. Effects of deposited PM, 12 

particularly sulfates and nitrates,26 to materials include both physical damage and impaired 13 

aesthetic qualities. Because of their electrolytic, hygroscopic, and acidic properties and their 14 

ability to sorb corrosive gases, particles contribute to materials damage by adding to the effects 15 

of natural weathering processes, by potentially promoting or accelerating the corrosion of metals, 16 

degradation of painted surfaces, deterioration of building materials, and weakening of material 17 

components. The majority of the evidence on materials effects of PM are from outside the U.S. 18 

on buildings and other items of cultural heritage; however, they provide limited new data for 19 

consideration.  (U.S. EPA, 2019, section 13.4). 20 

Materials damage from PM generally involves one or both of two processes: soiling and 21 

corrosion (U.S. EPA, 2019, section 13.4.2). Soiling and corrosion are complex, interdependent 22 

processes, typically beginning with deposition of atmospheric PM or SO2 to exposed surfaces. 23 

Constituents of deposited PM can interact directly with materials or undergo further chemical 24 

and/or physical transformation to cause soiling, corrosion, and physical damage. Weathering, 25 

including exposure to moisture, ultraviolet (UV) radiation and temperature fluctuations, affects 26 

the rate and degree of damage (U.S. EPA, 2019, section 13.4.2). 27 

Soiling is the result of PM accumulation on an object that alters its optical characteristics 28 

or appearance. These soiling effects can affect the aesthetic value of a structure or result in 29 

reversible or irreversible damage to the surface. The presence of air pollution can increase the 30 

frequency and duration of cleaning and can enhance biodeterioration processes on the surface of 31 

materials. For example, deposition of carbonaceous components of PM can lead to the formation 32 

 
26 In the case of materials effects, it is difficult to isolate the effects of gaseous and particulate nitrogen and sulfur 

wet deposition so both will be considered along with other PM-related deposition effects on materials. 
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of black crusts on surfaces, and the buildup of microbial biofilms27 can discolor surfaces by 1 

trapping PM more efficiently (U.S. EPA, 2009, p. 9-195; U.S. EPA, 2019, section 13.4.2). The 2 

presence of PM may alter light transmission or change the reflectivity of a surface. Additionally, 3 

the organic or nutrient content of deposited PM may enhance microbial growth on surfaces. 4 

Since the 2012 review, very little evidence has become available related to deposition of 5 

SO2 to materials such as limestone, granite, and metal. Deposition of SO2 onto limestone can 6 

transform the limestone into gypsum, resulting in a rougher surface, which allows for increased 7 

surface area for accumulation of deposited PM (Camuffo and Bernardi, 1993; U.S. EPA, 2019, 8 

section 13.4.2). Oxidation of deposited SO2 that contributes to the transformation of limestone to 9 

gypsum can be enhanced by the formation of surface coatings from deposited carbonaceous PM 10 

(both elemental and organic carbon) (Grossi et al., 2007, McAlister et al., 2008). Ozga et al. 11 

(2011) characterized damage to two concrete buildings in Poland and Italy. Gypsum was the 12 

main damage product on surfaces of these buildings that were sheltered from rain runoff, while 13 

PM embedded in the concrete, particularly carbonaceous particles, were responsible for 14 

darkening of the building walls (Ozga et al., 2011).  15 

Building on the evidence in the 2009 ISA, research has progressed on the theoretical 16 

understanding of soiling of cultural heritage in a number of studies. Barca et al. (2010) 17 

developed and tested a new methodological approach for characterizing trace elements and 18 

heavy metals in black crusts on stone monuments to identify the origin of the chemicals and the 19 

relationship between the concentrations of elements in the black crusts and local environmental 20 

conditions. Recent research has also used isotope tracers to distinguish between contributions 21 

from local sources versus atmospheric pollution to black crusts on historical monuments in 22 

France (Kloppmann et al., 2011). A study in Portugal found that biological activity played a 23 

major role in soiling, specifically in the development of colored layers and in the detachment 24 

process (de Oliveira et al., 2011). Another study found damage to cement renders, often used for 25 

restoration, consolidation, and decorative purposes on buildings, following exposure to sulfuric 26 

acid, resulting in the formation of gypsum (Lanzon and Garcia-Ruiz, 2010). 27 

Corrosion of stone and the decay of stone building materials by acid deposition and 28 

sulfate salts were described in the 2009 ISA (U.S. EPA, 2009, section 9.5.3). Since that time, 29 

advances have been made on the quantification of degradation rates and further characterization 30 

of the factors that influence damage of stone materials (U.S. EPA, 2019, section 13.4.2). Decay 31 

rates of marble grave stones were found to be greater in heavily polluted areas compared to a 32 

relatively pristine area (Mooers et al., 2016). The time of wetness and the number of 33 

 
27 Microbial biofilms are communities of microorganisms, which may include bacteria, algae, fungi and lichens, that 

colonize an inert surface. Microbial biofilms can contribute to biodeterioration of materials via modification of 

the chemical environment. 
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dissolution/crystallization cycles were identified as hazard indicators for stone materials, with 1 

greater hazard during the spring and fall when these indicators are relatively high (Casati et al., 2 

2015). 3 

A study examining the corrosion of steel as a function of PM composition and particle 4 

size found that changes in the composition of resulting rust gradually changed with particle size 5 

(Lau et al., 2008). In a study of damage to metal materials under in Hong Kong, which generally 6 

has much higher PM concentrations than those observed in the U.S., Liu et al. (2015) found that 7 

iron and steel were corroded by both PM and gaseous pollutants (SO2 and NO2), while copper 8 

and copper alloys were mainly corroded by gaseous pollutants (SO2 and O3) and aluminum and 9 

aluminum alloy corrosion was mainly attributed to PM and NO2. 10 

A number of studies have also found materials damage from PM components besides 11 

sulfate and black carbon and atmospheric gases besides SO2. Studies have characterized impacts 12 

of nitrates, NOX, and organic compounds on direct materials damage or on chemical reactions 13 

that enhance materials damage (U.S. EPA, 2019, section 13.4.2). Other studies have found that 14 

soiling of building materials can be attributed to enhanced biological processes and colonization, 15 

including the development and thickening of biofilms, resulting from the deposition of PM 16 

components and atmospheric gases (U.S. EPA, 2019, section 13.4.2). 17 

Since the 2012 review, other materials have been studied for damage attributable to PM, 18 

including glass and photovoltaic panels. Soiling of glass can affect its optical and thermal 19 

properties, and can lead to increased cleaning costs and frequency. The development of haze28 on 20 

modern glass has been measured and modeled, with a strong correlation between the size 21 

distribution of particles and the evolution of the mass deposited on the surface of the glass. 22 

Measurements showed that, under sheltered conditions, mass deposition accelerated regularly 23 

with time in areas closest to sources of PM (i.e., near roadways) and coarse mineral particles 24 

were more prevalent compared to other sites (Alfaro et al., 2012). Model predictions were found 25 

to correctly simulate the development of haze at site locations when compared with 26 

measurements (Alfaro et al., 2012). 27 

Soiling of photovoltaic panels can lead to decreased energy efficiency. For example, 28 

soiling by carbonaceous PM decreased solar efficiency by nearly 38%, while soil particles 29 

reduced efficiency by almost 70% (Radonjic et al., 2017). The rate of photovoltaic power output 30 

can also be degraded by soiling and has been found to be related to the rate of dust accumulation. 31 

 
28 In this discussion of non-visibility welfare effects (section 5.3.2), haze is used as it has been defined in the 

scientific literature on soiling of glass, i.e., the ratio of diffuse transmitted light to direct transmitted light 

(Lombardo et al., 2010). This differs from the definition of haze as used in the discussion of visibility welfare 

effects in section 5.3.1, where it is used as a qualitative description of the blockage of sunlight by dust, smoke, 

and pollution. 
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In five sites in the U.S. representing different meteorological and climatological conditions,29 1 

photovoltaic module power transmission was reduced by approximately 3% for every g/m2 of 2 

PM deposited on the cover plate of the photovoltaic panel, independent of geographical location 3 

(Boyle et al., 2017). Another study found that photovoltaic module power output was reduced by 4 

40% after 10 months of exposure without cleaning, although a number of anti-reflective coatings 5 

can generally mitigate power reduction resulting from dust deposition (Walwil et al., 2017). 6 

Energy efficiency can also be impacted by the soiling of building materials, such as light-colored 7 

marble panels on building exteriors, that are used to reflect a large portion of solar radiation for 8 

passive cooling and to counter the urban heat island effect. Exposure to acidic pollutants in urban 9 

environments have been found to reduce the solar reflectance of marble, decreasing the cooling 10 

effect (Rosso et al., 2016). Highly reflective roofs, or cool roofs, have been designed and 11 

constructed to increase reflectance from buildings in urban areas, to both decrease air 12 

conditioning needs and urban heat island effects, but these efforts can be impeded by soiling of 13 

materials used for constructing cool roofs. Methods have been developed for accelerating the 14 

aging process of roofing materials to better characterize the impact of soiling and natural weather 15 

on materials used in constructing cool roofs (Sleiman et al., 2014). 16 

• To what extent has information emerged for quantifying material damage 17 

attributable to PM through dose-response relationships or damage functions? Are 18 

there studies linking perceptions of reduced aesthetic appeal of buildings and other 19 

objects to PM or wet deposition of nitrogen and sulfur species? 20 

Some progress has been made since the 2012 review in the development of dose-response 21 

relationships for soiling of building materials, although some key relationships remain poorly 22 

characterized. The first general dose-response relationships for soiling of materials were 23 

generated by measuring contrast reflectance of a soiled surface to the reflectance of the unsoiled 24 

substrate for different materials, including acrylic house paint, cedar siding, concrete, brick, 25 

limestone, asphalt shingles, and window glass with varying total suspended particulate (TSP) 26 

concentrations (Beloin and Haynie, 1975; U.S. EPA, 2019, section 13.4.3). Continued efforts to 27 

develop dose-response curves for soiling have led to some advancements for modern materials, 28 

but these relationships remain poorly characterized for limestone. One study quantified the dose-29 

response relationships between PM10 and soiling for painted steel, white plastic, and 30 

polycarbonate filter material, but there was too much scatter in the data to produce a dose-31 

response relationship for limestone (Watt et al., 2008). A dose-response relationship for silica-32 

 
29 Of the five sites studied, three were in rural, suburban, and urban areas representing a semi-arid environment 

(Front Range of Colorado), one site represented a hot and humid environment (Cocoa, Florida), and one 

represented a hot and arid environment (Albuquerque, New Mexico) (U.S. EPA, 2019, section 13.4.2; Boyle et 

al., 2017). 
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soda-lime window glass soiling by PM10, NO2, and SO2 was quantified based on 31 different 1 

locations (Lombardo et al., 2010; U.S. EPA, 2019, section 13.4.3, Figure 13-32, Equation 13-8). 2 

The development of this dose-response relationship required several years of observation time 3 

and had inconsistent data reporting across the locations. 4 

Since the 2012 review, there has also been progress in developing methods to more 5 

rapidly evaluate soiling of different materials by PM mixtures. Modern buildings typically have 6 

simpler lines, less detailed surfaces, and a greater use of glass, tile, and metal, which are easier to 7 

clean than stone. There have also been major changes in the types of materials used for 8 

buildings, including a variety of polymers available for use as coatings and sealants. New 9 

economic and environmental considerations beyond aesthetic appeal and structural damage are 10 

emerging (U.S. EPA, 2019, section 13.4.3). Changes in building materials and design, coupled 11 

with new approaches in quantifying the dose-response relationship between PM and materials 12 

effects, may reduce the amount of time needed for observations to support the development of 13 

material-specific dose-response relationships. 14 

In addition to dose-response functions, damage functions have also been used to quantify 15 

material decay as a function of pollutant type and load. Damage can be determined from sample 16 

surveys or inspection of actual damage and a damage function can be developed to link the rate 17 

of material damage to time of replacement or maintenance. A cost function can then link the time 18 

for replacement and maintenance to a monetary cost, and an economic function links cost to the 19 

dose of pollution based on the dose-response relationship (U.S. EPA, 2019, section 13.4.3). 20 

Damage functions are difficult to assess because it depends on human perception of the level of 21 

soiling deemed to be acceptable and evidence in this area remains limited. As described in the 22 

2019 ISA, damage functions for a wide range of building materials (i.e., stone, aluminum, zinc, 23 

copper, plastic, paint, rubber, stone) have been developed and reviewed (Brimblecombe and 24 

Grossi, 2010). One study estimated long-term deterioration of building materials and found that 25 

damage to durable building material (such as limestone, iron, copper, and discoloration of stone) 26 

is no longer controlled by pollution as was historically documented but rather that natural 27 

weathering is a more important influence on these materials in modern times (Brimblecombe and 28 

Grossi, 2009). Even as PM-attributable damage to stone and metals has decreased over time, it 29 

has been predicted that there will be potentially higher degradation rates for polymeric materials, 30 

plastic, paint, and rubber due to increased oxidant concentrations and solar radiation 31 

(Brimblecombe and Grossi, 2009). 32 

• To what extent have important uncertainties identified in prior reviews been 33 

reduced and/or have new uncertainties emerged? 34 

While there are a number of studies in the 2019 ISA that investigate the effect of PM on 35 

newly studied materials and further characterize the effects of PM on previously studied 36 
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materials, there remains insufficient evidence to relate soiling or damage to specific PM levels or 1 

to establish a quantitative relationship between PM in ambient air and materials degradation. 2 

Uncertainties that were identified in the 2012 review still largely remain with respect to 3 

quantitative relationships between particle size, concentration, chemical concentrations, and 4 

frequency of repainting and repair. No new studies are assessed in the 2019 ISA that link 5 

perceptions of reduced aesthetic appeal of buildings and other objects to PM-related materials 6 

effects. Moreover, uncertainties about the deposition rates of airborne PM to surfaces and the 7 

interaction of co-pollutants still remain. 8 

5.3.2.2 Quantitative Information 9 

Beyond our consideration of the scientific evidence, discussed above in section 5.3.2.1 10 

Error! Reference source not found. above, we also consider the extent to which quantitative 11 

analyses of PM air quality and quantitative assessments for climate and materials effects could 12 

inform conclusions on the adequacy of the public welfare protection provided by the current 13 

secondary PM standards. We have evaluated the potential support for conducting new analyses 14 

of PM air quality concentrations and non-visibility welfare effects. 15 

5.3.2.2.1 Climate Effects 16 

While expanded since the 2012 review, our current understanding of PM-related climate 17 

effects is still limited by significant uncertainties. Large spatial and temporal heterogeneities in 18 

direct and indirect PM climate forcing can occur for a number of reasons, including the 19 

frequency and distribution of emissions of key PM components contributing to climate forcing, 20 

the chemical and microphysical processing that occurs in the atmosphere, and the atmospheric 21 

lifetime of PM relative to other pollutants contributing to climate forcing (U.S. EPA, 2019, 22 

section 13.3). These issues particularly introduce uncertainty at the local and regional scales in 23 

the U.S. that would likely be most relevant to a quantitative assessment of the potential effects of 24 

a national PM standard on climate in this review. Limitations and uncertainties in the evidence 25 

make it difficult to quantify the impact of PM on climate and in particular how changes in the 26 

level of PM mass in ambient air would result in changes to climate in the U.S. Thus, as in the 27 

2012 review, the data remain insufficient to conduct quantitative analyses for PM effects on 28 

climate. 29 

5.3.2.2.2 Materials Effects 30 

As at the time of the 2012 review, sufficient evidence is not available to conduct a 31 

quantitative assessment of PM-related soiling and corrosion effects. While soiling associated 32 

with PM can lead to increased cleaning frequency and repainting of surfaces, no quantitative 33 

relationships have been established between characteristics of PM or the frequency of cleaning 34 

or repainting that would help inform our understanding of the public welfare implications of 35 
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soiling (U.S. EPA, 2019, section 13.4). Similarly, while some information is available with 1 

regard to microbial deterioration of surfaces and the contribution of carbonaceous PM to the 2 

formation of black crusts that contribute to soiling, the available evidence does not support 3 

quantitative analyses (U.S. EPA, 2019, section 13.4). While some evidence is available with 4 

respect to PM-attributable materials effects, the data are insufficient to conduct quantitative 5 

analyses for PM effects on materials. 6 

5.4 PRELIMINARY CONCLUSIONS REGARDING THE ADEQUACY OF 7 

THE SECONDARY PM STANDARDS 8 

This section discusses preliminary staff conclusions for the Administrator’s consideration 9 

in judging the adequacy of the current secondary PM standards. These preliminary conclusions 10 

are based on consideration of the assessment and integrative synthesis of evidence presented in 11 

the 2019 ISA and draft ISA Supplement, as well as analyses of recent air quality. Taking into 12 

consideration the responses to specific questions discussed above, we revisit the overarching 13 

policy question for this chapter: 14 

• Does the scientific evidence and quantitative information support or call into 15 

question the adequacy of the protection afforded by the current secondary PM 16 

standards? 17 

As provided in section 109(b)(2) of the CAA, the secondary standard is to “specify a 18 

level of air quality the attainment and maintenance of which in the judgment of the 19 

Administrator…is requisite to protect public welfare from any known or anticipated adverse 20 

effects associated with the presence of such air pollutant in the ambient air.” Effects on welfare 21 

include, but are not limited to, “effects on soils, water, crops, vegetation, man-made materials, 22 

animals, wildlife, weather, visibility, and climate, damage to and deterioration of property, and 23 

hazards to transportation, as well as effects on economic values and on personal comfort and 24 

well-being” (CAA section 302(h)). The secondary standards are not meant to protect against all 25 

known or anticipated PM-related effects, but rather those that are judged to be adverse to the 26 

public welfare (78 FR 3212, January 15, 2013). Similarly, the extent to which secondary 27 

standards are concluded to provide adequate protection from such effects also depends on 28 

judgments by the Administrator. 29 

Therefore, we recognize that, as is the case in NAAQS reviews in general, the extent to 30 

which the current secondary PM standards are judged to be adequate will depend on a variety of 31 

factors and judgments to be made by the Administrator. Such judgments include those 32 

concerning the extent or severity of welfare effects that may be considered adverse to the public 33 

welfare, and accordingly, what level of protection from such known or anticipated effects may be 34 

judged requisite. In general, the public welfare significance of PM-related effects for different air 35 
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quality conditions and in different locations depend upon the type and severity of the effects, as 1 

well as the strength of the underlying information and associated uncertainties. Thus, in the 2 

discussion below, our intention is to focus on such aspects of the evidence and quantitative 3 

analyses. 4 

With regard to visibility, climate, and materials effects of PM, our response to the 5 

question above takes into consideration the discussions that address the specific policy-relevant 6 

questions in prior sections of this chapter (see sections 5.3.1 and 5.3.2) and the approach 7 

described in section 5.2 that builds on the approach from previous reviews. With respect to the 8 

evidence-based considerations, we note that the evidence, while somewhat expanded since 9 

previous reviews, does not include evidence of effects at lower concentrations or other welfare 10 

effects of PM than those identified at the time of prior reviews. There continue to be significant 11 

uncertainties related to quantifying the relationships between PM mass concentrations in ambient 12 

air and welfare effects, including visibility impairment, climate effects, and materials effects.  13 

With respect to the visibility effects of PM, the evidence continues to support a causal 14 

relationship. With respect to evidence for visibility effects of PM, we note that the evidence, 15 

while somewhat expanded since the 2012 review, does not include evidence of effects at lower 16 

concentrations than those identified at the time of the 2012 review. Consistent with the evidence 17 

available at the time of the 2012 review, significant limitations remain in directly measuring light 18 

extinction. However, a number of small refinements have been made to the algorithm commonly 19 

used to estimate light extinction (U.S. EPA, 2019, section 13.2.3.3; section 5.3.1.1 above). Light 20 

extinction by PM2.5 is dependent on PM2.5 composition and relative humidity, which varies 21 

regionally, with component contributions to light extinction also changing over time with 22 

changes in emissions, as can be seen in analyses of recent air quality. We also note that limited 23 

new research is available on methods of characterizing visibility or on how visibility is valued by 24 

the public, such as visibility preference studies. Thus, while limited new research has further 25 

informed our understanding of the influence of atmospheric components of PM2.5 on light 26 

extinction, the available evidence to inform consideration of the public welfare implications of 27 

PM-related visibility impairment remains relatively unchanged. 28 

With respect to quantitative-based considerations, analyses using recent air quality and 29 

considering updated and alternative methods for estimating visibility impairment provide results 30 

generally similar to those given a focus in the decision for the 2012 and 2020 reviews. We 31 

recognize that conclusions reached regarding visibility in previous reviews were based primarily 32 

on the quantitative analyses that considered the relationship of estimated visibility impairment 33 

(light extinction) with design values for the secondary 24-hour PM2.5 standard. These analyses 34 

demonstrated that visibility index values were below 30 dv – the value identified as the target 35 

level of protection for visibility-related welfare effects – at all locations that met the daily 36 
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standard. In our evaluation in this chapter, we have considered the information regarding the 1 

equations to estimate light extinction and the inputs to the equations and regarding identification 2 

of the target level of protection. With regard to the equations, consistent with the approach in the 3 

2020 review, we have utilized both the most recently published equations as well as alternatives 4 

considered in the 2012 review in recognition of the uncertainties inherent in the quantitative 5 

relationship between PM and light extinction and the variability in applicability to different 6 

locations. Further, we have considered key coefficients in estimating and adjusting 7 

concentrations of specific PM2.5 components, a key example of which is the multiplier used to 8 

estimate the concentration of organic matter from the concentration of organic carbon. For 9 

consistency with the analyses on which the decisions were based in the 2012 and 2020 reviews, 10 

we have focused on a 3-year average of the 90th percentile of daily light extinction (calculated 11 

using old and new algorithms) in considering visibility impairment at the analyzed locations.  12 

In reaching a conclusion in the 2012 and 2020 reviews with regard to the adequacy of 13 

visibility protection provided by the secondary PM standards, both Administrators identified 30 14 

dv as an appropriate target level of protection. We have not identified new information available 15 

since the completion of the 2020 review in this reconsideration of the 2020 final decision that 16 

would challenge this public policy. Thus, in our consideration of the current information and 17 

analyses in this document, we have compared the results of the updated analyses to the value of 18 

30 dv, finding that all sites meet this target level of protection while also meeting the current 19 

daily standards. In so finding, we additionally note the uncertainties recognized above regarding 20 

estimation of OM for use in the IMPROVE equations, and also the variability across sites in 21 

characteristics that affect the relationship between PM in ambient air and light extinction, and in 22 

characteristics that affect human visibility and preferences in that regard. Based on the findings 23 

of this comparison, in light of all of these considerations, we find it reasonable to conclude that 24 

the quantitative information available in this reconsideration of the 2020 final decision does not 25 

call into question the adequacy of visibility-related public welfare protection provided by the 26 

current secondary PM standards. As a result, we have not conducted additional analyses to 27 

evaluate the level of visibility protection that might be afforded by potential alternative 28 

standards. 29 

With respect to the non-visibility welfare effects of PM, the available evidence continues 30 

to support causal relationships between climate effects and PM and materials effects and PM. 31 

The evidence related to climate effects and PM, while expanded since previous reviews, has not 32 

appreciably improved our understanding of the spatial and temporal heterogeneity of PM 33 

components that contribute to climate forcing. We note that, as at the time of the 2012 review, 34 

the evidence describes differences among individual PM components in their reflective 35 

properties and direction of climate forcing. We also note that, while climate research has 36 
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continued, there are still significant limitations in our ability to quantify contributions of PM, and 1 

of individual PM components, to the direct and indirect effects of PM on climate (e.g. changes to 2 

the pattern of rainfall, changes to wind patterns, effects on vertical mixing in the atmosphere). 3 

While climate models have been improved and refined since the 2012 review, climate models 4 

simulating aerosol-climate interactions on regional scales (e.g., ~100 km) tend to have more 5 

variability in estimates of the PM-related climate effects than simulations at the global scale, and 6 

fewer studies are available that simulate specific regions (e.g., the U.S.) than that provide global-7 

scale simulations. While recent research has added to the understanding of climate forcing on a 8 

global scale, there remain significant limitations to quantifying potential adverse effects from 9 

PM on climate in the U.S. and how they would vary in response to changes in PM concentrations 10 

in the U.S. That is, the information with regard to climate does not provide a clear understanding 11 

of a quantitative relationship between concentrations of PM mass in ambient air and associated 12 

climate-related effects, and consequently, precludes a quantitative evaluation of the level of 13 

protection provided by a PM concentration-based secondary standard from adverse climate-14 

related effects on the public welfare in the U.S. Thus, on the whole, we do not find the 15 

information to provide support for different conclusions than were reached in the 2012 and 2020 16 

reviews with regard to climate-related effects of PM in ambient air. 17 

In considering the evidence related to materials effects and PM, we note that there is 18 

some evidence that informs our understanding on the soiling process and types of materials 19 

affected, and provides limited information on dose-response relationships and damage functions, 20 

although most of the recent evidence comes from studies outside of the U.S. In particular, there 21 

is a growing body of research on PM and energy efficiency-related materials, such as solar 22 

panels and passive cooling building materials, affecting the optical and thermal properties, 23 

thereby impacting the intended energy efficiency of these materials. While recent research has 24 

added to the understanding of PM-related materials effects, there remains a lack of research 25 

related to quantifying materials effects and understanding the public welfare implications of such 26 

effects. 27 

In summary, with regard to the two main non-visibility effects – climate effects and 28 

materials effects – the available evidence, as in previous reviews, documents a causal role for 29 

PM in ambient air. This evidence, however, as in the 2012 and 2020 reviews, also includes 30 

substantial uncertainties with regard to quantitative relationships with PM concentrations and 31 

concentration patterns that limit our ability to quantitatively assess the public welfare protection 32 

provided by the standards from these effects. Thus, as a whole, the available information does 33 

not call into question the adequacy of protection provided by the current standards for these 34 

effects. 35 
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Based on all of the above considerations, we find that the available evidence does not call 1 

into question the protection afforded by the current secondary PM standards against PM-related 2 

welfare effects. Thus, our preliminary conclusion for the Administrator’s consideration is that it 3 

is appropriate to consider retaining the current secondary PM standards, without revision. In so 4 

concluding, we recognize, as noted above, that the final decision on this reconsideration of the 5 

secondary PM standards to be made by the Administrator is largely a public welfare judgment, 6 

based on his judgment as to the requisite protection of the public welfare from any known or 7 

anticipated adverse effects. This final decision will draw upon the available scientific evidence 8 

and quantitative analyses on PM-attributable welfare effects, and on judgments about the 9 

appropriate weight to place on the range of uncertainties inherent in the evidence and analyses. 10 

5.5 AREAS FOR FUTURE RESEARCH AND DATA COLLECTION 11 

In this section, we highlight key uncertainties in the available information related to the 12 

effects of PM on public welfare. Such key uncertainties and areas for future research, model 13 

development, and data gathering are outlined below. We note, however, that a full set of research 14 

recommendations is beyond the scope of this discussion. Rather, listed below are key 15 

uncertainties, research questions and data gaps that have been thus far highlighted in this review 16 

of the secondary PM standards. 17 

• A critical aspect of our consideration of the evidence and quantitative information for 18 

visibility impairment is our understanding of human perception of visibility impairment 19 

in the preference studies. This is essential to the Administrator’s consideration of the 20 

public welfare implications of visibility effects and to decisions on the adequacy of 21 

protection provided by the secondary PM standards from them. Additional information 22 

related to several areas would reduce uncertainty in in our interpretation of the available 23 

information for purposes of characterizing visibility impairment. These areas include the 24 

following: 25 

− Expanding the number and geographic coverage of preference studies in urban, 26 

rural and Class I areas to account for the potential for people to have different 27 

preferences based on the conditions that they commonly encounter and potential 28 

differences in preferences based on the scene types; 29 

− Evaluating visibility preferences of the U.S. population today, given that the 30 

preference studies were conducted more than 15 years ago, during which time air 31 

quality in the U.S. has improved; 32 

− Accounting for the influence that varying study methods may have on an 33 

individual’s response as to what level of visibility impairment is acceptable; and 34 

− Providing insights regarding people’s judgments on acceptable visibility based on 35 

those factors that can influence an individual’s perception of visibility 36 

impairment, including the duration of visibility impairment experiences, the time 37 

of day during which light extinction is greatest, and the frequency of episodes of 38 

visibility impairment, as well as the intensity of the visibility impairment. 39 
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• The development and implementation of direct monitoring of PM2.5 light extinction would 1 

help to characterize visibility and the relationships between PM component 2 

concentrations and light extinction and to evaluate and refine light extinction calculation 3 

algorithms for use in areas near anthropogenic sources, and would provide measurements 4 

for future visibility effects assessments. 5 

• Substantial uncertainties still remain with respect to key processes linking PM and 6 

climate, because of the small scale of PM-relevant atmospheric processes compared to 7 

the resolution of state-of-the-art models, and because of the complex cascade of indirect 8 

impacts and feedbacks in the climate system that result from an initial PM-related 9 

radiative perturbation. Such uncertainties include those related to our understanding of: 10 

− The magnitude of PM radiative forcing and the portion of that associated with 11 

anthropogenic emissions;  12 

− The contribution of regional differences in PM concentrations, and of individual 13 

components, to radiative forcing; and, 14 

− The process by which PM interacts with clouds and how to represent such 15 

interactions in climate models. 16 

• Research on more accurate U.S. and global emission inventories would provide source-17 

specific data on PM and PM component contributions to climate effects, particularly 18 

those effects resulting from climate forcing. 19 

• Insufficient evidence is available to relate soiling or damage to specific PM 20 

concentrations or to establish a quantitative relationship between PM concentrations in 21 

ambient air and materials degradation. Additional information would reduce uncertainty 22 

in in our interpretation of the available information, including in the following areas: 23 

− Identifying quantitative relationships between particle size, PM concentration, 24 

chemical concentrations, and frequency of repainting and repair; 25 

− Understanding human perceptions of reduced aesthetic appeal of buildings, and 26 

other objects to PM-related materials effects; and 27 

− Characterizing deposition rates of airborne PM to surfaces and the interaction of 28 

co-pollutants. 29 
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APPENDIX A. SUPPLEMENTAL INFORMATION ON 1 

PM AIR QUALITY ANALYSES 2 

This appendix provides supplemental information on the data sources and methods used 3 

to generate the figures and table presented in Chapter 2 of this draft PA. Sections A.1 to A.4 4 

describe the data sources and methods used to generate figures and tables in section 2.3.2. 5 

Section A.5 describes the data sources and methods used to generate figures and tables in section 6 

2.3.3. Section A.6 describes the data sources and methods used to generate figures and tables in 7 

section 2.4. Section A.7 described the methods used for the comparison on PM2.5 fields in 8 

estimating exposure and relative to design values. 9 

A.1 DATA SOURCES AND METHODS FOR GENERATING NATIONAL 10 

PM2.5, PM10, PM10-2.5, AND PM2.5 SPECIATION FIGURES 11 

• PM2.5 annual average and 98th percentile mass concentrations: calculated from regulatory-12 

quality (Federal Reference Method or Federal Equivalent Method) 24-hour average 13 

values from monitors with at least 75% completeness for each year. When a single site 14 

has multiple monitors, the figure shows the average of the annual averages and 98th 15 

percentiles from each monitor at the site.  We downloaded the monitor-level 16 

concentrations for all sites in the United States for all available days (including potential 17 

exceptional events) for 2000-2019 from the EPA’s Air Quality System (AQS, 18 

https://www.epa.gov/aqs) 19 

• PM10 annual average and 98th percentile mass concentrations: calculated from regulatory-20 

quality (Federal Reference Method or Federal Equivalent Method) 24-hour average 21 

values from monitors with at least 75% completeness for each year. When a single site 22 

has multiple monitors, the figure shows the average of the annual averages and 98th 23 

percentiles from each monitor at the site.  We downloaded the monitor-level 24 

concentrations for all sites in the United States for all available days (including potential 25 

exceptional events) for 2000-2019 from the EPA’s Air Quality System (AQS, 26 

https://www.epa.gov/aqs) 27 

• PM10-2.5 annual average and 98th percentile mass concentrations: calculated from both 28 

regulatory and non-regulatory methods using 24-hour average values from monitors with 29 

at least 75% completeness for each year. When a single site has multiple monitors, the 30 

figure shows the average of the annual averages and 98th percentiles from each monitor at 31 

the site.  We downloaded the monitor-level concentrations for all sites in the United 32 

States for all available days (including potential exceptional events) for 2000-2019 from 33 

the EPA’s Air Quality System (AQS, https://www.epa.gov/aqs) 34 

• PM2.5 speciated annual average mass concentrations: calculated from filter-based, 24-hour 35 

averages from monitors with at least 75% completeness for each year. We downloaded 36 

data from monitors that are part of the Interagency Monitoring of Protected Visual 37 

https://www.epa.gov/aqs
https://www.epa.gov/aqs
https://www.epa.gov/aqs
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Environments (IMPROVE) network, Chemical Speciation Network (CSN), and the 1 

NCore Multipollutant Monitoring Network for 2017-2019. 2 

• The 2000-2019 trends are calculated from the Pearson correlation coefficient for monitors 3 

having at least 75% of the available years with 75% completeness within each year. 4 

When a single site has multiple monitors, the average of the annual averages and 98th 5 

percentiles from each monitor at the site is taken prior to calculation of the Pearson 6 

correlation coefficient.   7 

A.2 DATA SOURCES AND METHODS FOR GENERATING NEAR-8 

ROAD PM2.5 DESIGN VALUE TABLE AND INCREMENT FIGURES 9 

• PM2.5 design values: calculated using the data handling described by 40 CFR Appendix N 10 

to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5. We 11 

downloaded the design values for all sites in the United States for all available days 12 

(including potential exceptional events) for 2017-2019 from the EPA’s Air Quality 13 

System (AQS, https://www.epa.gov/aqs) 14 

• PM2.5 hourly, daily, and annual average mass concentrations: calculated from regulatory-15 

quality (Federal Reference Method or Federal Equivalent Method) monitors. When a 16 

single site has multiple monitors, the figures show the average from all monitors at the 17 

site.  We downloaded the monitor-level concentrations for all sites in the United States 18 

for all available days (including potential exceptional events) for 2000-2019 from the 19 

EPA’s Air Quality System (AQS, https://www.epa.gov/aqs) 20 

A.3 DATA SOURCES FOR SUB-DAILY PM2.5 CONCENTRATION 21 

FIGURE 22 

• PM2.5 hourly average mass concentrations: calculated from regulatory-quality Federal 23 

Equivalent Method monitors. The 2-hour and 5-hour averages were calculated for periods 24 

with each hourly average available. Only sites with a valid annual or 24-hour design 25 

value for 2017-2019 are shown in the figure. The percentages of 2-hour average PM2.5 26 

mass concentrations above 140 μg/m3 at individual sites are illustrated in Figure A-1. 27 

Frequency distributions of 5-hour averages are presented in Figure A-2.   28 

  29 
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 1 

Figure A-1. Percentages of 2017-2019 2-hour average PM2.5 mass concentrations above 140 2 

μg/m3. 3 

 4 

 5 

Figure A-2. Frequency distribution of 2017-2019 4-hour averages for sites meeting both or 6 

violating either PM2.5 NAAQS for October to March (blue) and April to September 7 

(red). 8 

 9 
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  1 

Figure A-3. Frequency distribution of 2017-2019 5-hour averages for sites meeting both or 2 

violating either PM2.5 NAAQS for October to March (blue) and April to September 3 

(red). 4 

 5 

A.4 DATA SOURCES FOR ULTRAFINE FRACTION OF PM2.5 MASS 6 

FIGURE 7 

• Annual average particle number and mass concentrations for Bondville, IL: calculated 8 

from 24-hour average values for years with 66% data completion in 75% of the months 9 

of the year from 2000-2019.  We downloaded the mass concentrations from the EPA’s 10 

Air Quality System (AQS, https://www.epa.gov/aqs) and particle number concentrations 11 

from NOAA’s Earth System Research Laboratory’s Global Monitoring Division 12 

(https://www.esrl.noaa.gov/gmd). 13 

A.5 METHODS FOR PREDICTING AMBIENT PM2.5 BASED ON HYBRID 14 

MODELING APPROACHES 15 

A.5.1 Data Sources for 2011 PM2.5 Spatial Fields 16 

• The “HU2017” fields were provided by Professor Yang Liu of Emory University in the 17 

form of comma-separated-values files (*.csv) of daily average PM2.5 on a national grid. 18 

• The “DI2016” fields were provided by Dr. Qian Di of Harvard in the form of MATLAB 19 

files (*.mat) of daily average PM2.5 on a national grid. 20 

• The “VD2019” fields were provided by Dr. Aaron van Donkelaar in the form of netCDF 21 

files (*.nc) of annual average concentration.  These files are also available at: 22 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140. 23 

https://www.epa.gov/aqs
https://www.esrl.noaa.gov/gmd
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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• The “downscaler” files were developed in terms of daily average Downscaler predictions 1 

on a national grid following methods described in the risk assessment appendix. 2 

A.5.2 Data Averaging and Coefficient of Variation 3 

• PM2.5 concentration fields were loaded into R version 3.4.4, and daily fields were 4 

averaged to the annual period.  Concentrations for each method at prediction points were 5 

then averaged to the corresponding CMAQ grid cells to enable consistent comparisons 6 

for Figure 2-28, Figure 2-29, and Table 2-2. 7 

• The coefficient of variation (CoV) was calculated for each grid cell using the following 8 

formula 9 

𝐶𝑜𝑉(%) =
100

�̅�
√
∑ (𝑃𝑖 − �̅�)2𝑁
𝑖=1

𝑁
 10 

where P is the prediction for each of the four methods (i.e., N=4). 11 

A.6 ANALYSES OF BACKGROUND PM 12 

• Data sources for Figure 2-38: Smoke and fire detections observed by MODIS in August 13 

2017  14 

− Image was produced using the NASA Worldview platform 15 

(https://worldview.earthdata.nasa.gov/). Layers selected were 1) Corrected 16 

Reflectance and 2) Fires and Thermal Anomalies, both from Aqua/MODIS. Day 17 

selected was August 4, 2017. 18 

• Data sources for Figure 2-39: Fine PM mass time series during 2017 from North Cascades 19 

IMPROVE site 20 

− Image was archived from the IMPROVE website 21 

(http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_Pm22 

HazeComp; hosted by CIRA/CSU and sponsored by NPS and USFS) for the 23 

North Cascades (NOCA1) site in 2017. 24 

• Data sources for Figure 2-40: Speciated annual average fine PM mass from IMPROVE at 25 

select remote monitors in 2004 and 2016 26 

− Speciated IMPROVE data from 2004 and 2016 27 

(http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_Pm28 

HazeComp) were averaged annually for each monitor. Corresponding monitor 29 

locations are shown in Figure 2-41. 30 

 31 

 32 

 33 

https://worldview.earthdata.nasa.gov/
http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
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A.7 COMPARISON OF PM2.5 FIELDS IN ESTIMATING EXPOSURE AND 1 

RELATIVE TO DESIGN VALUES: METHODS 2 

Section 2.3.3.2.4 outlines analyses comparing the PM2.5 concentrations in estimating 3 

exposure relative to design values. Below details the data sources and methods used.  4 

To calculate annual average concentrations over the U.S. for 2000-2016, gridded 5 

concentration fields were obtained based on the DI2019 (Di et al., 2019) and the HA2020 6 

(Hammer et al., 2020) and (Van Donkelaar et al., 2019) methods. The DI2019 concentrations 7 

were acquired from a Google Drive and the HA2020 concentrations (version V4.NA.03) were 8 

acquired from a web link. To identify grid cells that fall within the contiguous U.S. and Core 9 

Based Statistical Areas (CBSAs) boundaries, cartographic boundary shapefiles 10 

(“cb_2017_us_state_5m” and “cb_2017_us_cbsa_5m”) were downloaded from the census.gov 11 

website. The concentration data and shapefiles were read into R version 3.62 (R Core Team, 12 

2019), and grid cells within the contiguous U.S. and CBSAs were identified using the Simple 13 

Features package version 0.8-0 (Pebesma, 2018) in R. Average concentrations were then 14 

calculated for each year and for each region (i.e., contiguous U.S. and CBSAs within the 15 

contiguous U.S.) using the dplyr package version 0.8.3 (Wickham et al., 2019) in R. 16 

To generate the population-weighting for the DI2019 and HA2020 PM2.5 concentrations, 17 

2015 gridded population counts at 0.05×0.05° from the fourth version of the Gridded Population 18 

of the World (GPWv4; https://sedac.ciesin.columbia.edu/data/collection/gpw-v4) were spatially-19 

collocated with the PM2.5 concentrations surfaces after conversion to latitude-longitude 20 

coordinates. A similar CBSA filtering was performed for the gridded population and spatially-21 

collocated PM2.5 surfaces from DI2019 and HA2020 and the fractional population for each grid 22 

was multiplied by the PM2.5 concentrations within each CBSA. 23 

Regulatory design values were calculated using the data handling described by 40 CFR 24 

Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5, 25 

by CBSA, for each 3-year period of available hybrid modeling surface data from the EPA’s Air 26 

Quality System (AQS, https://www.epa.gov/aqs). Within each CBSA, by each 3-year period, the 27 

ratio of design values to estimated PM2.5 concentrations was calculated. 28 

 29 

 30 

https://drive.google.com/drive/folders/1toABF_C6xB63udnh39Q-z6KSxRWqoPAk
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://www.census.gov/geographies/mapping-files/2017/geo/carto-boundary-file.html
https://www.epa.gov/aqs
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APPENDIX B. SUPPLEMENTAL STUDY 1 

INFORMATION: SELECTION CRITERIA, STUDY 2 

METHODS AND DETAILS  3 
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This appendix presents supplemental information on the key epidemiologic studies 1 

evaluated in section 3.3.3 of this draft PA. Section B.1 provides supplemental information on the 2 

forest plots presented in Figures 3-3 to 3-6. Section B.2 provide supplemental information on the 3 

study-reported PM2.5 concentrations presented in Figure 3-8, Figure 3-9, while section B.3 4 

provides supplemental information on studies presented Figure 3-10 and Figure 3-11. Section 5 

B.4 provides details on key elements of epidemiologic studies, including the study design and 6 

details on the statistical analyses employed, including control for confounding effects.  7 

B.1 FOREST PLOTS   8 

Figure 3-3 through 3-6 in Chapter 3 present forest plots that include the effect estimates 9 

and 95% confidence intervals from 92 epidemiologic studies that were assessed in the 2019 ISA 10 

and draft ISA Supplement that have the potential to be most informative in reaching conclusions 11 

on the adequacy of the current primary PM2.5 standards. Epidemiologic studies included in these 12 

figures support “causal” or “likely to be causal” relationships with PM exposures in the 2019 13 

ISA and include mortality (all-cause mortality, cardiovascular (CVD) mortality, respiratory 14 

mortality, lung cancer mortality), and morbidity (asthma incidence, lung cancer incidence, lung 15 

function and lung development, CVD and respiratory emergency room visit or hospital 16 

admission) health endpoints. Further, studies included in Figure 3-3 to Figure 3-6 were restricted 17 

to multi-city studies in the United States or Canada. Multi-city studies within a single State were 18 

not included, with the exception of respiratory morbidity endpoints, where multi-city studies 19 

were limited (U.S. EPA, 2019). For some of the major cohort studies included in the 2009 ISA, 20 

like the American Cancer Society (ACS) cohort, we included more recent studies that reanalyze 21 

epidemiologic associations for multiple mortality endpoints (e.g. lung cancer mortality and IHD 22 

mortality) and an extension of follow-up periods (e.g., Pope et al., 2015a, Turner et al. (2016), 23 

Jerrett et al. (2016), and Thurston et al. (2016b)), as well as a reanalysis (Krewski et al. (2009) of 24 

the original ACS dataset, including an extended follow-up period, that was evaluated in the 2009 25 

ISA (U.S. EPA, 2009)).  26 

B.2 MONITORED PM2.5 CONCENTRATIONS IN KEY EPIDEMIOLOGIC 27 

STUDIES  28 

Based on the 92 key studies identified in Figure 3-3 to Figure 3-6, a subset of studies are 29 

depicted in Figure 3-8 and Figure 3-9 and includes key epidemiologic studies that report an 30 

overall study mean or median concentration of PM2.5 (as opposed to a study mean/median range 31 

across study area locations) and based on ambient PM2.5 monitored data. The plots include 32 

studies that report significant effect estimates (29 studies) and studies that report non-significant 33 

effect estimates (4 studies). Further, to be included, only key studies for which the years of air 34 
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quality data used to estimate exposures overlap entirely with the years during which health 1 

events are reported were included. The PM2.5 concentrations reported by studies that estimate 2 

exposures from air quality corresponding to only part of the study period, often including only 3 

the later years of the health1 are not likely to reflect the full ranges of ambient PM2.5 4 

concentrations that contributed to reported associations.2 5 

Some of the key epidemiologic studies assessed in the 2019 ISA also provide city-6 

specific study mean concentrations and city-specific health events, but this information was not 7 

available in studies evaluated in the draft ISA Supplement. PM2.5 exposure estimates 8 

corresponding to the 10th and 25th percentiles of those events were calculated in the following 9 

manner. City-specific cases and PM2.5 concentrations were input in ascending order by PM2.5 10 

concentration. The city-specific percent of cases was calculated as a proportion of the total study 11 

cases and the cumulative percent of cases was determined. The PM2.5 concentration associated 12 

with the cumulative percent closest to the 10th and 25th percentiles are presented in Figure 3-8 13 

and Figure 3-9 and the cumulative percent values closest to the associated 10th and 25th percentile 14 

values are shown in Table B-1.3 Data for Bell et al. (2008) and Zanobetti and Schwartz (2009) 15 

were previously provided by the study authors, as described in Rajan (2011).   16 

 17 

Table B-1.  PM2.5 concentrations corresponding to the 25th and 10th percentiles of estimated 18 

health events. 19 

Citation 
10th Percentile PM2.5 

(µg/m3) (Cumulative 
percent value closest) 

25th Percentile PM2.5 

(µg/m3) (Cumulative 
percent value closest) 

Bell et al. (2008) 9.8 11.5 

Franklin et al. (2007) 10.4 (11.1%) 12.9 (25.3%) 

Stieb et al. (2009) 6.7 (16.5%) 6.8 (20.5%) 

Szyszkowicz (2009) 6.4 (4.1%) 6.5 (18.6%) 

Zanobetti and Schwartz (2009) 10.3 12.5 

20 

 
1  The following studies do not have an overlap between the years of PM2.5 air quality data and the years during 

which health effects are reported: Miller et al., 2007 ; Hart et al., 2011 ; Thurston et al., 2013; Weichenthal et al., 

2014; Pope et al., 2015b ; Villeneuve et al., 2015; Turner et al., 2016; Weichenthal et al., 2016a; Pinault et al., 

2017; Parker et al., 2018; and Pope et al., 2019. 

2 This is an issue only for some studies of long-term PM2.5 exposures. While this approach can be reasonable in the 

context of an epidemiologic study evaluating health effect associations with long-term PM2.5 exposures, under the 

assumption that spatial patterns in PM2.5 concentrations are not appreciably different during time periods for 

which air quality information is not available (e.g., Chen et al., 2016), our interest is in understanding the 

distribution of ambient PM2.5 concentrations that could have contributed to reported health outcomes. 

3 That is, 25% of the total health events occurred in study locations with mean PM2.5 concentrations (i.e., averaged 

over the study period) below the 25th percentiles identified in Figure 3-8 and Figure 3-9 and 10% of the total 

health events occurred in study locations with mean PM2.5 concentrations below the 10th percentiles identified.  
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B.3 HYBRID MODEL PREDICTED PM2.5 CONCENTRATIONS IN KEY 1 

EPIDEMIOLOGIC STUDIES  2 

Figure 3-10 and Figure 3-11 focus on multicity/multistate studies in the U.S. and Canada, 3 

that are part of the evidence supporting “causal” or “likely to be causal” determinations in the 4 

2019 ISA and that use hybrid modeling methods to estimate PM2.5 exposures, as well as studies 5 

assessed in the draft ISA Supplement. In addition, as detailed in section 3.2.3.2.1, for studies 6 

included in Figure 3-10 and Figure 3-11 we also consider the approach used to estimate PM2.5 7 

concentrations and the approach used to validate hybrid model predictions when determining 8 

those studies that we identify as key epidemiologic studies. Such studies are identified as those 9 

that use hybrid modeling approaches for which recent methods and models were used (e.g., 10 

recent versions and configurations of the air quality models); studies that are fused with PM2.5 11 

data from national monitoring networks (i.e., FRM/FEM data); and studies that reported a 12 

thorough model performance evaluation for core years of the study.4  13 

Figure 3-10 and Figure 3-11 present overall means of hybrid model-predicted PM2.5 14 

concentrations for key studies, and the concentrations corresponding to the 25th and 10th 15 

percentiles of estimated exposures or health events, when available. For Di et al. (2017b), we 16 

present 25th and 10th percentiles of annual PM2.5 concentrations by zip code corresponding to 17 

long-term exposure estimates, while for Di et al. (2017a), we present daily air pollution 18 

concentrations (short-term exposure estimates) corresponding to the 25th and 10th percentiles of 19 

deaths at the zip-code level. These values, along with other percentiles, are illustrated in Figure 20 

B-1 and Figure B-2 (Jenkins, 2019a, Jenkins, 2019b). The study authors for Di et al. (2017b) 21 

additionally provided information on population weighted percentile values corresponding to 22 

long-term PM2.5 exposure (Chan, 2019). These are presented in Table B-2. For other studies 23 

included in Figure 3-10 and 3-11 [Bai et al., 2019, Erickson et al., 2019, Kloog et al. (2012), 24 

Kloog et al. (2014), Shi et al. (2016), U.S. EPA, 2021, and Wang et al. (2017)], 25th percentiles 25 

of exposure estimates were derived from study manuscripts of air quality descriptive statistics 26 

and can be found in Table B-3.  27 

 28 

 
4 The following studies do not meet these criteria: Bravo et al., 2017, Crouse et al., 2015; Puett et al., 2009, Puett et 

al., 2011, Hystad et al., 2012; Hystad et al., 2013, Hayes et al., 2020; Elliott et al., 2020; Lefler et al., 2019;; 

Pappin et al., 2019; Cakmak et al., 2018; Fisher et al., 2019; Sun et al., 2019; McClure et al., 2017; Loop et al., 

2018 ; and Honda et al., 2017.  
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 1 

Figure B-1. Percentiles of annual PM2.5 concentrations by zip code corresponding to long-2 

term exposure estimates in Di et al., 2017b. 3 

  4 
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Table B-2. Population weighted percentiles of annual PM2.5 concentrations by zip code 1 

corresponding to long-term exposure estimates in Di et al., 2017b. 2 

 3 

Percentile Population Weighted PM2.5 

(µg/m3) 

0.0 0.0 

5.0 7.1 

10.0 7.9 

15.0 8.6 

20.0 9.1 

25.0 9.5 

30.0 9.9 

35.0 10.3 

40.0 10.6 

45.0 11.0 

50.0 11.4 

55.0 11.7 

60.0 12.1 

65.0 12.5 

70.0 12.9 

75.0 13.4 

80.0 13.9 

85.0 14.4 

90.0 15.1 

95.0 16.1 

100.0 32.6 

 4 
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 1 

Figure B-2. Daily air pollution concentrations (short-term exposure estimates) 2 

corresponding to various percentiles of deaths at the zip-county level in Di et al., 2017a.  3 
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Table B-3. PM2.5 concentrations corresponding to the 25th and 10th percentiles of 1 

estimated exposures in Figure 3-8. 2 

Citation 10th Percentile PM2.5 (µg/m3) 25th Percentile PM2.5 (µg/m3) 

Di et al. (2017a) 4.7 6.7 

Di et al. (2017b) 7.3 9.1 

Kloog et al. (2012)  6.4 

Kloog et al. (2014)  7.9 

Shi et al. (2016)  4.6 

Shi et al. (2016)  6.2 

Wang et al. (2017)  9.1 

Bai et al. (2019)   7.9 

Christidis et al. (2019)  4.3 

Shin et al. (2019)   8 

 3 
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B.4 DETAILS OF KEY EPIDEMIOLOGIC STUDIES, INCLUDING STUDY DESIGN, EXPOSURE 1 

METRIC, AND STATISTICAL ANALYSIS 2 

Table B-4 below summarizes additional details related to the designs of the U.S. and Canadian epidemiologic studies included 3 

in Figure 3-3 to 3-6, and Figure 3-8 to Figure 3-11, as well as studies included in the risk assessment (Table 3-13).  4 

Table B-4. Study characteristics from key studies.  5 

 6 

 7 

Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Baxter et al., 
2017 

ST All-cause 
mortality 

77 US Cities Time 
Series 
study 

(NCHS) 

EPA’s National and State 
Local Ambient Monitoring 

Stations providing 
integrated daily 

measurements and 
operated more than 6 

months or had more than 
30 observations (2001-

2005) considered. 
Monitors representing the 

general population 
exposure in the cities 

were selected. For this 
correlation was assessed 

between each pair of 
monitors within the county 
and the ones uncorrelated 

(coefficient<0.8 with 
majority of other monitors) 

were excluded. Once 
appropriate valid monitors 

were identified the 
summary measure of 

PM2.5 concentration over 
the county was calculated. 

 
2-day moving average 
(lag 0-1 days) of PM2.5 
conc included in the 

model. 

Poisson regression model and 
meta-regression 

 
In stage 1, ran single city 

Poisson time-series models; 
adjusted for temperature and 

dew point temperature, 
including variables for previous 

day temperature, temporal 
trends, and trends by age. 

In stage 2, meta-regression with 
cluster analysis (5 clusters) 
based on characteristics of 

residential infiltration. 
 

Average daily 
PM2.5 values 

were calculated 
for each city. 
First, a global 

mean and 
variance were 
created within 

each city for the 
entire time 

period. Using the 
valid monitor 

measurements. 
Next, all values 

were 
standardized and 

average PM2.5 
within a given 

day in each city 
was calculated. 

Finally, the 
standardized 

daily value was 
reversed to 
calculate 

average daily 
PM2.5 for each 

city. 



October 2021 B-10 Draft – Do Not Quote or Cite 

Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Bell et al., 2008 ST CVD HA 
Age 65+ 

202 US 
Counties with 
populations≥

200,000 

Time 
Series 
study 

(MEDICA
RE 

enrollees) 

PM2.5 concentrations 
obtained from EPA 

monitors providing data 
daily or every 3 days for 
the period 1999-2005. 

Used 10% trimmed mean 
to calculate daily average 

across monitors after 
correction for yearly 
monitor averages (to 

protect against outliers as 
applied in Dominici et al. 

2006). 
 

Used lag0 PM2.5 in the 
model. 

2-stage Bayesian hierarchical 
model  

 
In stage 1, adjusted for 

temperature and dew point 
temperature, including variables 

for previous day’s conditions, 
day-of-the-week, temporal 

trends, and differential temporal 
trends by age. In stage 2, 

county-specific estimates were 
combined, accounting for their 

statistical uncertainty. 

Average daily 
PM2.5 

concentrations 
for each county 

used to calculate 
overall mean for 
the study area 
and duration. 
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Bell et al., 2014 ST CVD, 
Asthma, 

and 
COPD HA 
Age 65+ 

4 Counties in 
MA and CT 

Time-
series 
study 

(MEDICA
RE 

enrollees) 

PM2.5 Teflon filter samples 
(measuring PM2.5 total 

mass) obtained from CT 
and MA DEP for the 
period of 2000-2004. 
Used data from five 
monitoring locations 

(providing daily or every 
third day data) within four 
county regions. Assigned 
daily PM2.5 concentration 
from a single monitor to 

three counties. For 
Fairfield County with two 

monitors: daily PM2.5 

concentration was 
calculated by using 
population-weighted 

averaging of census tract 
PM2.5 concentrations. 

First, each census tract in 
the Fairfield county (209 

tracts in total) was 
assigned the PM2.5 

exposure of the nearest 
monitor. Then, PM2.5 

exposures for all tracts 
were averaged and 

weighted by each tract’s 
2000 U.S. census 

population to calculate a 
county-level exposure for 

the Fairfield county.  
 

Log-linear Poisson regression 
analysis 

 
Adjusted for temperature and 

dew point temperature, 
including previous day’s 

temperature and dew point 
temperature, day-of-the-week 
temporal trends, and region. 

Daily PM2.5 
concentrations 

for all four 
counties (three 

with single 
monitor and one 
with two monitors 

that used 
population 
weighted 

approach) over 
the period of 

2000-2004 were 
used to calculate 
the overall mean 

PM2.5 for the 
study location 

and period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Explored various lags and 
presented lag0 PM2.5 

model. 

Bell et al., 2015 ST HF HA 
65+ 

213 U.S. 
Counties 

Time-
series 
study 

(MEDICA
RE 

enrollees) 

Daily monitored PM2.5 
data from the US EPA 
AQS monitors for the 

period of 1999-2010. On 
average, county-level 

PM2.5 data was available 
for 56.5% of study days 
(range: 7.8%-99.9%; no 

imputation done for 
missing data). For each 

county, daily PM2.5 
measurement was 

calculated by averaging 
the PM2.5 values from all 
monitors within a county 

in a given day.  
 

Explored various lags and 
presented lag0 PM2.5 

model. 

2-stage Bayesian hierarchical 
model 

 
The stage 1 model included 

county-specific model adjusted 
for weather (temperature, dew 

point, previous days’ 
temperature, and dew point), 

day-of-the-week, and temporal 
trends. In stage 2 county-

specific effect estimates were 
pulled together to present 

overall association. 

Daily PM2.5 
concentrations 

for 213 counties 
over the period 
of 1999-2010 
were used to 

calculate region-
specific mean 

PM2.5, and 
overall mean 
PM2.5 for the 

study location 
and period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Bravo et al., 
2017 

ST CVD HA 
Age 65+ 

418 U.S. 
Counties 

Time-
series 
study 

(MEDICA
RE 

enrollees) 

Daily (24-hr) monitored 
PM2.5 data from the US 

EPA AQS monitors 
(NAMS/SLAMS) obtained 

for the period of 2002-
2006. Approximately 80% 

of PM2.5 monitors 
recorded observation 

once every 3 days. For 
each county (>=50K 

population), daily (24-hr) 
PM2.5 concentration was 
calculated by averaging 

multiple monitor 
measurements for the 

same day. 
 

Explored various lags and 
distributed lags of PM2.5 

exposure. 

2-stage Bayesian hierarchical 
model 

 
The stage 1 included log-linear 
Poisson regression models with 

over-dispersion fit at county-
level. Model adjusted for same-
day temperature and dew point 

temperature, 3-day moving 
average of temperature and 

dew point temperature, 
temporal trends in 

hospitalizations, day-of-the-
week, and age. Fitted 

distributed lag model with 
multiple lags (0- to 7-day lags) 
of PM2.5 conc simultaneously in 

the county-specific model.  
The stage 2 estimated the 

association for the entire study 
area using two-level normal 

independent sampling 
estimation with priors thus 
allowing to combine risk 

estimates across counties while 
accounting for within county SE 
and between-county variability 

in the true RR. 

Daily PM2.5 
concentrations 

for 418 counties 
over the period 
of 2002-2006 
were used to 

calculate overall 
mean PM2.5 for 

the study 
location and 

period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Bravo et al., 
2017 

ST CVD HA 
Age 65+ 

708 U.S. 
Counties 

Time-
series 
study 

(MEDICA
RE 

enrollees) 

Daily PM2.5 concentrations 
were estimated at census 
tract centroids using the 

downscaler method (input 
from the US EPA AQS 

NAMS/SLAMS monitoring 
data, and gridded 12x12 
km CMAQ) for the period 

of 2002-2006. County-
level daily PM2.5 
exposures were 

calculated from a pop-
weighted averages of 
PM2.5 concentrations 

predicted at census tract 
within each county using 
2000 U.S. Census data. 
CMAQds was generated 
for all days in the study 

period 2002-2006. 
CMAQds-subset was 
calculated by taking 
population-weighted 

county level exposures 
only for counties and days 

with monitoring data 
(n=418 counties.  

 
Explored various lags and 
distributed lags of PM2.5 

exposure. 

2-stage Bayesian hierarchical 
model 

 
The stage 1 included log-linear 
Poisson regression models with 

over-dispersion fit at county-
level. Model adjusted for same-
day temperature and dew point 

temperature, 3-day moving 
average of temperature and 

dew point temperature, 
temporal trends in 

hospitalizations, day-of-the-
week, and age. Fitted 

distributed lag model with 
multiple lags (0- to 7-day lags) 
of PM2.5 conc simultaneously in 

the county-specific model.  
The stage 2 estimated the 

association for the entire study 
area using two-level normal 

independent sampling 
estimation with priors thus 
allowing to combine risk 

estimates across counties while 
accounting for within county SE 
and between-county variability 

in the true RR. 

24-hr average 
PM2.5 

concentrations 
for 708 counties 
over the period 
of 2002-2006 
were used to 

calculate overall 
mean PM2.5 for 

the study 
location and 

period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Burnett and 
Goldberg, 2003 

ST All-cause 
mortality 

8 Canadian 
Cities 

Time-
series 
study 

PM2.5 data obtained from 
dichotomous sampler with 
Teflon filters operating on 

6-day schedule for the 
period of 1986-1996. 

Each city had one 
sampler and two cities 

have two samplers. If two 
samplers then data was 
averaged between the 

samplers and assigned to 
the city.  

 
Lag 1 explored.  

Generalized additive model 
(GAM) analysis to generate 

pooled estimate of air pollution 
effect among the eight cities.  

 
The model adjusted for day-of-
the-week, temporal trends, and 

weather variables (daily 
average temperature, daily 

average relative humidity, and 
barometric pressure lagged 0 

and 1 days). 

Daily PM2.5 
concentrations 
(day before the 

death) for 8 
Canadian cities 
over the period 
of 1986-1996 

were averaged to 
get overall mean 

for the study 
area and period 

Burnett et al., 
2004 

ST All-cause 
mortality 

12 Canadian 
Cities 

Time-
series 
study 

(data from 
Statistics 
Canada) 

Monitoring data available 
for 12 cities from the 

Statistics Canada for the 
period of 1981-1999. 

PM2.5 data available every 
6th-day sampling 

schedule. Daily PM2.5 
concentrations were 

calculated for each city by 
averaging data over all 
monitors with each city.  

 
Explore various lags and 

moving average and 
presented data for lag 1 

for PM2.5. 

Random-effects regression 
model.  

 
Adjusted for temporal trends in 
mortality and effects of weather 

using humidex index at lag 0 
and lag 1 (a measure of 

combined effect of temperature 
and humidity) 

Daily PM2.5 
concentrations 
for all 12 cities 
over the period 
of 1981-1999 

were used along 
with population 
information to 
calculate an 

overall 
population 

weighted PM2.5 
concentration for 

the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Cakmak et al., 
2018  

LT Non-
accidental, 

CVD, 
respiratory 
and lung 
cancer 

mortality 
 

Canada 
Nationwide 

Cohort 
study 

(CanCHE
C) 

PM2.5 estimates obtained 
from median satellite-

derived concentrations for 
the period of 1998 – 2011. 

The concentration was 
determined at 10 km2 

resolution as detailed in 
(van Donkelaar, 2010). 

Changes in PM2.5 
between 1998 and 2006 

was inferred using 
satellite instruments, 
MISR and SeaWiFS 
(Boys, 2014). Annual 

estimates of PM2.5 
concentration was 

assigned to participants 
based on postal code of 
residence and was used 

to calculate 7-year moving 
average (at least 4 out of 

7 years of data is 
available) PM2.5 

concentration for each 
year of follow-up in the 

study.  

Cox proportional hazards 
models to estimate the 

relationship between long-term 
exposure and date of death 
accounting for residential 

mobility.  
 

Model adjusted for individual-
level covariates (aboriginal 
ancestry, minority status, 
marital status, education, 

immigrant status and income) 
 

The 7-year 
moving averages 

for study 
participants were 

then used to 
calculate overall 

mean PM2.5 
concentration (all 

and by 
geographic 

zones) 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Chen et al., 
2020  

LT CVD 
mortality 

 

Ontario, 
Canada 

Cohort 
study 

(ONPHEC
)  

PM2.5 concentration 
estimated from multiple 

satellite retrievals of AOD 
combined with 

geophysical relationship 
between AOD and PM2.5 

simulated by GEOS-
Chem, which were then 
calibrated with surface 

measurements by GWR 
as detailed in (van 

Donkelaar, 2019). Annual 
estimates of 

exposure to PM2.5 and the 
composition for each 

participant was estimated 
by interpolating the annual 

mean concentrations of 
PM2.5 and the 

corresponding proportion 
of PM2.5 attributed to the 
seven major components 

to the centroid of their 
residential postal code for 

that year, thereby 
accounting for residential 

mobility. 
 

Component-adjusted approach 
that jointly estimated the health 
impacts of PM2.5 and its major 

components while allowing for a 
potential nonlinear 

PM2.5−outcome relationship. 
Compared this approach with 
three traditional approaches 
using Cox Hazard models.  

 
Adjusted for individual-level 
covariates, four time-varying 

variables for neighborhood-level 
SES, area-level indicators.  

 

Annual PM2.5 
concentrations in 

the Ontario 
region were 
then used to 

calculate overall 
mean PM2.5 

concentration for 
the study 

location and 
period.  
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Christidis et al., 
2019  

LT Non-
accidental 
mortality  

Canada 
Nationwide  

Cohort 
study 

(mCHHS)  

PM2.5 exposures derived 
from AOD retrievals using 
GEOS-Chem calibrated to 
surface measurements by 

GWR (van Donkelaar, 
2015). Spatial variation 
from modeled surface 

used with simulate PM2.5 
and constrained with local 
ground-based monitors to 

estimate PM2.5 
concentrations through 

2015 (Meng, 2019). 
Linked postal codes to 
PM2.5 concentrations 

using points of latitude 
and longitude. When 

multiple points of latitude 
and longitude was 

available for a single 
urban postal code, equal 
weighting of the multiple 
air pollutant values was 

used to provide a singular 
value. In rural 

communities, population-
weighted average of 

the values associated with 
duplicate postal codes 

was used. Used 
population-weighing to 

average multiple values to 
create inputs for partial 

postal codes (2 to 5 digit). 
For each individual and 
year of follow-up, PM2.5 

Cox proportional hazard models 
to assess the relationship 

between PM2.5 exposure and 
non-accidental death in low-

exposure environment.  
 

C-R relationship observed using 
Shape constrained health 

impact function (SCHIF Model) 
Adjusted for socio-economic, 
behavioral, and time-varying 

contextual covariates  

3-year moving 
average PM2.5 
concentrations 

were for the 
participants used 

to calculate 
overall mean 

PM2.5 concentrati
on for the study 

period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

estimates was calculated 
as 3-year moving average 

with one-year lag. 
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Crouse et al., 
2012  

LT All-cause 
mortality 

11 Canadian 
Cities 

National 
Cohort 
study 

(Subset of 
Canadian 

census 
mortality 
follow-up 

study; 
43%; non-
immigrant 
population

) 

Monitor data from ground-
based stations available 
for 11 cities for the 15-yr 
period including the 5-yr 

prior to baseline and 10-yr 
of follow-up (1987-2001) 
from Statistics Canada. 

PM2.5 data available every 
6th-day sampling 

schedule. To address 
missing monthly PM2.5 
data for some stations, 
data from all stations 

within 6-km of each other 
were pooled to calculate 

monthly, seasonal, annual 
and five-yr (1987-1991, 
1992-1996, 1997-2001) 

means at each monitored 
location. Mean annual 

concentration (averaged 
over 1987-2001) from 

ground-based monitors 
was then assigned to the 
cohort member based on 
the 11 census divisions of 

their residence. 
A second set of exposure 
(10x10 km) was created 
using estimates of PM2.5 

from remote sensing 
during period 2001-2006 
to calculate 6-yr average. 
The mean concentration 

of PM2.5 within boundaries 
of each enumeration area 

2 different modelling approach. 
Approach 1: Cox proportional 
hazards model, and Approach 

2: nested, spatial random-
effects Cox model with spatial 

clusters.  
 

Models adjusted for individual-
level covariates, urban/rural 

indicator, and ecological 
covariates (% unemployed, % 
without high school diploma, 
lowest income quintile, and 

rural/urban indicator). 

AnnualPM2.5 
concentrations 
for the study 

participants were 
used to calculate 

overall mean 
PM2.5 for the 

study population 
and duration.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

was calculated by 
overlaying PM surface 

over the surface of 
enumeration area across 
country. Satellite derived 
PM2.5 estimate was then 
assigned to participants 

based on their 
enumeration area of 
residence in 1991. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Crouse et al., 
2019  

LT Non-
accidental, 

CVD, 
respiratory
 mortality, 
and lung 
cancer  

Canada 
Nationwide  

Cohort 
study 

(CanCHE
C)  

PM2.5 concentrations 
derived from AOD 

retrievals using GEOS-
Chem calibrated to 

surface measurements by 
GWR (van Donkelaar, 
2015). Spatial variation 
from modeled surface 

used with simulate PM2.5 
and constrained with local 
ground-based monitors to 

estimate PM2.5 
concentrations through 

2015 as detailed in 
(Meng, 2019). Linked 
postal codes to PM2.5 

concentrations from grid 
cells. Annual PM2.5 

estimates from the postal 
code and assigned to 

study participants based 
on the postal code for 
residence was used to 

calculate moving 
average at various 

temporal and spatial 
scales based on the 
location and year of 

follow-up. 
 
 
 

Cox Hazard model to assess 
the relationship between PM2.5 
exposure at different temporal 

and spatial scales. 
Adjusted for individual-level 
variables (aboriginal identity, 
visible minority status, marital 

status, highest level of 
education, employment status, 

and household income 
adequacy quintiles) 

 

The average 
annual PM2.5 

concentrations 
were used to 

calculate overall 
mean PM2.5 

concentration for 
the study 

period at various 
temporal and 
spatial scales. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Dai et al., 2014  ST All-cause, 
CVD, and 
Respirator
y mortality 

75 U.S. Cities 
(with 

available daily 
mortality data 

and PM2.5 
data for at 
least 400 

days between 
2000 and 

2006)  

Time-
series 
study 

(NCHS) 

Monitored data obtained 
from US EPA AQS for the 
period of 2000-2006. Daily 
PM2.5 concentrations from 
each monitor assigned to 
corresponding city. For 

cities with more than one 
sampling site, 

concentration data were 
averaged across all 

monitors within the city.  
 

 Used average of 2-day 
lag (lag 01) PM2.5. 

Two stage: Stage 1. City-
specific season-stratified time-
series analysis using Poisson 

regression in GAM  
 

Model adjusted for 24-hr 
average temperature from 

closest weather station to the 
city center at lag0 and lag1, 
temporal trends, and day-of-

the-week. Stage 2. Multivariate 
random effects meta-analysis to 
combined 300 (i.e. 75 cities * 4 

seasons) effect estimates to 
obtain overall association.  

Daily PM2.5 
concentrations 
for all 75 cities 
over the period 
of 2000-2006 
were used to 
calculate an 
overall mean 

PM2.5 
concentration for 

the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

deSouza et al., 
2021  

ST First CVD 
HA  

US 
Nationwide  

Time-
stratified 

case–
crossover 
design (M
EDICAID) 

PM2.5 concentration were 
derived for 1 km2 grid 
cells in the continental 

United States by 
integrating remote 

sensing, outputs from a 
chemical transport model, 
and other variables such 

as meteorological and 
land-use variables (Di et 

al. 2019); from an 
ensemble-based model 
that integrated multiple 

machine learning 
algorithms for the period 
of 2000-2012. Daily PM2.5 

estimates of all grid 
cells averaged at Zip code 

were assigned to study 
participants based on 

the zip code of residence. 
Used lag01 average 

exposure in the model. 

Conditional logistic regression 
models to estimate the 

associations between short-
term exposure to PM2.5 and 
CVD hospitalization rates. 

Adjusted for individual-level 
covariates, air and dew-point 

temperature.  

Daily PM2.5 
concentration fro

m case days 
were then used 

to calculate 
overall case 
day mean 

PM2.5   concentra
tion for the study 

location and 
period. 
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Di et al., 2017b  LT All-cause 
mortality 

65+ 

US 
Nationwide 

Cohort 
(MEDICA

RE 
enrollees) 

Artificial neural network 
that incorporated satellite-

based measurements, 
simulation outputs from a 
chemical transport model, 

land-use terms, 
meteorological data, and 
other data to predict daily 
concentrations of PM2.5. 

The neural network was fit 
with monitored PM2.5 data 

and daily PM2.5 
concentrations were 

predicted for nationwide 
grids that were 1x1 km. 

While not explicitly 
detailed in the study, it 

was assumed that the 1 
km x 1 km grid cells were 

averaged up to the zip 
code spatial resolution. 
For each calendar year 
during which a person 
was at risk of death the 
annual average PM2.5 

concentration was 
assigned according to the 
ZIP Code of the person’s 
residence. As part of a 

sensitivity analysis, 
monitored PM2.5 data was 
matched with each person 

in the study within a 
distance of 50 km of the 
nearest monitoring site. 

Two-pollutant Cox proportional 
hazards model with generalized 
estimating equation to account 

for correlation between ZIP 
codes.  

 
Accounted for individual 

variables, (sex, race, Medicaid 
eligibility, and average age at 
study entry), zip code-level 

variables (% Hispanic, % Black, 
median household income, 

median value of housing, % > 
65 living below poverty level, % 
> 65 with less than high school 

education, % of owner-occupied 
housing units, and population 

density), county-level variables 
(county-level BMI and % ever 

smokers), hospital service area-
level variables ( % low-density 
lipoprotein level measured, % 

glycated hemoglobin level 
measured, and % >1 

ambulatory visits), 32 km2 
gridded weather and 1 km2 
gridded pollution variables 

(annual average PM2.5 
concentration, annual average 

temperature, and annual 
average humidity), monitor level 

air pollution variables (PM2.5 
monitored data), and a regional 

dummy variable.  
 

Average PM2.5 
concentrations 

for all Zip Codes 
(entire US or ZIP 
codes with study 
participants only) 

from 2000 to 
2012 were used 

to calculate 
overall mean 
PM2.5 for the 

study location 
and period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Di et al., 2017b 
(< 12 ug/m3) 

Analysis restricted to 
persons-years with PM2.5 
exposures lower than 12 

ug/m3 
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Di et al., 2017a  ST All-cause 
mortality 

65+ 

US 
Nationwide 

Case-
crossover 

study 
(MEDICA

RE 
enrollees) 

Artificial neural network 
that incorporated satellite-

based measurements, 
simulation outputs from a 
chemical transport model, 

land-use terms, 
meteorological data, and 
other data to predict daily 
concentrations of PM2.5. 

The neural network was fit 
with monitored PM2.5 data 

and daily PM2.5 
concentrations were 

predicted for nationwide 
grids that were 1x1 km. 
For each case day (date 
of death) and its control 
days, the 24-hour PM2.5 

concentrations were 
assigned based on zip 

code of residence of the 
individual.  

 
As part of a sensitivity 

analysis, monitored PM2.5 
data was matched with 

each person in the study 
within a distance of 50 km 
of the nearest monitoring 
site, and cross-validation 
was performed between 
predicted and monitored 

concentrations. 
 

Used average of 2-day lag 
(lag 01) PM2.5. 

Conditional logistic regression.  
 

“Case Day” defined as death. 
For the same person, compared 
daily air pollution exposure on 

the case day vs. daily air 
pollution exposure on “control 

days.” Control days were 
chosen (1) on the same day of 
the week as the case day to 

control for potential confounding 
effect by day of week; (2) 

before and after the case day to 
control for time trend; and (3) 
only in the same month as the 

case day to control for seasonal 
and sub-seasonal patterns. 

Individual-level covariates and 
zip code-level covariates that 
did not vary day to day (e.g., 
age, sex, race/ethnicity, SES, 
smoking, and other behavioral 

risk factors) were not 
considered to be confounders 
as they remain constant when 

comparing case days vs control 
days. 

The regression model adjusted 
for air and dew point 

temperature. 

The case and 
control days 

PM2.5 
concentrations 

for study 
participants were 
averaged to get 

mean PM2.5 
concentration for 

the study area 
and period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Dominici et al., 
2006 

ST HF and 
COPD HA 

65+ 

204 Urban 
U.S. counties 

Time-
series 
study 

(MEDICA
RE 

enrollees) 

Monitored PM2.5 

concentrations available 
from US EPA AQS for the 
period of 1999-2002. Of 

the 204 counties 
(>200,000 population), 90 
counties had daily PM2.5 

data across the study 
period and the remaining 
counties had PM2.5 data 
collected once every 3 
days for at least 1 full 

year. To protect against 
consequences of outliers, 
used 10% trimmed mean 
to calculate daily average 

across monitors after 
correction for yearly 
averages for each 

monitor. 
 
 

Various lags (lag 0, 1, 2 
days) and distributed lags 
assessed and presented. 

2-stage Bayesian hierarchical 
models to estimate county-

specific, region-specific, and 
national-average associations.  

 
Stage 1 model included single 
lag and distributed lag over-

dispersed Poisson regression 
models to estimate county-

specific risk. Models adjusted 
for temperature and dew point 

on the same day and the 3 
previous days, calendar time to 
control for seasonality and other 

time-varying influences, daily 
numbers of individuals at risk, 
and day-of-the-week. In Stage 

2, to produce a national 
average estimate, Bayesian 

hierarchical models were used 
to combine RRs across 

counties and accounting for 
within-county statistical error 

and for between-county 
variability or heterogeneity. To 

produce regional estimates. 
The Stage 2 hierarchical 

models described above was 
used for 7 regions separately. 

 
Daily PM2.5 

concentrations 
for all 204 US 

counties over the 
period of 1999-
2002 were used 
to calculate an 
overall mean 

PM2.5 
concentration for 
the study regions 

and period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Dominici et al., 
2019 

LT Non-
accidental 
mortality 

 

Nationwide Cohort 
study 

(MEDICA
RE) 

Artificial neural network 
that incorporated satellite-

based measurements, 
simulation outputs from a 
chemical transport model, 

land-use terms, 
meteorological data, and 
other data was used to 

predict daily 
concentrations of PM2.5 (Di 

et al. 2017). Daily PM2.5 
concentrations were 

predicted for nationwide 
grids at1 km2 resolution 

for the period 2000–2012. 
 

Survival analyses using the 
Andersen-Gill method, a variant 

of the traditional Cox 
proportional hazards model  
C-R relationship assessed 

fitting a log-linear model with 
thin-plate splines. 

Adjusted for individual-level 
covariates, county-and ZIP 

code-level variables, 
meteorological variables, and 

other area-level variables. 

Daily PM2.5 
concentrations 

over all ZIP 
codes were used 

to calculate 
overall mean 
PM2.5 for the 

study location 
and period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Erickson et al., 
2020  

LT Non-
accidental, 

CVD, 
respiratory 
mortality, 
and lung 
cancer 

 

Canada 
Nationwide 

Cohort 
study 

(CanCHE
C)  

PM2.5 exposures derived 
from AOD retrievals using 
GEOS-Chem calibrated to 
surface measurements by 

GWR (van Donkelaar, 
2015). Linked postal 

codes to PM2.5 
concentrations from grid 

cells. Annual PM2.5 
estimates from the postal 

code and assigned to 
study participants based 

on the postal code for 
residence was used to 

calculate 3-year moving 
average based on the 
location and year of 

follow-up. 

Cox proportional hazards 
models to examine the 

associations between ambient 
PM2.5 exposure and non-

accidental and cause-specific 
mortality. 

Adjusted for individual-level and 
contextual-level covariates. 

The average 
PM2.5 

concentrations 
were used to 

calculate overall 
mean PM2.5 

concentration for 
the study 
period by 

immigrant status 
and duration in 

Canada. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Eum et al., 2018  LT All-cause 
mortality 

Geographic 
regions: 

“East” of the 
Mississippi 

River, 
“Center” 

between the 
Mississippi 

River and the 
Sierra 

Nevada 
mountain 

range, and 
“West” of the 

Sierra 
Nevada 

mountain 
range 

 

Cohort 
study 

(MEDICA
RE) 

PM2.5 concentration 
obtained from US EPA’s 

AQS for the period of 
2000-2012. Monitoring 

sites with daily 
measurements for at least 

8 calendar years with 
each year having 9+ 

months and with 4+ daily 
measurements included. 
798 sites then were used 

to calculate long-term 
concentration (yearly 

moving average with 350+ 
days of valid data) using 

Greven et al. Annual 
average assigned to 

individuals that lived in 
ZIP codes with centroids 
within 6 miles of a valid 

monitor. 
 

Age-stratified log-linear model 
including offset terms for the 
size of the population as a base 
model. Also included the 
temporal and spatiotemporal 
components. Ran base model 
using data for entire 13-year 
study period (2000-2012) and 
for shorter periods ranging 
between 3 and 12 years and 
compared MRRs to assess 
temporal confounding. In 
addition to base model, also 
assessed temporal confounding 
using three approaches 
(decomposition-based, residual-
based, and spline models) 
Adjusted for individual-
covariates, as well as county-
level behavioral covariates, % 
of non-whites, smoking status, 
comorbidities, access to health 
care, income, and BMI.  

Annual average 
PM2.5 concentrati
ons were used to 
calculate overall 

mean 
concentration for 

the study 
location (all and 
by study region) 

and study 
period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Fisher et al., 
2019  

ST Stroke 
(Self-

reported 
stroke 

adjudicate
d by 

physician 
medical 
record) 

 

Nationwide Time-
stratified 

case-
crossover 

study 
(HPFS) 

Validated national-scale, 
log-normal ordinary 

kriging model for PM2.5 
were used to estimate 

daily PM2.5 concentration. 
US EPA’s AQS data used 

to calculate monitor 
specific daily averages 
(monitors >=18 hours 

measures). These inputs 
were then used to 

produced kriged surfaces 
of daily mean PM2.5 

concentrations at the 
geocoded residential 

addresses of all HPFS 
participants for the period 

1999-2010. 
 

Lag periods up to 3 days 
prior to the stroke event 

and a 4-day average used 
in model.  

 

Conditional logistic regression 
models  

Adjusted for mean daily 
temperature, and stratified 
models to examine effect 

modification by individual-level 
characteristics. 

 
 

Daily PM2.5 
concentration on 

the case day 
were used to 

calculate overall 
case day PM2.5 
mean for the 
study period. 
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Franklin et al., 
2007  

ST All-cause, 
CVD, and 
Respirator
y mortality 

27 U.S. 
communities 
(with PM2.5 
monitoring 
and daily 

mortality data 
for at least 2 
years of 6-
year study 

period 1997-
2000) 

Case-
crossover 

study 
(NCHS) 

Monitored daily PM2.5 
concentrations available 

from US EPA AQS 
(NAMS/SLAMS) for the 

period of 1997-2000. Data 
for Boston area available 
from Harvard University.   

To determine which 
monitors in the county are 

representative of 
exposure for a general 

population in the county, 
correlation was assessed 

between monitor pairs 
and excluded the monitors 

with r<0.8 for 2 or more 
monitor pairs.  Once 

appropriate monitors were 
identified then a summary 
measure of PM2.5 conc for 
the county was calculated 
using alternate averaging 

method described in 
Schwartz 2000 to account 

for data availability 
variation (daily vs 3-6 

days for each monitors in 
the county) and calculate 
daily average PM2.5 conc 

for each of the 27 
counties and 

corresponding 
communities. 

 

2-stage time-stratified analysis: 
1) Conditional logistic 

regression analysis to generate 
community specific estimates; 
2) Meta-regression analysis to 
combined community specific 
estimates to generate overall 

pooled effect estimate.   
 

Stage 1 of the model adjusted 
for day-of-the-week, as well as 
apparent temperature at lag0 
and lag1. Cases were defined 

as “deaths” and control days for 
a particular subject were 

chosen to be every third day 
within the same month and year 

that death occurred. Effect 
modification of age and gender 
was examined using interaction 

terms in stage 1, while effect 
modification of community-

specific characteristics including 
geographic location, annual 

PM2.5 concentration > 15 ug/m3 
and central AC prevalence was 

used in stage 2. 

Daily PM2.5 
concentrations 
for all 27 US 
communities 

over the period 
of 1997-2000 
were used to 
calculate an 
overall mean 

PM2.5 
concentration for 

the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Calculated and presented 
various lags and averages 

for PM2.5. 
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Franklin et al., 
2008  

ST All-cause, 
CVD, and 
Respirator
y mortality 

25 U.S 
communities 
(with PM2.5 
monitoring 
and daily 

mortality data 
for at least 4 
years of 6-
year period 

between 
2000-2005) 

Case-
crossover 

study 
(NCHS) 

Monitored daily PM2.5 
concentrations available 

from US EPA AQS 
(NAMS/SLAMS) for the 

period of 2000-2005. Data 
for Boston area available 
from Harvard University.   

To determine which 
monitors in the county are 

representative of 
exposure for a general 

population in the county, 
correlation was assessed 

between monitor pairs 
and excluded the monitors 

with r<0.8 for 2 or more 
monitor pairs.  Once 

appropriate monitors were 
identified then a summary 
measure of PM2.5 conc for 
the county was calculated 
using alternate averaging 

method described in 
Schwartz 2000 to account 

for data availability 
variation (daily vs 3-6 

days for each monitors in 
the county) and calculate 
daily average PM2.5 conc 

for each of the 27 
counties and 

corresponding 
communities. 

 

2-stage time-stratified analysis: 
1) Conditional logistic 

regression analysis to generate 
community specific estimates; 
2) Meta-regression analysis to 
combined community specific 
estimates to generate overall 

pooled effect estimate.   
 

Stage 1 of the model adjusted 
for day-of-the-week, as well as 
apparent temperature at lag0 
and lag1. Cases were defined 

as “deaths” and control days for 
a particular subject were 

chosen to be every third day 
within the same month and year 

that death occurred. Effect 
modification of age and gender 
was examined using interaction 

terms in stage 1. 

Daily PM2.5 
concentrations 
for all 25 US 
communities 

over the period 
of 2000-2005 
were used to 
calculate an 
overall mean 

PM2.5 
concentration for 

the study 
location and 

period (overall 
and by seasons). 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Calculated and presented 
various lags and averages 

for PM2.5. 

Gharibvand et 
al., 2016  

LT Lung 
cancer 

incidence 

US 
Nationwide  

Cohort 
study 

(AHSMOG
-2 study) 

Monitor data obtained 
from US EPA AQS for the 
period of 2000-2001 (2-
year prior to start of the 
study). Using monitored 

PM2.5 data, inverse 
distance weighted 

interpolations methods, 
monthly pollution surfaces 
for PM2.5 were created for 
the US. Monthly exposure 
averages were based on 

daily PM2.5 

measurements. Only 
months with at least 75% 
valid data were included 

in the exposure 
estimation. Participants 
were assigned monthly 
exposure based on their 

baseline residential 
address. 

Cox proportional hazards model  
 

Covariates included sex, race, 
smoking status, years since 

participant quit smoking, 
average number of cigarettes 

per day during all smoking 
years, and education level. 

Additional covariates included 
calendar time, alcohol 

consumption, family income, 
BMI, physical activity, and 
marital status. 3 variables 

identified a priori as either as 
confounders or effect modifiers: 

hours/day spent outdoors, 
years of pre-study residence 
length at enrollment address, 

and moving distance from 
enrollment address during 

follow-up. 

Monthly PM2.5 
concentrations 

for study 
participants were 
used to calculate 
overall 2-yr mean 

PM2.5 for the 
study period 
2000-2001. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Hart et al., 2015 
(monitored) 

LT All-cause 
mortality 

US 
Nationwide  

Cohort 
study 

(Nurses’ 
Health 
study) 

Monitored data obtained 
from US EPA AQS for the 

period 1999-2006. 
Monthly average PM2.5 

concentration calculated 
from the nearest 

monitoring location for all 
addresses. The monthly 
data was again averaged 

to get the previous 12-
month moving average at 
each residential address 

prior to mortality.  
Nearest monitor 

exposures were validated 
against personal 

exposures to PM2.5 of 
ambient origin. 

Cox proportional hazards 
model.  

 
Information on potential 

confounders was available 
every two years (4 years for diet 
information) and each woman 

was assigned updated 
covariate values for each 

questionnaire cycle.  
Confounders examined include 

age, race, region, season, 
physical activity, BMI, 

hypercholesterolemia, family 
history 

 of MI, smoking history, Current 
smoking status, diet, SES 
(education level, occupation of 

Monthly PM2.5 
concentrations at 

residence 
locations during 

the follow-up 
period of 2000 to 

2012 were 
averaged to 

calculate overall 
mean PM2.5 

exposure for the 
participants 

included in the 
study. 
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Hart et al., 2015 
(modeled) 

LT All-cause 
mortality 

US 
Nationwide  

Cohort 
study 

(Nurses’ 
Health 
study) 

Spatio-temporal models 
(developed using 

monitored data from US 
EPA AQS, the IMPROVE 

network, and also 
included meteorological 

and GIS-derived 
covariates, such as urban 

land use within 1 km, 
elevation, tract- and 

county-level population 
density, distance to the 
nearest road for road 

classes A1-A3 and point-
source emission density 
within 7.5 km) was used 

to estimate monthly PM2.5 
exposures at each 
geocoded address.  

The monthly data was 
again averaged to get the 

previous 12-month 
moving average prior to 

mortality for each 
residential address. 

Modeled exposures were 
validated against personal 

exposures to PM2.5 of 
ambient origin. 

 
Previous 12-month 
moving average of 

exposure either from 
nearest monitor or spatio-

temporal models were 

both of the nurses’ parents 
when she was 16, marital 
status, and husband’s 
education if applicable). Also 
adjusted for area-level SES 
(census tract level median 
income and house value), and 
long-term temporal trends. 
Risk set regression calibration 
for time-varying exposures was 
used to correct for bias due to 

exposure measurement error in 
the hazard ratios of all-cause 
mortality using the personal 

exposure validation data. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

assigned to study 
participants. 

Hayes et al., 
2020 

LT CVD 
mortality 

6 US states 
(California, 

Florida, 
Louisiana, 

New Jersey, 
North 

Carolina, and 
Pennsylvania) 
and 2 urban 

areas 
(Atlanta, GA, 
and Detroit, 

MI,) 
 

Cohort 
study 
(NIH-

AARP Diet 
and 

Health 
study) 

Modelled (Hybrid land use 
regression geostatistical 
model developed by Kim 
et al. 2017) for the period 

of 1980-2010. Mean 
annual estimates of 

PM2.5 for each census 
tract in the US from 

spatio-temporal model 
were used till 1998. For 

period 1999-2010, 
monitored US 

EPA monitor and 
IMPROVE network was 
used to derive annual 

average estimates. 
Annual average PM2.5 

concentrations assigned 
at census tract level 

lagged by 1 year in time-
dependent manner. 

Annual PM2.5 exposure 
analyzed as continuous 

and categorical <8, 8-<12, 
12-<20, and 20+ ug/m3 

variables. 
 

Cox regression modelling with 
time-dependent covariates. 

 
Adjusted for individual-level 

variables (age, race/ethnicity, 
education, marital status, BMI, 
alcohol, and smoking status), 

as well as census tract 
variables. 

 

Annual PM2.5 
concentrations of 

the study 
participants for 
the year 2000 
was used to 

calculate overall 
mean PM2.5 

concentration for 
the period 2000. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Ito et al., 20135 ST All-cause 
mortality 

 

150 U.S. 
cities 

Time-
series 
study 

24-hr average PM2.5 mass 
data in a given city, and 
when data from multiple 

monitors were available in 
a given city, computed the 

average of the daily 
values after standardizing 
each site’s data using the 

mean and standard 
deviation of the sites data. 

 
Pollutant concentration is 
expressed in the model as 

a deviation from the 
monthly mean to reduce 

the influence of the 
seasonal cycles of the 

pollutants on the overall 
associations and help 

focus on the short-term 
associations. 

Poisson regression analysis 
 

First city- and season-specific 
Poisson regression was run, 

and then city-specific estimates 
were combined using random 

effects approach  
 
 

Adjusted for temporal trends 
(annual cycles and influenza 
epidemics), immediate and 

delayed temperature, and day-
of-week pattern, for entire years 

(2001-2006) and for warm 
(April-September) and cold 
(October-March) seasons. 

 
In second stage, assessed 

effect modification using land-
use variables and average air 

pollution levels. 

 

 
5 This study is not referenced individually in the ISA, but is study 3 of the National Particle Component Toxicity (NPACT) Initiative published in HEI 

(Lippmann et al., 2013). 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Jerrett et al., 
2016 

LT IHD 
mortality 

30+ 

U.S. 
Nationwide 

Cohort 
study 
(ACS 

Cancer 
Prevention 
Study II) 

Multiple exposure 
estimation approaches 

evaluated within the study 
– risk assessment uses 

results based on an 
ensemble approach that 
incorporates chemical 

transport modeling, land 
use data, satellite data, 
and data from ground-

based monitors 

Cox proportional hazards 
regression 

 
Covariates included current and 
former smoking status as well 
as smoking duration, amount, 

age started, second hand 
cigarette smoke (hours/day 

exposed), exposure to PM2.5 in 
the workplace for each of the 

subject’s major lifetime 
occupation, self-reported 

exposure to dust/fumes at work, 
marital status, level of 

education, BMI, alcohol 
consumption, dietary 

vegetable/fruit/fiber index, 
dietary fat index, missing 

nutrition information. Ecologic 
characteristics included median 
household income, percentage 

of people with < 125% of 
poverty-level income, 

percentage of persons > 16 
who are unemployed, 

percentage of adults with < 12th 
grade education, and 

percentage of population who 
were Black or Hispanic. 
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Kioumourtzoglou 
et al., 2016 

LT All-cause 
mortality 

65+ 

207 U.S. 
cities 

Open 
Cohort 
study 

(MEDICA
RE 

enrollees) 

Monitored data available 
from US EPA AQS for the 
period of 2000-2010. City-
specific annual and 2-year 

PM2.5 averages was 
calculated using data from 

all available monitors in 
each city.  

2-stage approach for modelling.  
 

In Stage 1, Cox proportional 
hazards model was fit for each 
city stratified by age, gender, 

race, and follow-up time in 
study. Control for slowly varying 

potential confounders (e.g., 
SES) and confounders that vary 
across subjects, city, and time. 

City-characteristics for: 
proportion of city population > 
65, median household income, 

proportion in poverty, proportion 
of city families in poverty, 

proportion of white, black, and 
Asian residents, proportion of 
residents with/without high-

school degrees and a college 
degree, and city-specific 

smoking and obesity rates.  
Population-weighted city 

averages were developed 
based on census data at the 
county level. Also included 

average annual temperature in 
the model. 

In stage 2, combined the city-
specific estimates using a 

random effects meta-analysis to 
generate region-specific effects. 
Assessed effect modification by 
annual temperature levels, and 

population and city 
characteristics (greenness, 

Annual PM2.5 
concentrations 
for 207 cities 

during the period 
of 2000 to 2010 

were averaged to 
calculate overall 

mean PM2.5 
exposure for the 
study location (all 

and region 
specific) and 
study period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

poverty, racial composition, 
etc.). 

Klemm and 
Mason, 2003 

ST All-cause 
mortality 

Harvard Six-
City study 
reanalysis 

Time-
series 
study 

24-hour PM2.5 
concentration obtained 

from Dichotomous 
samplers placed at the 

central residential 
monitoring sites in each of 

the six cities. Integrated 
24-hour samples were 

collected daily for part of 
the study periods but were 

collected at least every 
other day until the late 

1980s.  
 

Generalized additive and 
Generalized linear models  

 
Model adjusted for temporal 

trends, day-of-the-week, 
weather (average daily 

temperature and average daily 
dew point temperature). 

Daily PM2.5 
concentration of 

six cities over the 
period of 1979-
1988 were used 

to calculate 
overall mean, 
median and 

percentiles of 
PM2.5 exposure 

for the study 
location (all and 
by study center) 

and period. 
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Kloog et al., 
2012 

ST, LT CVD HA 
Age 65+ 

New England 
Area with 6 
U.S. States 

Mixed 
study 
design 

(with time 
series and 

cohort 
componen

ts) 

Spatiotemporal model: 
Used day-specific 

calibrations of aerosol 
optical depth (AOD) data, 

using ground PM2.5 
measurements. 

Incorporated land use 
regressions and 

meteorological variables 
(temperature, wind speed, 

visibility, elevation, 
distance to major road, 
percent of open space, 

point emissions and area 
emissions) for the period 

of 2000-2006.  Model 
predicted daily PM2.5 

concentrations at a 10 x 
10 km spatial resolution. 
The PM2.5 concentration 
then was matched to ZIP 
codes based on spatial 

location and date. 
Short-term exposure: 

used the mean of PM2.5 on 
the day of admission and 

day before admission. 
Long-term exposure: 

calculated as the mean 
exposure in each zip-code 

across the 7-year study 
period.  Short term 

exposure was defined as 
the difference between 

the two-day average and 
the long-term average. 

Equivalence between Poisson 
regression and the piecewise 
constant proportional hazard 
model to model the time to a 

hospital admission as a function 
of both long-term and short-

term exposure simultaneously 
and enabling simultaneously 

examination of short term and 
long-term associations with 

hospital admissions 
(Hierarchical mixed Poisson 

regression model).  
 

The model adjusts for 
temperature, age, percent 

minorities, median income, and 
percent of people with no high 

school education. 

Daily PM2.5 
concentration of 
all grids within 
the NE area for 
the acute (0 day 
lag) and chronic 
(365 day moving 
average) were 

used to calculate 
overall mean 

short- and long-
term PM2.5 
exposure 

respectively, for 
the study 

location and 
period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Kloog et al., 
2014 

ST CVD and 
COPD HA 
Age 65+ 

7 U.S. Mid-
Atlantic 

States and 
D.C. 

Case-
crossover 

design 
(MEDICA

RE 
enrollees) 

Spatiotemporal model: 
Used day-specific 

calibrations of aerosol 
optical depth (AOD) data, 

using ground PM2.5 
measurements. 

Incorporated land use 
regression (elevation, 

distance to major roads, 
percent of open space, 

point emissions and area 
emissions) and 

meteorological variables 
(temperature, wind speed, 

relative humidity, and 
visibility) for the period of 
2000-2006.  Model used 

to predict daily PM2.5 
concentrations at a 10 x 
10 km spatial resolution. 

Daily predicted PM2.5 
exposure estimates at 

grids were matched to zip 
codes. 

 
Average of 2-day lag (lag 

0 and 1) PM2.5 used. 

Conditional logistic regression 
analysis  

 
Temperature with the same 

moving average as PM2.5 was 
included in the model as a 

potential confounder. 
Study design samples only 
cases and compares each 

subject’s exposure experience 
in a time period just before a 
case-defining event with the 
subject’s exposure at other 

times, eliminating confounding 
(unmeasured or measured) that 

do not vary over time. Cases 
were matched on day of the 

week and defined the relevant 
exposure time window as the 
mean exposure of the day of 
and day before the patient’s 
hospital admission. Effect 
modification: 1) assessed 
whether subject residence 

within 30 km of a monitor or 
farther modified the PM2.5 
association; 2) examined 

interaction between exposure 
and income level and gender. 

2-day moving 
average of PM2.5 
concentration of 
all grids within 

the mid-Atlantic 
states were used 

to calculate 
overall mean (all 

area and 
rural/urban 

areas) PM2.5 
exposure for the 

study location 
and period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Krall et al., 2013 ST All-cause 
mortality 

72 Urban 
U.S. 

Communities 

Time-
series 
study 

(NCHS) 

Monitored data available 
from US EPA AQS for the 

period of 2000-2005. 
Excluded data from 

source-oriented monitors 
that may not be 

representative of typical 
population exposures. 
Daily community-level 

pollutant exposure as the 
arithmetic mean of daily 

monitor observations 
within the community. For 
communities with single 

monitor pollutant 
concentration represented 
concentrations recorded 

by that monitor. 
 

Used lag 1 PM2.5 in 
model. 

Log-linear Poisson Regression 
Model 

 
Model adjusted for temperature 

and previous day’s 
temperature, long-term and 

seasonal trends, age, and day-
of-the-week. Also included 

interaction term for pollutant 
concentration and seasons. 

Daily PM2.5 
concentration of 

72 US urban 
communities 
were used to 

calculate overall 
mean PM2.5 

exposure for the 
study location 

and period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Krall et al., 2018 ST ED Visits 
for CVD 
(CHF, 

Cardiac 
dysrhythm

ia, IHD, 
Stroke) or 

RD 
(asthma/w

heeze, 
COPD, 

pneumoni
a, URI) 

 

Multi-city (5 
Metropolitan 

areas) 
 

Time-
series 
study 

(Electronic 
billing of 
ED visits) 

PM2.5 concentrations 
obtained from ambient 

monitoring stations 
located within each of the 
metropolitan areas were 
fused with Community 
Multi-Scale Air Quality 

model estimates (Friberg 
et al, 2016, 2017) to 
obtain population-
weighted average 

estimates of the 24-hour 
average PM2.5 
concentrations.  

 

Poisson time- series regression 
model accounting for over-

dispersion (Peng et al. 2009; 
Krall et al. 2013) to calculate 
city specific associations. To 

calculate overall and posterior 
city-specific associations, 

applied Bayesian hierarchical 
models (Everson and Morris 

2000). 
 

Adjusted for weekday, season, 
holidays, metrology, temporal 

trends. 
 

Daily (24-hr) PM 
concentrations 

for specific cities 
were used to 

calculate overall 
PM2.5 

concentration by 
city for the study 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Lavigne et al., 
2018  

ST Non-
accidental, 
CVD, and 
respiratory 
mortality  

24 Canadian 
cities  

Case-
crossover 

study  

Daily (24-hour) average 
PM2.5 concentrations 

obtained from monitors in 
Canada’s NAPS network 

and were used to estimate 
PM2.5 concentrations for 
the period of 1998-2011. 
Exposure estimates were 
assigned to each study 
participant based on the 

monitoring station(s) 
located in participants’ city 

of residence. If PM2.5 
measurements were 

available from multiple 
monitors in a single city, 

daily concentrations were 
averaged across 

monitors. 
 

Conditional logistic regression 
analysis.  

Performed stratified analyses 
examining the relationship 

between PM2.5 and mortality 
across tertiles of Oxidant 

capacity. 
 

Daily PM2.5 
concentrations in 

24 Canadian 
cities were used 

to 
calculate overall 

mean PM2.5 
concentration 
over the study 
location and 

period.   
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Lee et al., 2015 ST All-cause, 
Cardiovas

cular, 
respiratory 
mortality 

3 U.S. 
Southeast 

States 

Case-
crossover 

design 
(Dept. of 

Pub 
Health 
data) 

Spatio-temporal model 
that used satellite AOD 

data to predict daily PM2.5 
at 1X1 km resolution for 
the period of 2007-2011.  
Daily PM2.5 concentration 

at 1km grids were 
aggregated into the zip 

code level. For this, 1 km 
grid cells were matched to 

zip code area by 
assigning the centroid of 
each 1 km grid cell to the 
centroid of the closest zip 
code. Zip code areas that 
contained one or more 1 
km grid cells were given 
the averaged PM2.5 and 

zip codes that were 
smaller than 1 km2 were 

given the predictions from 
the closest grid cell. 

Finally, PM2.5 
concentrations from zip 
codes were assigned to 
the study participants 

based on their residence 
zip code and for specific 

days. 
 
 

For sensitivity: Daily 
monitored PM2.5 

concentrations from the 
nearest EPA and 

IMPROVE monitors from 

Conditional logistic regression  
 

Model adjusted for temperature 
and day of the week 

 
Also ran stratified analysis by 
age, sex, race, education, and 

primary cause of death. 
 

Analysis also restricted for zip 
codes where annual average of 
PM2.5 <12 or daily average <35 

separately. 
 

Sensitivity analysis: potential 
non-linear relationship between 

temp and mortality modelled 
using natural spline to the 

temperature term. 

Daily PM2.5 
concentrations 

for ZIP code from 
2007-2011 were 
averaged to get 

overall mean 
PM2.5 (all states 

and by state)  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

resident zip code (no 
distance limit) were 

identified and assigned to 
individuals. 

 
Used lag0 and lag1 in 

model. 
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Lefler et al., 
2019  

LT All-cause 
mortality, 
Cardiopul
monary 
mortality 

 

Nationwide Cohort 
study 

(NHIS) 

Annual average PM2.5 was 
modeled using regulatory 

monitors and land use 
data as described in (Kim, 

2018). PM2.5 exposure 
prior to 1999 were 

estimated using PM10 
data. Estimates for each 
pollutant-year through 

2015 
were generated at the 

census-block level using 
year-2010 

Census block centroids. 
Tract-level estimates for 
year 2000 Census tracts 
and year-2010 Census 

tracts were estimated by 
mapping year-2010 

Census blocks to census 
tracts and then calculating 

a population-weighted 
average of the census 
blocks within a census 
tract. PM2.5 exposure 

estimates were assigned 
to home census tracts as 
either 2-year (i.e., cohort 

year and previous year) or 
5-year (i.e., cohort year 
and previous 4 years) 

average PM2.5 
concentrations, 17-year 

average PM2.5 
concentrations (1999 – 

2015), or 28-year average 

Cox hazard model 2 versions: 
Basic PH model, and complex 

PH model using 
SURVEYPHREG.  

 
Basic model adjusted for age, 

sex, and race/ethnicity. 
Complex model adjusted for 
complex survey design. Both 
models controlled for marital 
status, household income, 

education, smoking status, BMI, 
urban/rural, census regions and 

survey year.  

Annual PM2.5 
concentration 

were for 
participants were 
used to calculate 

overall mean 
concentration for 
the17-year study 

period 1999-
2015. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

PM2.5 concentrations 
(1988 – 2015).    

 

Lepeule et al., 
2012 

LT All-cause, 
Cardiovas
cular, lung 

cancer 
mortality 

HARVARD 6 
cities 

Prospectiv
e 

Cohort/Lo
ngitudinal 
follow-up 

study 
(HARVAR
D 6 cities 

data) 

PM2.5 data from monitors 
in the participant’s city. 

PM2.5 data 1979-
1986/1988 from monitors, 
end of monitoring to 1998 

estimated from PM10 
using US EPA monitors, 
1999-2009 direct PM2.5 
measurement from US 

EPA monitors. 1-yr or 1-
3yr or 1-5 yr. moving 
PM2.5 averages were 

assigned to participants 
based on city of 

residence. 

Cox proportional hazard 
models, Poisson survival 

analysis 
 

Stratified analysis by sex, age, 
and time in the study (1-yr 

interval). Confounders included: 
Baseline information on 

smoking status, smoking pack-
years, education, linear and 

quadratic term for BMI. 
Also explored effect 

modification of PM2.5 on 
mortality by smoking status at 

enrollment, as well as time 
period in study.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Liu et al., 2019  ST All-cause 
and 

cause-
specific 

mortality  

107 U.S. 
Cities 

Time-
series 
study 
(MCC 

Collaborati
ve 

Research 
Network)  

Monitored PM2.5 
concentration obtained 
from MCC database for 
the period of 1987-2006. 
Hourly data was used to 

calculate 24-hr daily 
average. Daily PM2.5 
concentrations were 

averaged across stations 
within each city. Finally, 2-

day moving average for 
the city was calculated. 
2-day moving average 

(lag01) was used in 
model. 

Used two-stage analytic 
protocol, which had been 

developed and widely applied in 
previous 

multicity time-series studies. 
First stage estimated city-
specific association using 
quasi-Poisson generalized 

additive models. Second stage 
used random-effects models to 
pool the estimates of the city-

specific associations. Two-
stage regional analysis was 

also performed by WHO 
regions.  

Also explored the shape of the 
relationship using C-R curves 
with PM term appearing with a 
B-spline function with two knots 

at 25th and 75th percentiles.  
 

Daily PM2.5 
concentration 
were used to 

calculate overall 
mean 

concentration for 
the study 

location and 
period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Malig et al., 
2013 

ST Respirator
y 

morbidity 
(Asthma 

and 
COPD ED 
and HA) 

35 CA 
counties 

(9 counties 
included for 

PM2.5 
analysis) 

Case-
crossover 

design 
(CA Office 

of 
Statewide 

Health 
Planning 

and 
Developm
ent Data) 

PM2.5 data obtained from 
California Air Resources 
Board. Same day lag and 
various days lags average 
were calculated for PM2.5. 

Participants were 
assigned exposure from 
the closest monitor from 

the residential population-
weighted zip code 

centroid. Only participants 
living in zip codes within 
20 km of PM2.5 monitors 

were included to increase 
validity of pollution 
exposure metrics. 

County-level conditional logistic 
regression analysis. Overall 

estimate was then calculated by 
combining county-level 

estimates using a random-
effects meta-analysis 

 
Time-invariant confounders and 
seasonal trends were controlled 

for given the study design. 
 

Other confounders included in 
the models were: other gaseous 

pollutants including ozone, 
linear and squared term for 
daily average temperature. 

 
Stratified analysis also by 

distance to monitor within 10 
km vs. 10-20 km 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

McConnell et al., 
2010 

LT Asthma 
Incidence 

13 CA 
communities 

Cohort 
Study 
(CHS) 

PM2.5 concentration data 
measured in central site 

monitors in each 
community (for 9 of 13 

communities since 1994 
and others different time 

period). This study 
considered 2003-2004 
PM2.5 measurements at 

each community monitor. 
Average annual PM2.5 

concentration from each 
community was assigned 

to study participants 
based on their community 

of residence. 
 

Multi-level Cox proportional 
hazard model accounting for 
residual variation in time to 

asthma onset and clustering of 
children around schools and 

communities 
 

Models adjusted for: 
secondhand smoke, pets in 
home, race/ethnicity, age at 

study entry, sex, and random 
effects for community and 

school. 

Average annual 
PM2.5 

concentrations 
assigned to 

study 
participants were 
used to calculate 

overall mean 
PM2.5 exposure 

for the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Ostro et al., 
2016 

ST Asthma 
and 

COPD ED 

8 
metropolitan 
areas/countie

s in CA 

Case-
crossover 

design 
(CA Office 

of 
Statewide 

Health 
Planning 

and 
Developm
ent Data) 

PM2.5 (24-hour average) 
data obtained from U.S. 

EPA provided by 
California Air Resources 
Board for the period of 

2005-2009. Participants 
were assigned exposure 
from the closest monitor 

from the residential 
population-weighted zip 

code centroid. Only 
participants living in zip 
codes within 20 km of 
PM2.5 monitors were 
included to increase 
validity of pollution 
exposure metrics. 

 
Used lag0, lag1 and lag2 

in model. 
 

County-level conditional logistic 
regression analysis. Overall 

estimate was then calculated by 
combining county-level 

estimates using a random-
effects meta-analysis 

 
Time-invariant confounders and 
seasonal trends were controlled 

for given the study design. 
 

Other confounders included in 
the models were: linear and 

squared term for lag0 
temperature, day of the week. 

 

Daily PM2.5 
concentrations 

for all 8 
metropolitan 

counties over the 
period of 2005-
2009 were used 
to calculate an 
overall mean 

PM2.5 
concentration for 

the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Pappin et al., 
2019  

LT Non-
accidental 
mortality 

 

Canada 
Nationwide  

Cohort 
study 

(CanCHE
C) 

PM2.5 exposures derived 
from AOD retrievals using 
GEOS-Chem calibrated to 
surface measurements by 

GWR (van Donkelaar, 
2015). For PM2.5 

concentrations prior to 
1998, back casting 

method employed that 
applied observed trends in 
ground monitoring data for 

PM2.5 to adjust pre-
gridded PM2.5 estimates 
(Meng, 2019). Annual 

M2.5 estimates from the 
postal code and assigned 

to study participants 
based on the postal code 
for residence was used to 
calculate 3-year moving 
average based on the 
location and year of 

follow-up.  

Cox Hazard model and DAG 
approach. Also performed C-R 

analysis using a 3 step 
approaches: (1) fit the data 

using restricted cubic splines 
(RCS) with a large number of 

knots; (2) smooth potential 
erratic predictions from the 
large number of knots using 

monotonically increasing 
smoothing splines (MISS); and 

(3) fit the shape constrained 
health impact function (SCHIF) 

to the MISS predictions.   
Cox model stratified by age, 
sex, and immigration status 

separately by CanCHEC 
cohorts. Two covariate 

adjustment models. First based 
on DAG and controlled for 

airshed, urban form, CMA/CA 
size. Second model “full” model 

adjusted for individual-level 
variables (income, education, 
occupation, marital status). 

The annual 
average PM2.5 
concentrations 
were used to 

calculate overall 
mean PM2.5 

concentration for 
the study cohorts 

and periods. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Peng et al., 
2009 

ST CVD HA 
Age 65+ 

119 U.S. 
Urban 

counties>150,
000 

populations 

Time-
series 

analysis 
(MEDICA

RE 
enrollees) 

PM2.5 data (daily or every 
3 days) obtained from US 
EPA’s AQS and STN for 
the period of 2000-2006. 
Countywide PM2.5 total 

mass concentration was 
calculated by averaging 
the daily PM2.5 values 

from all the monitors in a 
county. 

 
Used lag0, lag1 and lag2 

in model. 
 

Log-linear Poisson Regression 
analysis 

 
Adjusted for potential 

confounders including weather, 
day of the week, unobserved 
seasonal factors. In county-
specific regression model, 
following indicators were 

included: indicator for the day of 
the weeks, a smooth function of 

time per calendar year to 
control for seasonality and long-
term trends, a smooth function 
of current-day temperature, a 
smooth function of the 3-day 
running mean temperature, a 

smooth function of current-day 
dew-point temperature, and a 
smooth function of the 3-day 

running mean dew-point 
temperature. To model smooth 

functions, we used a natural 
spline basis. 

Daily PM2.5 
concentrations 

for all 119 
counties over the 
period of 2000-
2006 were used 
to calculate an 
overall median 

PM2.5 
concentration for 

the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Pinault et al., 
2016 

LT All-cause, 
CVD and 

lung 
cancer 

mortality 

Multicity 
Canada 

Prospectiv
e Cohort 

Study 
(subset of 
participant

s of the 
Canadian 
Communit
y Health 
Survey) 

PM2.5 concentration 
derived from MODIS. 

Geographically weighted 
regression including 

monitoring and land use 
data was applied to the 

estimates from MODIS to 
produce average PM2.5 
concentration at 1 km2 
resolution. These model 
estimates extended to 
1998-2003 using inter-

annual variation of Boys 
et al. 

 
Participants were 

assigned exposure based 
on their postal code of 

residence. For each year 
in the cohort, respondents 

were assigned a PM2.5 
concentration 

corresponding to the 
mean of the three 

previous years to the 
follow-up year. 

Cox proportional hazards 
models 

 
Models were stratified by age 
(5-yr interval) and sex. Models 

adjusted for individual 
socioeconomic covariates and 
behavioral (BMI, smoking and 
alcohol consumption, fruit, and 

vegetable consumption) 
covariates, ecological variables 

including neighborhood 
socioeconomic status (both 

social and material deprivation). 

Annual 3-year 
PM2.5 average 

concentration for 
the study 

participants were 
used to calculate 

overall PM2.5 
concentration for 
the study period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Pinault et al., 
2017 

LT Non-
accidental, 

CVD, 
respiratory 
and lung 
cancer 

mortality 
 

Canada 
Nationwide  

Cohort 
study 

(CanCHE
C)  

PM2.5 exposures derived 
from AOD retrievals using 
GEOS-Chem calibrated to 
surface measurements by 

GWR (van Donkelaar, 
2015). PM2.5 

concentrations extended 
back to 1998 by applying 
interannual variation of a 
publishing PM2.5 dataset 

(Boys, 2014). Annual 
PM2.5 estimates from the 

postal code was assigned 
to study participants 

based on the postal code 
for residence and used to 
calculate 3-year moving 
average based on the 
location and year of 

follow-up for years 1998 – 
2012.  

 

Cox survival models. Also 
estimated Shape Constrained 

Health Impact Functions (a 
concentration-response 

function) for selected causes of 
death. 

Adjusted for individual 
demographic and 

socioeconomic variables at 
baseline (on Census day): 
Aboriginal identity, visible 

minority status, marital status, 
educational attainment, income 

adequacy quintile, and labor 
force status, and contextual 

variables at the census division 
scale. 

The annual 3-
year moving 

average PM2.5 
concentrations 

for study 
participants were 
used to calculate 

overall mean 
PM2.5 

concentration for 
the study period 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Pinault et al., 
2018 

LT CVD 
mortality 

 

Canada 
Nationwide  

Cohort 
study 

(CanCHE
C, mCHH

S)  

PM2.5 exposures derived 
from AOD retrievals using 
GEOS-Chem calibrated to 
surface measurements by 

GWR (van Donkelaar, 
2015). PM2.5 

concentrations extended 
back to 1998 by applying 
interannual variation of a 
publishing PM2.5 dataset 

(Boys, 2014). Annual 
PM2.5 estimates from the 

postal code was assigned 
to study participants 

based on the postal code 
for residence and used to 
calculate 3-year moving 
average based on the 
location and year of 

follow-up for years 1998 – 
2012.  

 

Cox proportional hazard 
models.  

 
Considered co-occurring 

diabetes with and without other 
contributing causes of death: 

hypertension, dementia or 
Alzheimer’s disease, and 

chronic kidney disease, as 
these comorbidities are 

medically related to diabetes. 
Also considered diabetes status 

at baseline as effect modifier 
using CCHS-mortality cohort.  
Adjusted model for individual-

level variables (aboriginal 
identity, visible minority status, 
education, labor force status 
and income adequacy), and 

neighborhood-level variables.  

The annual 3-
year moving 

average PM2.5 
concentrations 

for study 
participants were 
used to calculate 

overall mean 
PM2.5 

concentration for 
the study period 
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Pope et al., 
2015b 

LT All-cause, 
IHD 

mortality 
(30+) 

U.S. 
Nationwide  

Cohort 
study 
(ACS 

Cancer 
Prevention 
Study II) 

Monthly exposure to PM2.5 
was estimated by linking 

geocoded home 
addresses 

of the study participants to 
ambient PM2.5 

concentrations derived 
using 

a national-level hybrid 
land use regression (LUR) 

and Bayesian 
Maximum Entropy (BME) 
interpolation model (LUR-
BME) that incorporated 
data from ground-based 
monitors for the study 
period of 1999-2004. 

Cox proportional hazards 
models 

 
The individual-level covariates 

incorporated in the models 
included 13 

variables that characterized 
current and former smoking 

habits (including 
smoking status of never, 

former, or current smoker, 
linear and 

squared terms for years 
smoked, and cigarettes smoked 

per day, indicator 
for starting smoking at aged 
<18 years, and pipe/cigar 

smoker). 
1 continuous variable that 

assessed exposure to second-
hand cigarette 

smoke (hours/d exposed); 7 
variables that reflected 

workplace PM2.5 

exposure in each subject’s main 
lifetime occupation; a variable 

that 
indicated self-reported 

exposure to dust and fumes in 
the workplace; 

variables that represented 
marital status 

(separated/divorced/widowed 
or single versus married); 

variables that characterized the 
level 

Monthly mean 
PM2.5 

concentration for 
study 

participants were 
used to calculate 

overall mean 
concentration for 
the study period. 
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of education (high school, more 
than high school versus less 

than 
high school); 2 body mass 
index variables (linear and 

squared terms 
for body mass index); variables 

that characterized the 
consumption 

of alcohol (beer, missing beer, 
wine, missing wine, liquor, and 

missing 
liquor); and variables that 

indicated quartile ranges of 
dietary fat 

index and quartile ranges of a 
dietary vegetable/fruit/fiber 

index. 
Ecological covariates included 

median household income; 
percentage 

of people with <125% of 
poverty-level income; 

percentage of 
unemployed individual aged 

≥16 years; percentage of adults 
with 

<12th grade education; and 
percentage of the population 

who were 
black or Hispanic. These 

ecological covariates were 
included in the 

models using both zip code 
level data and zip code 

deviations from 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

the county means. 

Pope et al., 
2019 

LT All-cause 
and 

cause-
specific 
mortality 

Nationwide Cohort 
study 

PM2.5 concentration 
estimated for census 
block using regulatory 
monitoring data from 
1999-2015 within a 

universal kriging 
framework employing 
land-use regression 
methods and other 

variables (Kim 2018). 
Pop-weighted annual 

averages were 
calculated for all 17 years 
for each 2000 and 2010 
census tract. Individual 

were assigned air 
pollution conc based on 

their census tract of 
residency at the time of 
survey, e.g.: using year-

2000 census tract for 
individuals surveyed 
1986-2010 and using 

year-2010 census tract for 
individuals surveyed 

2011-2014. For primary 
analysis: PM2.5 exposure 

is an average 
concentration over the 17 

yrs.  

Cox Hazard models. Ran 2 
models: one accounting for 
complex survey design and 
sampling strategy including 

sample weights 
(SURVEYPHREG) and another 
without accounting for complex 
survey design (PHREG). Ran 

model using full-cohort and sub-
cohort with additional data on 

BMI and smoking. The shape of 
the PM2.5–mortality relationship 

was also explored using an 
integrated modeling approach. 

 
Adjusted for age, sex, and race-

ethnicity, income inflation-
adjusted to 2015, education 

levels, marital status, urban vs 
rural, US regions, survey years, 

smoking status. 

Annual PM2.5 
average 

concentrations 
over the 17-
years (1999-

2015) were used 
to calculate 
overall PM2.5 

concentration. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Shi et al., 2016 ST and LT Total 
mortality 

(65+) 

New England 
Area with 6 
U.S. States 

Open 
Cohort 
study 

(MEDICA
RE 

enrollees) 

Daily PM2.5 for the New 
England area was 

predicted at 1-km2 spatial 
resolution from novel 3-
stage statistical models 
for the period of 2003-

2008.  
365-day moving average 
(for long-term exposure) 
and average lag0-1 (for 

short-term exposure) were 
calculated for each grid 
cell. The long-term and 
short-term averages at 

grid-cells were matched to 
ZIP codes by linking the 
ZIP code centroid to the 

nearest PM2.5 grid. 
Participants were 
assigned PM2.5 

concentrations based on 
the ZIP codes of 

residence. 
 

Used lag0-1 average for 
short-term exposure 
analysis in model. 

 

Chronic effects of air pollution 
assessed using Cox 

proportional hazard models. 
Acute effects of air pollution 
assessed using Poisson log-

linear models. 
Both acute and chronic effects 
were assessed using Poisson 

survival analysis. Analysis 
performed in full-cohort as well 

as low exposure cohorts. 
 

Poisson survival models were 
adjusted for smooth function of 
time, temporal covariates such 
as temperatures and day of the 
week, spatial covariates such 

as zip code-level socio-
economic variables. 

Long-term 
average: 

Average annual 
PM2.5 

concentrations of 
all grid cells in 
the study area 
were used to 

calculate overall 
mean PM2.5 

exposure for the 
study location 

and period. 
 
 

Short-term 
average: Lag01 

PM2.5 
concentrations of 

all grid cells in 
the study area 
were used to 

calculate overall 
mean PM2.5 

exposure for the 
study location 

and period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Shin et al., 2019 LT AF and 
Stroke (1st 

HA) 

Ontario, 
Canada 

Cohort 
study 

(ONPHEC
) 

PM2.5 concentrations 
estimated using AOD and 

PM2.5 simulated by the 
GEOS-Chem chemical 

transport model (i.e. 
individual's exposure in 
2001 was estimated as 
mean exposure from 

1996-2000). Final surface 
with 1 × 1 km resolution 

was generated for 
Ontario. Annual PM2.5 

estimates was calculated 
for the postal code and 

assigned to study 
participants based on the 
postal code for residence. 
PM2.5 concentration was 
used to calculate 5-year 

moving average based on 
the location and year of 

follow-up. 
 

Cox proportional hazards 
models. 

 
Adjusted for individual-level 

variables (age and sex), 
neighborhood-level SES 

variables, and geographic 
indicators. 

The 5-year 
moving average 

PM2.5 
concentrations 

for study 
participants were 
used to calculate 

overall mean 
PM2.5 

concentration for 
the study period 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Shin et al., 2021 ST All-cause 
hospitaliza

tion and 
all-cause 
mortality 

 

22 Canadian 
cities 

Time 
series 
study 

(Statistics 
Canada) 

Daily (24-hour) average 
PM2.5 concentrations were 
calculated for each study 

city using ambient 
monitoring data available 
from Canada’s NAPS for 

the period 2001-2012. 
Daily PM2.5 concentrations 

were averaged across 
monitors within a city 

when multiple monitoring 
sites were present. 

 

Generalized additive Poisson 
model and Bayesian 

hierarchical model. Static 
approach to estimate the 

nationwide overall 
associations between air 

pollution and health outcomes 
for all 

years combined. A two-stage 
hierarchical model was 

employed: firstly, a 
generalized additive Poisson 

model for city-specific 
associations 

between individual health 
outcomes and individual air 

pollutants, 
respectively, and secondly a 

Bayesian random effects model 
to 

combine the city-specific 
associations to obtain 

nationwide associations. 
 

Daily PM2.5 
concentrations of 

22 Canadian 
cities were used 

to calculate 
overall mean 

OM2.5 
concentration for 

the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Stieb et al., 
2009 

ST Cardiac 
and 

Respirator
y ED visits 

Seven 
Canadian 

Cities 

Time 
series 
study 

(Hospital 
cases) 

PM data obtained from 
National Air Pollution 
Surveillance (NAPS) 

system for the period of 
the 1990s and early 

2000s. City averages of 
the PM2.5 exposure were 
calculated by averaging 
all monitoring stations 

within the city.  
 
 

Used lag 0, 1and 2, in 
model. 

Generalized Linear Models with 
natural spline functions of time 
to adjust for seasonal cycles in 

air pollution and health 
 

Confounders included: Mean 
daily temperature and relative 

humidity at lag 0,1, and 2 days, 
day of the week and holidays. 

Daily PM2.5 
concentrations of 

the cities were 
used to calculate 
the overall mean 
PM2.5 exposure 

for the study 
location (by site) 
and study period.  

Sun et al., 2019 ST Incident 
stroke: 

Total, HS 
and IS 
(self-

reported) 
 

Nationwide Time-
stratified 

case-
crossover 

(WHI) 

PM2.5 concentration 
obtained from log-normal 
ordinary kriging model as 
previously described (Liao 
et al., 2006).  This model 

estimates daily air 
pollutants at each address 

based on weighted 
average of measurement 

from nearby monitors 
(Legendre and Fortin, 

1989). Daily mean PM2.5 
concentrations were 

estimated at geocoded 
participant address for the 

period of 1993-2012. 
 

Conditional logistic regression. 
Adjusted for time-varying 

variables (daily mean ambient 
temperature, dew point 

temperature, and relative 
humidity) 

 
Various lags assessed (1-day 

moving average to 6-day 
moving average) 

 

Daily PM2.5 
concentrations 

on the case days 
for the 

participants were 
used to calculate 
the overall mean 

PM2.5 
concentration for 
the study period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Szyszkowicz, 
2009 

ST Angina ED Seven 
Canadian 

Cities 

Time 
series 
study 

(Hospital 
cases) 

PM data obtained from 
National Air Pollution 
Surveillance (NAPS) 

system. City averages of 
the exposure were 

calculated by averaging 
stations within the city.   

 
Used lag 0, 1 and 2, in 

model. 

Generalized Linear Mixed 
models 

 
Models adjusted for 

meteorological variables such 
as relative humidity, 

temperature, and atmospheric 
pressure (a daily 24-hr average 

measurements were 
calculated). Temperature and 

relative humidity in models were 
represented by natural splines. 
Stratified analysis by season as 
well as combined for the whole 

period. 
 

Daily PM2.5 
concentrations of 

the cities were 
used to calculate 
the overall mean 
PM2.5 exposure 

for the study 
location (all and 
by cities) and 
study period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Thurston et al., 
2016a 

LT All-cause, 
CVD and 

respiratory 
mortality 

6 U.S. States 
and 2 MSAs 

Cohort 
study 

(NIH_AAR
P cohort) 

PM data obtained from 
US EPA AQS for the 
period of 2000-2008. 

Census-tract estimates 
were generated using 
hybrid LUR and BME 
models, which were 

combined to generate 
monthly estimates of 
PM2.5. Participants 

exposure was estimated 
at census-tract of 

residence and included 
annual mean 

concentration in prior year 
of mortality. 

 
 

Cox proportional hazard models 
 

Stratified analysis by age, sex, 
regions (6 states and 2 MSAs). 
Confounders adjusted included: 
race, education, marital status, 

BMI, alcohol consumption, 
smoking history, contextual 
variables such as median 

household income and % pop 
with less than high school 

education. Several interactions 
between PM2.5 and socio-

demographics were also tested.  

Average annual 
PM2.5 

concentrations of 
census tract 

estimates were 
used to calculate 

overall mean 
PM2.5 exposure 

for the study 
location and 

period. 
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Turner et al., 
2016 

LT Lung 
cancer 

mortality 
(30+) 

U.S. 
Nationwide 

Cohort 
study 
(ACS 

Cancer 
Prevention 
Study II) 

Estimated PM2.5 
concentrations were 

obtained using a national-
level hybrid land use 
regression (LUR) and 

Bayesian 
maximum entropy (BME) 

interpolation 
model. Monthly PM2.5 

monitoring data were 
collected from 1,464 

sites from 1999 through 
2008, with 10% 

reserved for cross-
validation. The base LUR 
model that predicted PM2.5 

concentrations 
included traffic within 1 km 

and green space within 
100 m3. Residual 

spatiotemporal variation in 
PM2.5 concentrations was 

interpolated with 

a BME interpolation 
model. The two estimates 
were then combined. The 

cross validation 
R2 was approximately 

0.79. Mean PM2.5 (1999–
2004) concentrations 

were used here. 

Cox proportional hazards model 
 

Models were adjusted for 
education; marital status; BMI 

and BMI squared; cigarette 
smoking status; cigarettes per 

day and 
cigarettes per day squared; 
years smoked, and years 
smoked squared; started 

smoking at younger than 18 
years of age; passive smoking 
(hours); vegetable, fruit, fiber, 
and fat intake; beer, wine, and 

liquor consumption; 
occupational exposures; an 

occupational 
dirtiness index; and six 

sociodemographic 
ecological covariates at both 

the postal code and postal code 
minus county-level mean 

derived from the 1990 U.S. 
Census (median household 

income and percentage 
of African American residents, 
Hispanic residents, adults with 

postsecondary education, 
unemployment, and poverty). 

 
Potential confounding examined 
by elevation, MSA size, annual 

average daily maximum air 
temperature, mean county-level 

residential radon 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

concentrations, and 1980 
percentage of air conditioning.   

Urman et al., 
2014 

LT Lung-
function 
decline 

8 Southern 
CA 

communities/
counties 

Cohort 
study 
(CHS) 

Central monitors in each 
community provided data 

on air pollutants. Each 
child was assigned 

exposure based on the 
child’s resident 

community. 

Linear Regression model 
 

Models were adjusted for 
demographic, socio-economic 
and anthropometric variables 

(BMI, height), study community. 

 

Wang et al., 
2017 

LT Total 
mortality 

(65+) 

7 U.S. 
Southeast 

States 

Cohort 
study 

(MEDICA
RE 

enrollees) 

Three stage Hybrid model 
to predict daily PM2.5 

concentration at 1km X 
1km resolution for the 

period 2000-2013.Annual 
average of PM2.5 for each 
grid cell calculated and 
took arithmetic mean of 

the annual average PM2.5 
across all grids in each of 

the zip code tabulation 
area (ZCTA). Participants 

were assigned annual 
averages of PM2.5 based 

on their ZCTA of 
residence. 

Cox Proportional hazard 
models 

 
Models were stratified by age 
groups, sex, race. Adjusted for 
variables: year of enrollment, 

previous admission due to CHF, 
COPD, MI and diabetes, 

numbers of days spent in ICU 
and CCU, state, ZCTA level 
socio-demographic variables 

such as % pop below poverty, 
urbanicity, lower education, 
median income and median 
home value, and behavioral 

variables such as % smokers 
and obesity at county level. 
Further model also included 

yearly mean summer 
temperature at ZCTA level. 

 
 

Average annual 
PM2.5 

concentrations of 
ZCTAs were 

used to calculate 
overall median 
PM2.5 exposure 

for the study 
location (overall 
and by state), 

and period 
(overall and by 

year). 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Wang et al., 
2020 

LT Non-
accidental 

cause-
specific 
mortality 
(Resp, 
CVD, 

cancer) 
 

Nationwide Cohort 
study 

(MEDICA
RE) 

Daily PM2.5 was estimated 
on a 6-km grid using a 
spatio-temporal model 
described in (Yanosky, 
2014) for the period of 

2000-2008. Model inputs 
included monitored PM2.5, 

meteorological and 
geospatial covariates, and 

traffic-related PM 
estimated using a 

Gaussian line-source 
dispersion model. 

Medicare beneficiaries 
were matched to the grid 
point closest to their ZIP 
code centroid and PM2.5 

concentrations were 
averaged for the 12-
month period prior to 

death.  
 

Cox hazard models. Also fit 
models using restricted cubic 

splines (RCS) with three knots 
to characterize non-linearity.  
Effect-modification assess for 
age, sex, race and urbanicity. 
Adjusted for SES variables. 

Annual average 
PM2.5 

concentration for 
participants were 
used to calculate 
overall annual m

ean PM2.5 
exposure for the 

study period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Weichenthal et 
al., 2016c 

ST Asthma 
and 

COPD ED 

15 cities in 
Ontario 

Case-
crossover 

Design 
(cases 

extracted 
from 

NACRS 
database) 

Daily average 
concentration of PM2.5 
collected from fixed-

monitoring stations for the 
period of 2004-2011 in 
Ontario, which is part of 
Canada’s National Air 

Pollution Data. PM data 
obtained from 19 sites 
located in 15 cities. 2 

years of data available for 
3 cities and remaining had 

5-8 years of daily air 
pollution data. Case and 

control days of study 
participants were 
assigned PM2.5 

concentration based on 
the city of residence and 

based on monitoring 
station closest to the 
population-weighted 

centroid of each subject’s 
3-digit postal code (if 

multiple monitors 
available in participants 
city such as Toronto and 

Hamilton). 
 

Various lags assessed: 
lag0, lag1, lag2 and mean 

of lag0-2. 

Conditional logistic regression 
models 

 
Models adjusted for 3-day 

mean temperature and relative 
humidity using cubic splines. 

Daily PM2.5 
concentrations in 
Ontario over the 
period of 2004-
2011 were used 
to calculate the 
overall mean 

PM2.5 exposure 
for the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Weichenthal et 
al., 2016b 

ST MI ED 16 cities in 
Ontario 

Case-
crossover 

Design 
(cases 

extracted 
from 

NACRS 
database) 

Daily average 
concentration of PM2.5 
collected from fixed-

monitoring stations for the 
period of 2004-2011 in 
Ontario, which is part of 
Canada’s National Air 

Pollution Data. PM data 
obtained from 20 

provincial monitoring sites 
located in 16 cities. Case 
and control days of study 

participants were 
assigned PM2.5 

concentration based on 
the monitoring station 

closest to the population-
weighted centroid of each 

subject’s 3-digit postal 
code. 

 
 

Various lags assessed: 
lag0, lag1, lag2 and mean 

of lag0-2. 
 

Conditional logistic regression 
models 

 
Models adjusted for 3-day 

mean temperature and relative 
humidity using cubic splines. 

Daily PM2.5 
concentrations in 
Ontario over the 
period of 2004-
2011 were used 
to calculate the 
overall mean 

PM2.5 exposure 
for the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Wu et al., 2020 LT All-cause 
mortality 

(65+) 

US 
Nationwide 

Cohort 
study 

(MEDICA
RE) 

Annual PM2.5 exposure. 
Modeled PM2.5 exposure 
at 1km2 grid cells across 

the US using well-
validated ensemble 

models (Di et al. 2019a, 
Di 2019b) for the period of 

2000-2016. Daily 
concentration in grid cells 

were then averaged 
to estimate 

annual concentration at 
ZIP code and then 

assigned to individual 
based on ZIP code of 

residence. 

Five statistical approaches: 2 
regression approach (Cox 

Hazard, Poisson reg); 3 causal 
inference approach (GPSs)  

 
Stratified by individual-level 

characteristics. Further adjusted 
for community-level factors 

such as smoking and BMI, zip 
code-level census variables and 

meteorological variables, 
geographic regions, and 

calendar years (2000-2016). 

 
Annual average 

PM2.5 
concentration for 
participants were 
used to calculate 

overall mean 
PM2.5 

concentration for 
the study period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Wyatt et al., 
2020 

ST All-cause, 
CVD, RD 
30-day 
hospital 

readmissi
ons 

 

530 US 
counties 

 

Case-
crossover 

and 
Cohort stu
dy designs 
(USRDS h
emodialysi
s patients) 

PM2.5 concentration 
estimates from AOD 

integrated with chemical 
transport model 

predictions, meteorology, 
land use variables for 1 
km grid cells (Di,2016). 
Gridded PM2.5 estimates 

were subsequently 
converted to population-

weighted 
county-level estimates 

using 2010 Census tract 
population values. Daily 

PM2.5 was linked to patient 
hospitalizations based on 

the county of their last 
dialysis visit.                                                                                                                  

 
Examined Lag 0 and 

unconstrained distributive 
lag model. 

 

The relative risks of hospital 
admissions associated with 

daily PM2.5 were estimated with 
conditional Poisson models for 

each of the three health 
outcomes separately. Cox 

proportional hazards models 
were used to assess the 

relative risk of early (1–7 days 
post discharge) and late (8–30 

days post discharge) 
readmission associated with 

daily PM2.5 following all-cause 
and cause-specific index 

hospitalizations. 
Cox model adjusted for time-
dependent (daily PM2.5, daily 

temperature, daily RH, and day 
of the week) and time-

independent (patient-specific 
hospitalization event and county 

SES) risk factors. 
 
 

Daily 
estimates at 

county-level were 
used to calculate 

overall PM2.5 
concentration for 

the study 
location and 

period.  
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Yap et al., 2013  ST Asthma 
HA 

12 CA 
counties 

Time 
Series 
study 

(Hospital 
admission

s) 

PM2.5 data for the period 
of 2000-2005 obtained 

from California Air 
Resources Board that 
maintains information 
from the National Air 
Monitoring Stations.  

PM2.5 reported was 24-hr 
average mass 

concentration based on 
measurements taken 

every 1, 3, or 6 days. For 
counties with more than 1 

monitoring site, daily 
average PM2.5 was 

calculated by taking the 
average across monitors 
within the county. Missing 

values were computed 
based on data from other 

monitoring stations.  
 

PM at various lags lag0-
lag6 were assessed. 

Generalized Additive Poisson 
Regression analysis were run at 

county-level 
 

Models adjusted for: long-term 
time trends and seasonality, 

day of the week and smoothing 
splines within different lags for 

temperature. Effect modification 
by single or composite area-

based SES assessed. 

Daily PM2.5 
concentrations in 
12 CA counties 
over the period 
of 2000-2005 
were used to 
calculate the 
overall mean 

PM2.5 exposure 
for the study 
location and 

period. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Yazdi et al., 
2019 

LT First HA: 
Stroke, 
COPD, 

pneumoni
a, MI, lung 

cancer, 
and HF 

 

7 
Southeastern 

states: FL, 
AL, MS, GA, 
NC, SC, and 

TN  
 

Cohort 
study 

(MEDICA
RE) 

PM2.5 concentration 
estimated from spatio-

temporal prediction model 
at 1-km2 grid cell (Di et al. 

2017) for the period of 
2000-2012. Daily PM2.5 
concentrations for grid 
cells were averaged to 

create annual PM2.5 
concentration at zip code 

level and assigned to 
study participants based 

on the zip code of 
residence 

 

Marginal structural Cox 
proportional hazards models 

which was weighted with 
stabilized IPWs (to approximate 

a causal model).  
Adjusted for individual-level 

variables (sex, race, year, state, 
Medicaid eligibility), as well as 

census SES. 

NR   
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Zanobetti et al., 
2009 

ST Heart 
Failure 

and MI HA 
65+ 

26 US 
communities 

Time 
Series 
study 

(MEDICA
RE 

enrollees 
data) 

PM2.5 data obtained from 
US EPA AQS for the 

period of 2000-2003. For 
majority of cities, 

metropolitan counties 
encompassed the city and 

its suburbs but some 
cities like Boston, 

Minneapolis-St Paul 
included multiple counties. 
Daily PM2.5 data available 
for various monitors were 
averaged over the county 
and community (Monitors 
ranged from 1-4). Before 

averaging, however, 
monitors were tested for 
correlations and those 

with correlation <0.8 with 
2 or more monitor pairs 

within a county were 
excluded considering it 

does not represent 
exposure for general 

population.  
 

Generated 2-day moving 
average (lag01) 
concentration 

Poisson regression analysis 
 

Models stratified by season. 
Controlled for long-term trend 
with natural cubic spline for 

each season and year, day of 
the week, three-day average 
temperature and dew point 

temperature. 
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Zanobetti and 
Schwartz, 2009 

ST All-cause, 
CVD and 

respiratory 
mortality 

112 US cities Time 
Series 
study 

(NCHS 
data) 

PM2.5 data obtained from 
US EPA AQS (NAMS and 

SLAMS providing daily 
PM2.5 concentration) for 
the period of 1999-2005. 

For majority of cities, 
counties encompassed 
the city but some cities 

like Boston, Atlanta, 
Washington DC, the city 

included multiple counties. 
Daily PM2.5 (24-hr) data 

available for various 
monitors were averaged 
over the county and city. 

Before averaging, 
however, monitors were 

tested for correlations and 
those with correlation <0.8 

with 2 or more monitor 
pairs within a county were 

excluded considering it 
does not represent 

exposure for general 
population. Used 

standardized method to fill 
in the missing data in 
some monitors with at 

least 265 days of data in 
at least one year. 

 
 

Generated 2-day moving 
average (lag 01) 

concentration 

Poisson regression analysis 
 

First city- and season-specific 
Poisson regression was run, 

and then city-specific estimates 
were combined using random 

effects approach in total by 
season and region. 

 
Controlled for long-term trend 
with natural cubic spline for 

each season and year, day of 
the week, same day, and 
previous day temperature. 

Daily PM2.5 
concentrations in 

112 US cities 
over the period 
of 1999-2005 
were used to 
calculate the 
overall mean 

PM2.5 exposure 
for the study 
location and 
period??? 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Zanobetti et al., 
2014 

ST All-cause 
mortality 

65+ 

121 US 
communities/

cities 

Case-
Crossover 

Design 
(MEDICA

RE 
enrollees) 

PM2.5 data obtained from 
US EPA AQS. Daily PM2.5 
data available for various 
monitors were averaged 
over the communities. 

Participants were 
assigned 2-day moving 
average (lag 0 and 1) 

based on community of 
residence. 

Conditional logistic regression 
models at community level. In a 
second stage of analysis, the 

community specific results were 
combined using the multivariate 

meta-analysis techniques 
 

Conditional logistic regression 
controlled for confounders such 
as average temp for the same 

and previous day. Temperature 
was modelled using spline to 

account for nonlinear 
relationship. Effect modification 

tested for cause of prior 
admission due to neurological 
disorders or diabetes, primary 

or secondary hospitalization for 
other disease conditions. 

Stratified analysis by sex, age, 
or race. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Zeger et al., 
2008 

LT All-cause 
mortality 

65+ 

668 U.S 
Urban 

counties 

Retrospec
tive 

Cohort 
Study of 

MEDICAR
E 

enrollees 
(MCAPS) 

PM2.5 data (every 6th day 
at many locations) 

available from US EPA’s 
AirData Database for the 

period of 2000-2005. 
Calculated mean annual 

PM2.5 concentration for all 
4,568 ZIP code centroids 
within 6 miles of a monitor 
with >10 months of data 
per year. Given the focus 

of study on long-term 
exposure, ZIP code 6-

year average of PM2.5 was 
calculated and assigned 

to study participants living 
within a zip code both 
during the 6 years of 

follow-up and some time 
before cohort enrollment. 

Log-linear Regression model 
ran for specific US regions 

separately 
 

Models adjusted for individual 
socio-demographic variables 

and ZIP code level SES 
variables (education, income, 
poverty etc.). Also included 

standardized mortality ratio for 
COPD as a surrogate indicator 
of long-term smoking pattern of 

its residents. 
 
 

Average annual 
PM2.5 

concentrations of 
ZIP codes were 

used to calculate 
overall mean 

PM2.5 exposure 
for the study 

location (all and 
by region) for the 

study period 
2000-2005. 
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Citation 
Long-term 
(LT)/Short
-term (ST) 

Health 
Endpoint 

Geographic 
Area 

Study 
Design 

Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Calculation of 
study reported 

mean PM2.5 

concentrations 

Zhang et al., 
2021 

LT Non-
accidental, 
CVD and 

respiratory 
mortality 

 

Ontario, 
Canada 

 

Cohort 
study 

(Ontario 
Health 
Study)  

PM2.5 exposures derived 
from AOD retrievals using 
GEOS-Chem calibrated to 
surface measurements by 

GWR (van Donkelaar, 
2015). PM2.5 estimates at 

1 km2 were used to 
estimate annual PM2.5 

average and then 3-year 
and 5-year moving 

averages. These annual 
estimates were then 

assigned to participants 
based on postal code of 

residence (updated 
annually to account for 

residential mobility).  
 

Cox proportional hazard 
models.  

Basic model stratified by age, 
sex, ethnicity, enrollment year 
to control for baseline risks. 

Models were adjusted for born 
in Canada, education, marital 

status, household income, BMI, 
fruits, and vegetable intake, 

smoking and drinking, physical 
activity, urban/rural, and various 

neighborhood level SES 
indicators. 

 

The 5-
year average 

PM2.5 
concentrations 
were used to 

calculate overall 
mean PM2.5 

concentration for 
the baseline 

year.  

1 
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1 

 This appendix provides supplemental information related to the risk assessment described 2 

in section 3.4 of this draft PA for the reconsideration of the 2020 final decision on the particulate 3 

matter (PM) National Ambient Air Quality Standards (NAAQS), including: 4 

• Additional technical detail on the risk assessment approach, including sources and 5 

derivation of key inputs to the risk modeling process (section C.1). 6 

• Supplemental risk results (section C.2) intended to provide additional context for the 7 

summary risk estimates presented in sections 3.4.2.1-3.4.2.3. 8 

• Additional technical detail on the at-risk analytic approach, including sources and 9 

derivation of key inputs to the risk modeling process (section C.3). 10 

• Supplemental at-risk analytics (section C.3.4.2) intended to provide additional context for 11 

the summary risk estimates presented in section 3.4.2.4. 12 

• Characterization of variability and uncertainty related to the risk assessment (section C.5) 13 

intended to provide additional context for section 3.4.2.5. 14 

 15 

C.1 ADDITIONAL TECHNICAL DETAIL ON THE RISK ASSESSMENT 16 

APPROACH 17 

As discussed in section 3.4, our general approach to estimating PM2.5-associated human 18 

health risks in this reconsideration utilizes concentration-response (CR) functions obtained from 19 

epidemiologic studies to link ambient PM2.5 exposure to risk in the form of mortality incidence 20 

(counts). The derivation and use of this type of CR function in modeling PM2.5-attributable risk 21 

is well documented both in previous PM NAAQS-related risk assessments (section 3.1.2 of U.S. 22 

EPA, 2010) and section C.1.1 of this appendix. Inputs required to model risk using CR functions 23 

are identified below (Figure C-1) and include  24 

(1) the CR functions themselves, obtained from epidemiologic studies (section C.1.1 and 25 

C.3.2),  26 

(2) baseline health incidence data and information on population demographics (section 0 27 

and C.3.4),  28 

(3) study areas (section C.1.3), and  29 

(4) modeled ambient PM2.5 concentrations corresponding to air quality scenarios of interest 30 

(section C.1.4).  31 

 32 
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 1 

 Key inputs to the risk assessment.  2 

 3 

C.1.1 Selection of Key Health Endpoints and Specification of Concentration-Response 4 

Functions from Epidemiologic Studies  5 

In selecting specific CR functions for the risk assessment, we began by considering 6 

health outcomes for which the 2019 Integrated Science Assessment (ISA) determined the 7 

evidence supports either a “causal” or a “likely to be causal” relationship with short- or long-8 

term PM2.5 exposures (U.S. EPA, 2019). As discussed in Chapter 3 (Table 3-1), these outcomes 9 

include the following:  10 

• mortality (resulting from long- and short-term exposure),  11 

• cardiovascular effects (resulting from long- and short-term exposure),  12 

• respiratory effects (resulting from long- and short-term exposure), 13 

• cancer (resulting from long-term exposure), and  14 

• nervous system effects (resulting from long-term exposure).  15 

We focused the risk assessment on short- and long-term PM exposure-related mortality, 16 

reflecting its clear public health importance, the large number of epidemiologic studies available 17 

for consideration, and the broad availability of baseline incidence data. The specific set of health 18 

effect endpoints included in the risk assessment are: 19 

• Long-term PM exposure-related mortality: all-cause  20 
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• Short-term PM exposure-related mortality: all-cause and non-accidental  1 

 To identify specific epidemiologic studies for potential inclusion in the risk assessment, 2 

we focus on U.S. multicity studies assessed in the 2019 ISA. These studies are identified in 3 

section 3.4.1.5 of this draft PA. Of these, we used the following criteria to identify the specific 4 

set of studies for inclusion in the risk assessment: 5 

• National-scale geographic coverage: We focus on epidemiologic studies reporting 6 

national-level CR functions. Epidemiologic studies that focus on individual cities or 7 

regions were excluded. Focusing on national-level epidemiologic studies has the benefit 8 

of characterizing PM2.5-associted risks broadly across the U.S. and in relatively large 9 

populations (compared with single-city or regional studies), which tends to improve 10 

precision in the CR functions generated.  11 

• Evaluation of relatively lower ambient PM concentrations: In selecting epidemiology 12 

studies, to the extent possible, we focus on those studies which characterized the ambient 13 

PM2.5-mortality relationship at levels at or near the current NAAQS, given that the risk 14 

assessment would be focusing on evaluating risk associated with the current NAAQS.  15 

• Populations with available baseline incidence data: For some populations (e.g., diesel 16 

truck drivers), it can be challenging to model risk at the national-level given uncertainties 17 

associated with specifying key inputs for risk modeling (i.e., baseline incidence rates for 18 

mortality endpoints and detailed national-level demographics). For that reason, we focus 19 

on those epidemiology studies providing CR functions for populations readily 20 

generalizable to the broader U.S. population (e.g., specific age groups not differentiated 21 

by additional socio-economic, or employment attributes).  22 

• Estimates of long-term PM2.5 exposures based on hybrid modeling approaches: For long-23 

term PM2.5 exposures, we focus on epidemiologic studies that estimate exposures with 24 

hybrid modeling approaches. The rationale for this decision is the agreement between the 25 

design of these epidemiology studies (i.e., their use of hybrid-based modeling approaches 26 

in characterizing ambient PM) and the hybrid air quality surfaces we are using in this risk 27 

assessment. This general agreement between the air modeling surfaces used in long-term 28 

mortality epidemiology studies and our air quality modeling reduces uncertainty in the 29 

risk assessment.  30 

• Estimates of short-term PM2.5 exposures based on composite monitor data: Short-term 31 

mortality epidemiology studies utilizing hybrid modeling approaches, which are fewer in 32 

number compared with long-term mortality studies, tend to be regional in scope and did 33 

not meet the criterion of providing national-scale effect estimates. For that reason, in 34 

modeling short-term mortality, epidemiology studies utilizing composite-monitor based 35 

exposure surrogates were used as the basis for deriving CR functions. We recognize the 36 

uncertainty introduced into the modeling of short-term mortality due to the use of CR 37 

functions obtained from studies utilizing composite monitors. However, we felt these use 38 

of national-scale epidemiology studies was a more important criterion for selection.     39 

• Evaluation of potential confounders and effect modifiers:  To the extent possible, 40 

preference was given to studies which more fully address potential confounders and 41 

effect modifiers and to those studies which utilize individual (rather than ecological) 42 
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measures in representing those confounders/effect modifiers. Recognizing that both 1 

single- and co-pollutant models have advantages and disadvantages in characterizing the 2 

ambient PM-mortality relationship, to the extent possible, we include epidemiology 3 

studies (and associated CR functions) based on either single- or co-pollutant models that 4 

include ozone. Additional information available in the Estimating PM2.5 and Ozone- 5 

Attributable Health Benefits TSD associated with the 2021 Revised Cross-State Air 6 

Pollution Rule Update (RCU) (U.S. EPA, 2021b). 7 

• Exploration of multiple approaches for estimating exposures: For studies that estimate 8 

PM2.5 exposures using hybrid modeling approaches, preference was given to studies that 9 

also explore additional methods for estimating exposures (i.e., multiple hybrid methods 10 

or hybrid methods plus monitor-based methods) and compare health effect associations 11 

across approaches.  12 

Application of the criteria listed above resulted in the selection of the epidemiology 13 

studies presented in Table C-1 for inclusion in the risk assessment as sources of effect estimates. 14 

Table C-1 includes summary information on study design, details on the selection of effect 15 

estimates, the derivation of beta values, and specification of CR functional form based on those 16 

effect estimates for use in the risk assessment. The procedure used to derive CR functions 17 

(including specification of beta values and mathematical forms for those functions) is described 18 

below.  19 

The remainder of this section describes the method used in specifying the CR functions 20 

used in the PM NAAQS HHRA. Information presented in this section is drawn from the EPA’s 21 

Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE) 22 

Manual, Appendix C.1 CR functions translate changes in ambient PM2.5 into changes in baseline 23 

incidence rates for specific disease endpoints utilizing beta (β) values obtained from 24 

epidemiology studies studying the association between ambient PM2.5 exposure and specific 25 

health endpoints. β values (and associated standard errors) are based on effect estimates obtained 26 

from the underlying epidemiology studies. In addition, the mathematical forms for the health 27 

impact functions specified for use in this risk assessment reflect the models used in the 28 

epidemiology studies providing those effect estimates. Consequently, derivation of the β values 29 

based on effect estimates from underlying epidemiology studies (and specification of the form of 30 

the health impact functions) represents a key step in the design of the HHRA. 31 

The majority of the epidemiology studies providing effect estimates for this PM HHRA 32 

utilized either Poisson or Cox proportional hazard models which result in exponential (or log-33 

linear) forms for the CR functions, where the natural logarithm of mortality incidence is a linear 34 

 
1 https://www.epa.gov/benmap/benmap-ce-manual-and-appendices  
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function of PM2.5.
2 If we let x0 denote the baseline (starting) PM2.5 level, and x1 denote the 1 

control (ending) PM2.5 level, y0 denote the baseline incidences rate of the health effect, and Pop 2 

the underlying population count for the applicable demographic group in the spatial unit of 3 

analysis3 we can derive the following CR function specifying the relationship between the 4 

change in x, Δx= (x0- x1) and the corresponding change in y, Δy (mortality incidence): 5 

 6 

∆𝑦 = 𝑦0[1 − 𝑒−𝛽∆𝑥] * Pop 7 

 8 

Given that the epidemiology studies providing effect estimates for long-term exposure-9 

related mortality and short-term exposure-related mortality in the context of the current PM 10 

HHRA (Table C-1) use different categories of models (Cox proportional hazard and 11 

Poisson/Logistic, respectively) we describe the process of deriving the betas and specifying CR 12 

functional forms separately for each of these endpoint categories. As noted earlier, the logit 13 

model utilized in Zanobetti et al., 2014, is discussed at the end of the section covering short-term 14 

PM2.5-related mortality. 15 

 16 

Derivation of betas for long-term PM2.5 exposure-related mortality  17 

Cox proportional hazard models used to evaluate mortality associated with long-term 18 

PM2.5 exposure are designed to model effects on population survival. This class of epidemiology 19 

model is based on a hazard function, defined as the probability that an individual dies at time t, 20 

conditional on that individual having survived up to time t. As such, the hazard function 21 

represents a time-specific snapshot of the rate of mortality (events per unit time) within a study 22 

population. While the risk can vary over time, in the case of the Cox proportional hazard model, 23 

it is assumed that the hazard ratio is constant. The proportional hazard model takes the form: 24 

ℎ(𝑋, 𝑡) = ℎ0(𝑡)𝑒
𝑋•𝛽 25 

Where X is a vector of explanatory variables, β is a vector of associated coefficients and 26 

ho(t) is the baseline hazard (the risk when all covariates (X) are set to zero).  27 

Epidemiology studies utilizing the Cox proportional hazard model in characterizing 28 

ambient PM2.5-health effects typically report hazard ratios (HRs) as the effect estimate. HRs 29 

represent the ratio of hazard functions for the baseline and control scenarios reflecting a specific 30 

 
2 One study. Zanobetti et al., 2014, supporting the modeling of short-term PM2.5 exposure-related mortality provided 

a logistic-based model form, which is discussed at the end of this section. 

3 Spatial unit of analysis refers to the geographic scale at which the CR function is applied in generating a risk 

(incidence) estimate (e.g., zip code, county, 12km grid cell). Typically, the spatial unit of analysis used in a REA 

is based on the spatial scale reflected in the epidemiology study(s) supplying the effect estimates. For this REA, 

the spatial unit of analysis is the 12km grid cell. 
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difference in ambient PM2.5 exposure (often a 10 µg/m3 increment). The HR simplifies as shown 1 

(with the baseline hazard ratio dropping out), allowing us to readily derive the β value from this 2 

effect estimate:  3 

 4 

𝐻𝑅 =
ℎ(𝑋0,𝑡)

ℎ(𝑋𝑐,𝑡)
=

ℎ0(𝑡)𝑒
𝑋0•𝛽

ℎ0(𝑡)𝑒𝑋𝑐•𝛽
= 𝑒𝛥𝑃𝑀•𝛽  5 

It is then possible to calculate the beta as follows: 6 

 7 

𝛽 =
𝐼𝑛(𝐻𝑅)

𝛥𝑃𝑀
  8 

As noted in Sutradhar and Austin, 2018, the HR associated with a Cox-proportional 9 

hazard model may approximate the RR when the effect estimate (and consequently the β) is 10 

relatively small. This is the case with the effect on mortality modeled for long-term exposure to 11 

ambient PM2.5 (i.e., the size of the effect estimate supports an assumed equivalency between HR 12 

and RR). The near equivalency between the HR and RR, allows us to utilize the β derived above 13 

in a CR function based on a log-linear functional form of the type presented earlier, to model 14 

changes in mortality related to changes in ambient PM.     15 

 16 

Derivation of betas for short-term PM2.5 exposure-related mortality 17 

The epidemiology studies selected for use in modeling short-term PM2.5 exposure-related 18 

mortality utilize both the Poisson (log-linear) model form (Baxter et al., 2017) and the logit 19 

model form (Zanobetti et al., 2014).4 In both cases, the epidemiology studies provide effects in 20 

terms of percent increase in mortality.  21 

The log-linear (Poisson) model is used to evaluate effects associated with continuous 22 

(count) events. With the log-linear (Poisson) model, the relative risk is simply the ratio of the 23 

two risks:  24 

 𝑅𝑅 =
𝑦0

𝑦𝑐
= 𝑒𝛽•𝛥𝑃𝑀  25 

The derivation of the beta with a Poisson model specified RR is as follows. Taking the 26 

natural log of both sides, the beta coefficient in the CR function underlying the relative risk can 27 

be derived as:  28 

𝛽 =
𝐼𝑛(𝑅𝑅)

𝛥𝑃𝑀
  29 

 
4 Note that the Ito et al., 2013 study also utilizes a Poisson model. However, that study provides beta values 

(including standard errors) and for that reason the results of this study are directly applicable in modeling changes 

in mortality without any of the derivations presented here for the other studies.  
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The beta derived in this fashion can then be used with a log-linear functional form (as 1 

presented earlier) to model changes in mortality related to changes in ambient PM.   2 

The logistic model form is used to model dichotomous events. With the logistic model 3 

form, when we are provided with a RR value, as is the case here, we can make a similar 4 

assumption to that used above with the Cox proportional hazard function (i.e., that the OR and 5 

RR approach equivalency under conditions of relatively small effect levels). That observation in 6 

turn allows us to assume that  7 

 8 

𝑅𝑅 =
𝑦0

𝑦𝑐
= (1 − 𝑦0) × 𝑒−𝛥𝑃𝑀•𝛽 + 𝑦0  9 

Then, assuming (based on the relatively small size of the baseline incidence) that: 10 

  11 

 𝑒−𝛥𝑃𝑀•𝛽 ≅ (1 − 𝑦0) × 𝑒−𝛥𝑃𝑀•𝛽 + 𝑦0  12 

⇒ 𝑅𝑅 ≅ 𝑒−𝛥𝑃𝑀•𝛽  13 

It is then possible to calculate the underlying beta coefficient as follows:  14 

 15 

𝐼𝑛(𝑅𝑅)

−𝛥𝑃𝑀
≅ 𝛽  16 

Since the derivation of the beta is based on the assumption of a log linear functional 17 

form, we can apply the beta in a log-liner CR function of the form described earlier:  18 

 19 

∆𝑦 = 𝑦0[1 − 𝑒−𝛽∆𝑥] * Pop 20 

 21 

 22 
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Table C-1. Details regarding selection of epidemiology studies and specification of concentration-response functions for the 1 

risk assessment. 2 

Reference 
and Title 

Study Description 
Exposure 
Estimation 
Approach 

CR Function 
Location of CR 
Function(s) in 

Article 

Additional 
Notes on CR 
Function(s) 
Selection 

Epidemio-
logic 

Statistic 

Mortality 
Endpoint 

Selected 
Effect 

Estimate 

Selected 
Beta 

Selected 
Beta 

Standard 
Error (SE) 

Long-term exposure-related mortality studies  

Di et al., 2017 
 
Air Pollution 
and Mortality 
in the 
Medicare 
Population  
 
  

Exploring relationship between 
air pollution (ozone, PM2.5) and 
mortality 
Key details: 
- Medicare population (65+) 
- ecological control for 
confounders  
- all-cause mortality only 
- provides CR function slopes 
for areas above and below the 
current PM NAAQS level (but 
model for areas below current 
standard only done for low 
ozone cells) 

Exposures estimated 
at zip code of 
residence based on 
a neural network 
model that 
incorporates satellite 
data, chemical 
transport modeling, 
land-use terms, 
meteorology data, 
monitoring data, and 
other data  
 

Cox proportional-
hazards model 
with a 
generalized 
estimating 
equation to 
account for the 
correlation 
between ZIP 
codes 

Table 2 
Risk of death 
associated with an 
increase of 10 µg/m3 
PM2.5 or an increase 
of 10 ppb in ozone 
concentration. Uses 
single pollutant 
model for full 
analysis. 

Using single 
pollutant, full PM 
range model 
(model for <12 
µg/m3 applicable 
to only low-
ozone days)5 

Hazard ratio 
(95 percent 

CI) 

All-cause 

1.073 
(1.071, 
1.075) 

7.0E-03 1E-04 

Turner et al., 
2016 

 
Long-Term 

Ozone 
Exposure and 
Mortality in a 

Large 
Prospective 

Study 

Evaluates the relationship 
between long-term exposure 
to ambient PM2.5 and all-cause 
and cause-specific mortality. 
Also, estimated the 
association between PM2.5, 
regional PM2.5, and near-
source PM2.5 and mortality in 
single-pollutant, copollutant 
and multipollutant models.  
- ACS (30+) 
- Includes lung cancer 
(otherwise similar results to 
Pope et al., 2015) 
- county-level assessment 

Exposures estimated 
at residential 
locations based on 
land use data and 
ground-based 
monitors 

Cox proportional 
hazard model 

Table E4. Adjusted 
HRs (95th percentile 
CI) for all-cause and 
cause-specific 
mortality in relation to 
each 10 unit increase 
in PM2.5 LUR-BME 
concentrations, 
follow-up 1982-2004, 
CPS-II cohort, United 
States (n = 669,046). 

Note that the 
non-cancer 
mortality 
endpoints 
provided in table 
E4 appear to 
mirror those 
provided in Table 
1 of Pope et al., 
2015 -so will use 
long-cancer 
effect estimate 
from this study 
only. 

Hazard ratio 
(95 percent 
CI) 

All-cause 

1.06 
(1.04-
1.08) 

5.8E-03 9.6E-04 

Short-term exposure-related mortality studies 

 
5 We note that Di et al., 2017 does include a copollutant model-based effect estimate (HR 1.073, 95th%CI 1.071-1.075). Had this effect estimate been used in risk 

modeling (which would translate into a beta value of 7.05E-3), we would anticipate the risk estimates for all-cause mortality to be slightly less (`13% lower based 

on comparison of calculated betas) than those estimated based on the single-pollutant model used in this risk assessment.  
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Reference 
and Title 

Study Description 
Exposure 
Estimation 
Approach 

CR Function 
Location of CR 
Function(s) in 

Article 

Additional 
Notes on CR 
Function(s) 
Selection 

Epidemio-
logic 

Statistic 

Mortality 
Endpoint 

Selected 
Effect 

Estimate 

Selected 
Beta 

Selected 
Beta 

Standard 
Error (SE) 

Baxter et al., 
2017 
 
Influence of 
exposure 
differences in 
city-to-city 
heterogeneity 
in PM2.5-
mortality 
associations 
in U.S. cities 

Uses cluster-based approach 
to evaluate the impact of 
residential infiltration factors 
on inter-city heterogeneity in 
short-term PM-mortality 
associations.  
- Mortality data from NCHS - 
77 U.S. CBSAs (all ages) 
- non-accidental mortality 
- CBSA-level assessment 

Exposure estimates 
based on data from 
ground-based 
monitors 

Poisson (log-
linear) at city-
level then 
aggregated 

Obtained from 
results section in the 
text. After pooling the 
city-specific effect 
estimates into an 
overall effect 
estimate, short-term 
PM2.5 exposure was 
found to increase 24-
hr non-accidental 
mortality by 0.33% 
(95% CI: 
0.13, 0.53). Based 
on lag 2 (day 0-1) 

NA 

Percent 
increase in 
24-hr 
mortality (95 
percent CI) 

24-hr non-
accidental 
mortality 

0.33 
(0.13-
0.53) 

3.29E-04 1.02E-04 

Ito et al., 2013 
 
NPACT study 
3. Time-series 
analysis of 
mortality, 
hospitalization
s, and 
ambient PM2.5 
and its 
components 

Use factor analysis to 
characterize pollution sources, 
assess the association 
between PM2.5 and PM2.5 
components with morbidity 
and mortality outcomes. Also 
evaluates pollution levels, 
land-use, and other variables 
as modifiers that may explain 
inter-city variation in PM-
mortality effect estimates. 
- Mortality data from NCHS - 
150 and 64 U.S. cities (two 
analyses) (all ages) 
- MSA-level assessment 

Exposure estimates 
based on data from 
ground-based 
monitors 

Poisson GLM Appendix G, Table 
G.6 for Figure 4 - use 
all-year lag 1 Beta: 
Regression 
coefficients (beta) 
and their SE for air 
pollutants at lag 0 
through 3 days used 
to compute percent 
excess risks in 
figures shown in the 
main text and in 
Appendices B and G 
(corresponding 
figures are noted).  

Utilized lag-1 (all 
year) beta 
because that had 
the strongest 
effect for CVD 
mortality and 
wanted our all-
cause to reflect 
that stronger lag-
association for 
the CVD effect 
(even though 
focusing on all-
cause) 

Betas with 
SE (no 
conversion 
required) 

24-hr all-
cause 
mortality 

Study 
provided 
beta and 

SE 

1.45E-04 7.47E-05 
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Reference 
and Title 

Study Description 
Exposure 
Estimation 
Approach 

CR Function 
Location of CR 
Function(s) in 

Article 

Additional 
Notes on CR 
Function(s) 
Selection 

Epidemio-
logic 

Statistic 

Mortality 
Endpoint 

Selected 
Effect 

Estimate 

Selected 
Beta 

Selected 
Beta 

Standard 
Error (SE) 

Zanobetti et 
al., 2014 
 
A national 
case-
crossover 
analysis of 
the short-term 
effect of PM2.5 
on 
hospitalization
s and 
mortality in 
subjects with 
diabetes and 
neurological 
disorders 

Estimates the effect of short-
term exposure to PM2.5 on all-
cause mortality. Additionally, 
assesses the potential for pre-
existing diseases to modify the 
association between PM2.5 and 
mortality (neurological 
disorders and diabetes)  
- Medicare cohort - 121 U.S. 
communities (65+) 
- Community-level assessment 
(community defined as the 
county or contiguous counties 
encompassing a city's 
population) 

Exposure estimates 
based on data from 
ground-based 
monitors 

Logistic 
regression 

Table 2. Percent 
increase for 10 μg/m3 
increase in the two 
days average PM2.5: 
Combined across the 
121 communities 

NA 

Percent 
increase (95 
percent CI) 

All deaths 

0.64 
(0.42-
0.85) 

6.38E-04 1.09E-04 

1 
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 1 

C.1.2 Specification of Demographic and Baseline Incidence Data Inputs 2 

This risk analysis requires both demographic and baseline-incidence data for the mortality 3 

endpoint categories evaluated. For our analyses, these data are for the year 2015 since the hybrid 4 

surfaces included in the analyses are based on a 2015 model year.6 The BenMAP-CE model7 is 5 

used in this risk assessment and the relevant demographic and baseline incidence data for the 6 

contiguous U.S., from the sources described below, is readily available within the current version 7 

of BenMAP-CE: 8 

• Demographic data: BenMAP-CE includes 2010 U.S. Census block-level age, race, 9 

ethnicity, and gender-differentiated data which the program can aggregate to various 10 

grid-level definitions selected by the user, including the 12 km grid coverage used for 11 

risk modeling in this analysis. In addition, BenMAP-CE has the ability to project future 12 

demographics using county-level projections provided by Woods & Poole, 2015. See 13 

BenMAP-CE manual Appendix J and the Estimating PM2.5 and Ozone- Attributable 14 

Health Benefits TSD associated with the 2021 RCU for additional detail (U.S. EPA, 15 

2021b). 16 

• Baseline incidence data for mortality endpoints: County-level mortality and population 17 

data from 2012-2014 for seven causes of death in the contiguous U.S. was obtained from 18 

the Centers for Disease Control (CDC) WONDER database. To estimate values for 2015, 19 

we applied annual adjustment factors, based on a series of Census Bureau projected 20 

national mortality rates for all-cause mortality. See BenMAP-CE manual Appendix D for 21 

additional detail.  22 

C.1.3 Study Area Selection 23 

In selecting U.S. study areas for inclusion in the risk assessment, we focus on the 24 

following characteristics:   25 

• Available Ambient Monitors: We have greater confidence in estimating and simulating air 26 

quality concentrations over areas with relatively dense ambient monitoring networks, as 27 

the modeled air quality surfaces can be compared with monitored concentrations (air 28 

quality adjustments are described below in section C.1.4). 29 

• Geographical Diversity: Risk assessments including areas that represent a variety of 30 

regions across the U.S. and a substantial portion of the U.S. population can be more 31 

representative.  32 

 
6 The 2015 model year was the most recent CMAQ modeling platform available at the time of the design of the risk 

assessment and represents the central year of the 2014-2016 design value (DV) period. A single modeling year 

was used in the risk assessment, rather than modeling risk for the full three-year design value period, because 

model inputs for the 2016 period were not available at the time of the study (section C.1.4.3). 

7 https://www.epa.gov/benmap  
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• Ambient PM2.5 Air Quality Concentrations: Based on 2014-2016 design values, 16 CBSA8 1 

areas exceeded either or both the current annual and 24-hr PM2.5 NAAQS. To include a 2 

larger portion of the U.S. in this risk assessment, we also identified CBSA areas with ambient 3 

PM2.5 concentrations below, but near, the current annual and/or 24-hr PM2.5 NAAQS. 4 

Inclusion of such areas in the risk assessment necessitates an upward adjustment to PM2.5 air 5 

quality concentrations in order to simulate just meeting the current standards. Given 6 

uncertainty in how such increases could potentially occur, we select areas requiring a 7 

relatively modest upward adjustment (i.e., no more than 2.0 g/m3 for the annual standard 8 

and 5 g/m3 for the 24-hour standard, based on the 2014-2016 design value period). Areas 9 

that appeared to be strongly influenced by exceptional events were also excluded (section 10 

C.1.4). Using these criteria, 47 urban study areas were identified (PA Figure 3-16 and 11 

Appendix section C.1.3), including 30 study areas where just meeting the current standards is 12 

controlled by the annual standard,9 11 study areas where just meeting the current standards is 13 

controlled by the daily standard,10 and 6 areas where the controlling standard differed 14 

depending on the air quality adjustment approach (PA Figure 3-16). 11   15 

Applying these criteria resulted in the inclusion of 47 core-based statistical areas 16 

(CBSAs). These 47 study areas are identified in Figure C-2, with colors indicating whether they 17 

meet either or both the design value cutoffs. Please note, meeting the criteria for inclusion does 18 

not mean the areas exceed the current annual and/or 24-hr PM NAAQS standards. Green 19 

indicates areas that only exceed a 24-hr design value of 30 µg/m3, blue indicates areas that only 20 

exceed an annual design value of 10 µg/m3, and red indicates areas that exceed both the 24-hr 21 

and annual design values. 22 

 23 

 
8 CBSAs (core-based statistical areas) can include one or more counties. Each CBSA selected included at least one 

monitor with valid design values and several CBSAs had more than 10 monitors. See Table C-3 in Appendix C. 

9 For these areas, the annual standard is the “controlling standard” because when air quality is adjusted to simulate 

just meeting the current or potential alternative annual standards, that air quality also would meet the 24-hour 

standard being evaluated.  

10 For these areas, the 24-hour standard is the controlling standard because when air quality is adjusted to simulate 

just meeting the current or potential alternative 24-hour standards, that air quality also would meet the annual 

standard being evaluated. Some areas classified as being controlled by the 24-hour standard also violate the 

annual standard.  

11 In these 6 areas, the controlling standard depended on the air quality adjustment method used and/or the standard 

scenarios evaluated.  
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 1 

 Map of the areas modeled in the risk assessment, colored by 2014-2016 PM2.5 2 

design values (DV). 3 

 4 

These 47 urban study areas include many highly populated CBSAs (Figure C-3 and 5 

Figure C-4). The population at or above the age of 30 in these areas includes roughly 58.4 6 

million people, or approximately 30% of the total U.S. population above the age of 30. 7 

Additional age-specific population information corresponding to each identified mortality study 8 

can be found in Table C-2. 9 

 10 
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 1 

 Map of the 2018 U.S. population by CBSA, with the selected urban study areas 2 

outlined. 3 

 4 
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 1 

 Population counts for ages 30 and above from each of the 47 CBSAs included 2 

in the risk assessment. 3 

  4 
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Table C-2. Population of the 47 urban study areas by age range. 1 

 2 

As noted in section 3.4 of the draft PA and illustrated in Figure C-5, the 47 urban study 3 

areas include 30 study areas where just meeting the simulated standards is controlled by the 4 

current annual standard (12.0 µg/m3), 11 study areas where just meeting the simulated standards 5 

is controlled by the current 24-hr standard (35 µg/m3), and 6 study areas where just meeting the 6 

simulated standards is controlled by either the annual or 24-hr standard, depending on the air 7 

quality scenario and adjustment strategy (discussed more fully in section C.1.4).  8 

 9 

Population Age 
Range (Years) 

Studies Using Age Range 

Study Area Groupings (Millions) 

47  
30 (Annual-
Controlled) 

11 (24-hr-
Controlled) 

0-99 Baxter et al., 2017 and Ito et al., 2013 98.5 82.5 7.2 

30-99 Turner et al., 2016 58.4 49.5 3.9 

65-99 Di et al., 2017 and Zanobetti et al., 2014 13.2 11.1 0.8 
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 1 

 Map of 47 Urban Study Areas Reflected in Risk Modeling Identifying Subsets 2 

Reflected in Risk Modeling (population estimates in millions of people).  3 

 4 

C.1.4 Generation of Air Quality Inputs to the Risk Assessment 5 

As described in detail below, air quality modeling was used to develop gridded PM2.5 6 

concentration fields for the risk assessment. A PM2.5 concentration field for 2015 was developed 7 

using a Bayesian statistical model that calibrates chemical transport model (CTM) predictions of 8 

PM2.5 to surface measurements (Chapter 2). The 2015 PM2.5 concentration field was then 9 

adjusted to correspond to just meeting the existing and potential alternative standards using 10 

response factors developed from CTM modeling with emission changes relative to 2015. The 11 

modeling approach applies realistic spatial response patterns from CTM modeling to a 12 

concentration field, similar to those used in a number of recent epidemiologic studies, to 13 

characterize PM2.5 fields at 12 km resolution for study areas.   14 
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The adjustments to simulate just meeting the current standards and alternative standards 1 

are approximations of these air quality scenarios. In reality, changes in PM2.5 in an area will 2 

depend on what emissions changes occur and the concentration gradients of PM2.5 will vary 3 

across an area accordingly. For our analyses, two different adjustment approaches were applied 4 

to provide two outcomes that could represent potential bounding scenarios of PM2.5 5 

concentrations changes across the study area. The two adjustment approaches used to guide the 6 

generation of these modeled surfaces were:  7 

• Primary PM-based modeling approach (Pri-PM): This modeling approach simulates air 8 

quality scenarios of interest by preferentially adjusting direct (i.e., primary, directly-9 

emitted) PM emissions. As such, the changes in PM2.5 tend to be more localized near the 10 

direct emissions sources of PM. In locations for which air quality scenarios cannot be 11 

simulated by adjusting modeled primary emissions alone, SO2 and NOX precursor 12 

emissions are additionally adjusted to simulate changes in secondarily formed PM2.5.  13 

• Secondary PM-based modeling approach (Sec-PM): This modeling approach simulates 14 

air quality scenarios of interest by preferentially adjusting SO2 and NOX precursor 15 

emissions to simulate changes in secondarily formed PM2.5. In this case, the reductions in 16 

PM2.5 tend to be more evenly spread across a study area. In locations for which air quality 17 

scenarios cannot be simulated by adjusting precursor emissions alone, a proportional 18 

adjustment of air quality is subsequently applied.  19 

The air quality surfaces generated using these two approaches are not additive. Rather, they 20 

should be viewed as reflecting two different broad strategies for adjusting ambient PM2.5 levels.  21 

In addition, we also employed linear interpolation and extrapolation to simulate air 22 

quality under two additional alternative annual standard levels, 11.0, 9.0, and 8.0 µg/m3, 23 

respectively (section 3.4.1.3 of the draft PA, Figure 3-15). Interpolation and extrapolation were 24 

only performed for grid cells in the subset of 30 urban study areas where the annual standard was 25 

controlling in both Pri-PM and Sec-PM simulated air quality scenarios of both 12/35 and 10/30 26 

standard combinations. The interpolation and extrapolation were completed at the grid-cell level 27 

based on values simulated using hybrid air quality modeling to just meet the current annual 28 

standard of 12.0 ug/m3 and alternative annual standard of 10.0 ug/m3 (section 3.4.1.3 of the draft 29 

PA, Figure 3-15). A similar linear extrapolation/interpolation was not conducted for additional 30 

24-hr standards due to the weaker relationship between the 98th percentile of 24-hr PM2.5 31 

concentrations, which are most relevant for simulating air quality that just meets the 24-hour 32 

standard, and the concentrations comprising the middle portion of the PM2.5 air quality 33 

distribution, which are most relevant for estimating risks based on information from 34 

epidemiologic studies (i.e., discussed further in sections 3.1.2 and 3.2.3.2 in the draft PA).  35 

The sections below provide more detailed information on the air quality modeling 36 

approach used to adjust air quality to simulate just meeting the current or alternative primary 37 
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PM2.5 standards. Tables containing PM2.5 DVs for the air quality projections can be found in 1 

section C.6. 2 

 3 

C.1.4.1  Overview of the Air Quality Modeling Approach 4 

To inform risk calculations, recent PM2.5 measurements were analyzed to characterize the 5 

magnitude and spatial distribution of PM2.5 concentrations. These data were then coupled with 6 

air quality modeling data to project ambient air quality levels corresponding to just meeting the 7 

existing and alternative PM2.5 NAAQS12 in specific areas. An overview of the approach is 8 

provided in Figure C-6. The process starts by acquiring PM2.5 monitoring data from EPA’s Air 9 

Quality System (AQS)13 and simulating PM2.5 concentrations with the Community Multiscale 10 

Air Quality (CMAQ)14 model for base case and emission-sensitivity scenarios (Figure C-6, Box 11 

1). The monitored and modeled data are then fused using the Downscaler model and the 12 

Software for Model Attainment Test-Community Edition (SMAT-CE)15 to develop a baseline 13 

spatial field of PM2.5 concentrations and relative response factors (RRFs) for projecting PM2.5 14 

concentrations, respectively (Figure C-6, Box 2). PM2.5 concentrations are projected in two main 15 

steps using output from Downscaler and SMAT-CE (Figure C-6, Box 3). First, the PM2.5 16 

concentrations measured at monitoring sites in an area are iteratively projected using the RRFs to 17 

identify the percent change in anthropogenic emissions required for the highest monitored DV in 18 

the area to just meet the controlling standard. Second, gridded spatial fields of PM2.5 19 

concentrations are projected using the area-specific percent emission change16 that corresponds 20 

to just meeting the standard at the controlling ambient data site. Additional details on the method 21 

are provided in (Kelly et al., 2019a; application of the method to the PM NAAQS risk 22 

assessment is described in the remainder of this appendix.  23 

 24 

 25 

 
12 The phrase, “just meeting the PM2.5 NAAQS” is defined as the conditions where the highest design value (DV) for 

the controlling standard in the area equals the existing or alternative NAAQS level under consideration. DVs are 

statistics used in judging attainment of the NAAQS (www.epa.gov/air-trends/air-quality-design-values). 

13 www.epa.gov/aqs  

14 www.epa.gov/cmaq  

15 www.epa.gov/scram/photochemical-modeling-tools  

16 Scenarios based on a statistical projection approach were also developed for certain cases as discussed below.  

http://www.epa.gov/air-trends/air-quality-design-values
http://www.epa.gov/aqs
http://www.epa.gov/cmaq
http://www.epa.gov/scram/photochemical-modeling-tools
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 1 

 Overview of the system for projecting PM2.5 concentrations to correspond to 2 

just meeting NAAQS. See section C.1.4.6 and Kelly et al., 2019a for more details. 3 

 4 

C.1.4.2  PM2.5 Monitoring Data and Area Selection 5 

The 2014-2016 DV period was the most recent period having a complete set of total and 6 

speciated PM2.5 observations available at the time of the study. PM2.5 concentrations from the 7 

2014-2016 DV period were used in selecting study areas and as the starting point for air quality 8 

projections (Figure C-6, Box 1, “AQS”). Total and speciated PM2.5 concentrations for the 2014-9 

2016 DV period were acquired from AQS. For sites in Los Angeles and Chicago, DVs were 10 

invalid during the 2014-2016 period. Los Angeles and Chicago have large populations, recent 11 

valid DVs for sites in Los Angeles are above existing standards, and Chicago is part of a CBSA 12 

that includes sites with valid 2014-2016 DVs in Indiana. For these reasons, invalid data for sites 13 

in these areas were replaced with valid data from other recent periods to enable DVs to be 14 

approximated for inclusion in the assessment. Specifically, for sites in Los Angeles and Orange 15 

Counties in California, observations from April – October 2014 were replaced with observations 16 

from the same months in 2013. For sites in Cook, DuPage, Kane, McHenry, and Will Counties in 17 

Illinois, observations from January to mid-July 2014 were replaced with observations from the 18 

same months in 2015. 19 

Of the 56 areas initially identified as above the 10/30 selection threshold17, DVs for seven 20 

areas18 appeared to meet the threshold due to the influence of wildfires. The influence of 21 

 
17 “10/30” indicates an annual standard level of 10 µg/ m3 and a 24-hr standard level of 3 µg m-3 

18 Butte-Silver Bow, MT; Helena, MT; Kalispell, MT; Knoxville, TN; Medford, OR; Missoula, MT; and Yakima, 

WA 
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wildfires on DVs for these areas was estimated in part by recalculating 2014-2016 DVs with 1 

days removed that were clearly associated with summertime wildfires in the northwest. Since 2 

wildfire influence is often excluded when judging NAAQS attainment, these seven areas were 3 

excluded from further consideration. Additionally, the Eugene, OR CBSA was excluded. One 4 

monitor in the Eugene CBSA has a 24-hr 2014-2016 DV slightly above the 10/30 selection 5 

threshold19, but the monitor is in a small valley in Oakridge with very local high concentrations 6 

of PM2.5 in winter that are distinct from conditions in the broader CBSA. Finally, the Phoenix-7 

Mesa-Scottsdale, AZ CBSA was excluded. This CBSA had one monitor slightly above the 10/30 8 

DV threshold20, but projecting concentrations for the CBSA was judged to be relatively uncertain 9 

because the annual DV is invalid at the only site that exceeded the threshold and the 24-hr DV is 10 

just above the threshold. 11 

The remaining 47 CBSAs were selected for the risk assessment. These areas are shown in 12 

Figure C-7. The maximum 2014-2016 DVs and associated sites for each CBSA are provided in 13 

Table C-3, and the counties associated with the CBSAs are listed in Table C-4. DVs were 14 

calculated to an extra digit of precision for the air quality projections compared with official 15 

DVs. This approach is consistent with DV calculations in previous air quality projections (e.g., 16 

USEPA, 201221) and provides a precise target for the iterative projection calculations.  17 

 18 

 19 

 20 

  21 

 
19 The 410392013 monitor in Oakridge has a 24-hr 2014-2016 DV of 31 µg m-3 

20 The 040213015 monitor in the Phoenix-Mesa-Scottsdale, AZ CBSA has 24-hr 2014-2016 DV of 31 µg m-3 

21 USEPA (2012) Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality 

Standards for Particulate Matter. Office of Air Quality Planning and Standards, Health and Environmental 

Impacts Division, Research Triangle Park, NC 27711. EPA-452/R-12-005 Available: 

https://www3.epa.gov/ttn/ecas/regdata/RIAs/finalria.pdf  

https://www3.epa.gov/ttn/ecas/regdata/RIAs/finalria.pdf
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 1 

 CBSAs selected for the risk assessment. Colors indicate whether the maximum 2 

2014-2016 DVs in the CBSA are above the annual (10 µg/m3) and/or 24-hr (30 µg/m3) 3 

selection criteria. 4 

  5 
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Table C-3. Maximum annual and 24-hr PM2.5 DVs for 2014-2016 and associated sites for 1 

selected CBSAs. 2 

CBSA Name 
# of 

Sites 
Annual 

Max Site 

Annual 
Max 14-16 

DV 

24-hr Max 
Site 

24-hr Max 
14-16 DV 

Akron, OH 2 391530017 10.99 391530017 23.7 

Altoona, PA 1 420130801 10.11 420130801 23.8 

Atlanta-Sandy Springs-Roswell, GA 6 131210039 10.38 131210039 19.7 

Bakersfield, CA 5 060290016 18.45 060290010 70.0 

Birmingham-Hoover, AL 4 010732059 11.25 010730023 22.8 

Canton-Massillon, OH 2 391510017 10.81 391510017 23.7 

Chicago-Naperville-Elgin, IL-IN-WI a 22 170313103 11.10 170310057 26.8 

Cincinnati, OH-KY-IN 9 390610014 10.70 390170020 24.2 

Cleveland-Elyria, OH 8 390350065 12.17 390350038 25.0 

Detroit-Warren-Dearborn, MI 11 261630033 11.30 261630033 26.8 

El Centro, CA 3 060250005 12.63 060250005 33.5 

Elkhart-Goshen, IN 1 180390008 10.24 180390008 28.6 

Evansville, IN-KY 4 181630023 10.11 181630016 22.0 

Fresno, CA 4 060195001 14.08 060190011 53.8 

Hanford-Corcoran, CA 2 060310004 21.98 060310004 72.0 

Houston-The Woodlands-Sugar Land, TX 4 482011035 11.19 482011035 22.4 

Indianapolis-Carmel-Anderson, IN 7 180970087 11.44 180970043 26.0 

Johnstown, PA 1 420210011 10.68 420210011 25.8 

Lancaster, PA 2 420710012 12.83 420710012 32.7 

Las Vegas-Henderson-Paradise, NV 4 320030561 10.28 320030561 24.5 

Lebanon, PA 1 420750100 11.20 420750100 31.4 

Little Rock-North Little Rock-Conway, AR 2 051191008 10.27 051191008 21.7 

Logan, UT-ID 1 490050007 6.95 490050007 34.0 

Los Angeles-Long Beach-Anaheim, CA a 9 060371103 12.38 060371103 32.8 

Louisville/Jefferson County, KY-IN 7 180190006 10.64 180190006 23.9 

Macon, GA 2 130210007 10.13 130210007 21.2 

Madera, CA 1 060392010 13.30 060392010 45.1 

McAllen-Edinburg-Mission, TX 1 482150043 10.09 482150043 25.0 

Merced, CA 2 060470003 11.81 060472510 39.8 

Modesto, CA 2 060990006 13.02 060990006 45.7 

Napa, CA 1 060550003 10.36 060550003 25.1 

New York-Newark-Jersey City, NY-NJ-PA 17 360610128 10.20 340030003 24.5 

Ogden-Clearfield, UT 3 490570002 8.99 490110004 32.6 

Philadelphia-Camden-Wilmington, PA-NJ-DE-
MD 

10 420450002 11.46 421010055 27.5 

Pittsburgh, PA 10 420030064 12.82 420030064 35.8 

Prineville, OR 1 410130100 8.60 410130100 37.6 

Provo-Orem, UT 3 490494001 7.74 490494001 30.9 

Riverside-San Bernardino-Ontario, CA 2 060658005 14.48 060658005 43.2 

Sacramento--Roseville--Arden-Arcade, CA 6 060670006 9.31 060670006 31.4 

Salt Lake City, UT 3 490353006 7.62 490353010 41.5 

San Luis Obispo-Paso Robles-Arroyo Grande, 
CA 

3 060792007 10.70 060792007 25.9 
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CBSA Name 
# of 

Sites 
Annual 

Max Site 

Annual 
Max 14-16 

DV 

24-hr Max 
Site 

24-hr Max 
14-16 DV 

South Bend-Mishawaka, IN-MI 1 181410015 10.45 181410015 32.5 

St. Louis, MO-IL 6 290990019 10.12 295100007 23.7 

Stockton-Lodi, CA 2 060771002 12.23 060771002 38.7 

Visalia-Porterville, CA 1 061072002 16.23 061072002 54.0 

Weirton-Steubenville, WV-OH 4 390810017 11.75 390810017 27.2 

Wheeling, WV-OH 2 540511002 10.24 540511002 22.5 
a DVs for Chicago-Naperville-Elgin, IL-IN-WI and Los Angeles-Long Beach-Anaheim, CA were approximated as 
described in section C.1.4.2. 

 1 

Table C-4. Counties associated with selected CBSAs 2 

CBSA Name Associated Counties 

Akron, OH Portage, Summit 

Altoona, PA Blair 

Atlanta-Sandy Springs-Roswell, GA Barrow, Bartow, Butts, Carroll, Cherokee, Clayton, Cobb, Coweta, 
Dawson, DeKalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, 
Haralson, Heard, Henry, Jasper, Lamar, Meriwether, Morgan, 
Newton, Paulding, Pickens, Pike, Rockdale, Spalding, and Walton 

Bakersfield, CA Kern 

Birmingham-Hoover, AL Bibb, Blount, Chilton, Jefferson, St. Clair, Shelby, and Walker 

Canton-Massillon, OH Carroll, Stark 

Chicago-Naperville-Elgin, IL-IN-WI Cook, DeKalb, DuPage, Grundy, Kane, Kendall, Lake, McHenry, 
Will, Jasper, Lake, Newton, Porter, and Kenosha 

Cincinnati, OH-KY-IN Dearborn, Ohio, Union, Boone, Bracken, Campbell, Gallatin, 
Grant, Kenton, Pendleton, Brown, Butler, Clermont, Hamilton, and 
Warren 

Cleveland-Elyria, OH Cuyahoga, Geauga, Lake, Lorain, and Medina 

Detroit-Warren-Dearborn, MI Lapeer, Livingston, Macomb, Oakland, St. Clair, and Wayne 

El Centro, CA Imperial 

Elkhart-Goshen, IN Elkhart 

Evansville, IN-KY Posey, Vanderburgh, Warrick, and Henderson 

Fresno, CA Fresno 

Hanford-Corcoran, CA Kings 

Houston-The Woodlands-Sugar Land, TX Austin, Brazoria, Chambers, Fort Bend, Galveston, Harris, 
Liberty, Montgomery, and Waller 

Indianapolis-Carmel-Anderson, IN Boone, Brown, Hamilton, Hancock, Hendricks, Johnson, Madison, 
Marion, Morgan, Putnam, and Shelby 

Johnstown, PA Cambria 

Lancaster, PA Lancaster 

Las Vegas-Henderson-Paradise, NV Clark 

Lebanon, PA Lebanon 

Little Rock-North Little Rock-Conway, AR Faulkner, Grant, Lonoke, Perry, Pulaski, and Saline 
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CBSA Name Associated Counties 

Logan, UT-ID Franklin, Cache 

Los Angeles-Long Beach-Anaheim, CA Los Angeles and Orange 

Louisville/Jefferson County, KY-IN Clark, Floyd, Harrison, Scott, Washington, Bullitt, Henry, 
Jefferson, Oldham, Shelby, Spencer, and Trimble 

Macon, GA Bibb, Crawford, Jones, Monroe, and Twiggs 

Madera, CA Madera 

McAllen-Edinburg-Mission, TX Hidalgo 

Merced, CA Merced 

Modesto, CA Stanislaus 

Napa, CA Napa 

New York-Newark-Jersey City, NY-NJ-PA Bergen, Essex, Hudson, Hunterdon, Middlesex, Monmouth, 
Morris, Ocean, Passaic, Somerset, Sussex, Union, Bronx, 
Dutchess, Kings, Nassau, New York, Orange, Putnam, Queens, 
Richmond, Rockland, Suffolk, Westchester, and Pike 

Ogden-Clearfield, UT Box Elder, Davis, Morgan, and Weber 

Philadelphia-Camden-Wilmington, PA-NJ-
DE-MD 

New Castle, Cecil, Burlington, Camden, Gloucester, Salem, 
Bucks, Chester, Delaware, Montgomery, and Philadelphia 

Pittsburgh, PA Allegheny, Armstrong, Beaver, Butler, Fayette, Washington, and 
Westmoreland 

Prineville, OR Crook 

Provo-Orem, UT Juab and Utah 

Riverside-San Bernardino-Ontario, CA Riverside and San Bernardino 

Sacramento--Roseville--Arden-Arcade, CA El Dorado, Placer, Sacramento, and Yolo 

Salt Lake City, UT Salt Lake, and Tooele 

San Luis Obispo-Paso Robles-Arroyo 
Grande, CA 

San Luis Obispo 

South Bend-Mishawaka, IN-MI St. Joseph and Cass 

St. Louis, MO-IL Bond, Calhoun, Clinton, Jersey, Macoupin, Madison, Monroe, St. 
Clair, Franklin, Jefferson, Lincoln, St. Charles, St. Louis, Warren, 
and St. Louis city 

Stockton-Lodi, CA San Joaquin 

Visalia-Porterville, CA Tulare 

Weirton-Steubenville, WV-OH Jefferson, Brooke, and Hancock 

Wheeling, WV-OH Belmont, Marshall, and Ohio 

 1 

C.1.4.3  Air Quality Modeling 2 

Air quality modeling was conducted using version 5.2.1 of the CMAQ modeling system 3 

(Appel, 2018) to develop a continuous national field of PM2.5 concentrations and estimates of 4 

how concentrations would respond to changes in PM2.5 and PM2.5 precursor emissions (Figure C-5 

6, “CMAQ”). The CMAQ modeling domain (Figure C-9) covered the contiguous U.S. with 12 6 

km horizontal resolution and 35 vertical layers. Since 2015 was the most recent modeling 7 
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platform available at the time of the study and represents the central year of the 2014-2016 DV 1 

period, 2015 was selected as the baseline modeling year for the PM2.5 projections. A single 2 

modeling year was used due to the time and resources needed to conduct photochemical grid 3 

modeling, and because model inputs for the 2016 period were not available at the time of the 4 

study.  5 

Information on the CMAQ model configuration for the 2015 modeling is provided in 6 

Table C-5. The 2015 model simulation and its evaluation against network measurements of 7 

speciated and total PM2.5 has been described in detail previously (Kelly et al., 2019b). Model 8 

performance statistics for PM2.5 organic carbon, sulfate, and nitrate were generally similar to or 9 

improved compared to the performance for other recent national 12 km model simulations. One 10 

exception to the generally good model performance was identified for the Northwest region (OR, 11 

WA, and ID). Model performance statistics for this region were generally not as good as in our 12 

recent modeling due to issues related to unusually high fire influences in 2015, atmospheric 13 

mixing over sites near the Puget Sound, and other factors. However, model performance issues 14 

in the Northwest have minimal influence on the risk assessment, because only two of the 47 15 

CBSAs are in the Northwest region (i.e., Prineville, OR and part of the Logan, UT-ID, CBSA). 16 

Also, the analysis uses ratios of model predictions rather than absolute modeled concentrations, 17 

and systematic biases associated with mixing height and fire impact estimates may largely cancel 18 

in the ratios. Moreover, fusion of monitor data with model predictions in developing PM2.5 RRFs 19 

and the baseline concentration field helps mitigate the influence of biases in model predictions 20 

(as discussed below). Overall, the model performance evaluation (Kelly et al., 2019b) indicates 21 

that the 2015 CMAQ simulation provides concentration estimates that are generally as good or 22 

better than in other recent applications and are reliable for use in projecting PM2.5 in the risk 23 

assessment. Model performance statistics for PM2.5 by U.S. climate region and season are 24 

provided in Table C-6 and statistic definitions can be found in Table C-7. 25 

 26 

 27 
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 1 

 CMAQ modeling domain. 2 

 3 

Table C-5. CMAQ model configuration. 4 

Category Description 

Grid resolution 12 km horizontal; 35 vertical layers 

Gas-phase chemistry Carbon Bond 2006 (CB6r3) 

Organic aerosol Non-volatile treatment for primary organic aerosol; secondary organic 
aerosol from anthropogenic and biogenic sources 

Inorganic aerosol ISORROPIA II 

NH3 surface exchange Bi-directional NH3 surface exchange 

Windblown dust emissions Simulated online 

Sea-spray emissions Simulated online 

Meteorology Version 3.8 of Weather Research & Forecasting (WRF) Skamarock et 
al., 2005 model 

 5 

Table C-6. Model performance statistics22,23 for PM2.5 at AQS sites for the 2015 base case.  6 

Region23 Season N 
Avg. 
Obs. 

(µg m-3) 

Avg. 
Mod. 

(µg m-3) 

MB22 
(µg m-3) 

NMB22 
(%) 

RMSE22 
(µg m-3) 

NME22 
(%) 

r22 

Northeast 

Winter 13001 10.04 12.74 2.71 27.0 7.33 48.0 0.68 

Spring 13538 7.97 8.83 0.86 10.8 5.19 44.0 0.59 

Summer 13660 8.38 8.02 -0.36 -4.3 4.06 35.2 0.67 

Fall 13270 7.18 9.08 1.90 26.5 5.40 50.0 0.73 

Annual 53469 8.38 9.64 1.26 15.0 5.60 44.2 0.67 

Southeast 

Winter 11190 8.07 10.28 2.21 27.4 5.65 47.4 0.58 

Spring 11961 8.06 8.25 0.18  2.3 4.08 33.6 0.55 

Summer 11641 9.78 8.45 -1.33 -13.6 4.86 35.3 0.47 

Fall 11365 6.93 8.13 1.20 17.3 4.32 41.7 0.70 

 
22 See Table C-7 for definition of statistics. 

23 See Figure C-10 for definition of regions. 



October 2021 C-28 Draft – Do Not Quote or Cite 

Region23 Season N 
Avg. 
Obs. 

(µg m-3) 

Avg. 
Mod. 

(µg m-3) 

MB22 
(µg m-3) 

NMB22 
(%) 

RMSE22 
(µg m-3) 

NME22 
(%) 

r22 

Annual 46157 8.22 8.76 0.54  6.6 4.75 39.1 0.55 

Ohio Valley 

Winter 10323 9.49 11.60 2.10 22.1 5.75 43.2 0.63 

Spring 10867 8.90 9.85 0.95 10.6 4.60 36.3 0.65 

Summer 10714 10.95 10.56 -0.39 -3.6 5.55 34.3 0.55 

Fall 10568 8.41 10.96 2.54 30.2 6.23 47.1 0.65 

Annual 42472 9.44 10.73 1.29 13.6 5.56 39.8 0.59 

Upper Midwest 

Winter 6478 8.79 9.72 0.92 10.5 4.75 38.2 0.70 

Spring 6643 7.32 8.27 0.96 13.1 4.30 41.9 0.67 

Summer 6718 7.88 7.85 -0.03 -0.4 5.26 40.8 0.56 

Fall 6664 6.81 9.14 2.33 34.2 4.92 49.3 0.75 

Annual 26503 7.69 8.74 1.04 13.6 4.82 42.2 0.64 

South 

Winter 8041 7.53 10.13 2.60 34.5 11.81 56.6 0.36 

Spring 8369 8.08 7.12 -0.96 -11.9 4.24 36.3 0.51 

Summer 8440 10.80 8.31 -2.49 -23.0 6.04 40.3 0.34 

Fall 8340 7.55 7.99 0.44  5.9 3.76 35.5 0.63 

Annual 33190 8.50 8.37 -0.13 -1.6 7.15 41.8 0.34 

 
Southwest 

Winter 4911 7.46 7.90 0.45  6.0 6.50 55.9 0.52 

Spring 4998 4.88 5.88 1.00 20.6 3.60 48.4 0.44 

Summer 5069 6.12 4.85 -1.27 -20.8 4.15 43.1 0.59 

Fall 5091 5.31 5.90 0.59 11.1 4.35 52.2 0.49 

Annual 20069 5.93 6.12 0.19  3.2 4.77 50.2 0.52 

N. Rockies &  
Plains 

Winter 4987 5.57 3.60 -1.98 -35.5 6.80 63.4 0.23 

Spring 5380 4.57 5.00 0.44  9.6 29.58 61.6 0.20 

Summer 5260 9.98 7.68 -2.30 -23.1 17.61 57.4 0.57 

Fall 5010 5.57 5.42 -0.15 -2.7 5.65 56.4 0.44 

Annual 20637 6.43 5.45 -0.99 -15.3 18.06 59.2 0.34 

Northwest 

Winter 8994 7.90 7.82 -0.08 -1.0 10.20 80.9 0.25 

Spring 9306 5.02 6.84 1.82 36.2 6.65 71.5 0.48 

Summer 9993 9.17 11.12 1.95 21.2 32.40 67.7 0.46 

Fall 9868 7.03 9.39 2.37 33.7 15.33 78.3 0.31 

Annual 38161 7.31 8.85 1.55 21.2 19.26 74.3 0.43 

West 

Winter 10462 11.67 9.58 -2.08 -17.8 8.09 43.3 0.68 

Spring 10989 7.52 6.95 -0.57 -7.6 4.17 38.3 0.55 

Summer 11065 8.95 8.53 -0.43 -4.8 6.36 43.5 0.51 

Fall 10587 8.61 9.11 0.50  5.8 16.85 46.9 0.37 

Annual 43103 9.16 8.52 -0.64 -7.0 10.02 43.1 0.44 

 1 

 2 

 3 

 4 

 5 

 6 

 7 



October 2021 C-29 Draft – Do Not Quote or Cite 

Table C-7. Definition of statistics used in the CMAQ model performance evaluation. 1 

Statistic Description 

MB ( g m-3) = 
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)
𝑛
𝑖=1   Mean bias (MB) is defined as the average difference between 

predicted (P) and observed (O) concentrations for the total number 
of samples (n) 

RMSE ( g m-3) = √∑ (𝑃𝑖 − 𝑂𝑖)
2/𝑛𝑛

𝑖=1

  

Root mean-squared error (RMSE) 

NMB (%) = 
∑ (𝑃𝑖−𝑂𝑖)
𝑛
𝑖

∑ 𝑂𝑖
𝑛
𝑖

× 100  The normalized mean bias (NMB) is defined as the sum of the 
difference between predictions and observations divided by the 
sum of observed values 

NME (%) = 
∑ |𝑃𝑖−𝑂𝑖|
𝑛
𝑖

∑ 𝑂𝑖
𝑛
𝑖

× 100  Normalized mean error (NME) is defined as the sum of the 
absolute value of the difference between predictions and 
observations divided by the sum of observed values 

r = 
∑ (𝑃𝑖−𝑃)̅̅ ̅(𝑂𝑖−𝑂)̅̅̅̅
𝑛
𝑖=1

√∑ (𝑃𝑖−�̅�)
2𝑛

𝑖=1 √∑ (𝑂𝑖−�̅�)
2𝑛

𝑖=1

 Pearson correlation coefficient 

 2 

 3 

 U.S. climate regions24 used in the CMAQ model performance evaluation. 4 

In addition to the national model performance evaluation just described, CMAQ 5 

predictions of PM2.5 concentrations were evaluated specifically for the CBSAs considered in the 6 

risk assessment.  In Table C-8, model performance statistics are provided for predictions at 7 

monitors in the 47 CBSAs in 2015.  Predictions generally agree well with observations over the 8 

full set of areas, with NMBs less than 10% in all seasons except Fall (NMB: 23.6%) and 9 

correlation coefficients greater than 0.60 in all seasons except Summer (r: 0.56).  Model 10 

predictions are compared with observations by CBSA in Figure C-11, and NMBs at individual 11 

sites in the CBSAs are shown in Figure C-12.  Predictions generally agree well with observations 12 

in the individual CBSAs, although underpredictions occurred in the Chicago-Naperville-Elgin 13 

 
24 https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php  

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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CBSA when observed PM2.5 concentrations were > 40 g m-3.  The high observed values in 1 

Chicago were associated with the 4th of July holiday, and the underpredictions on July 4th and 5th 2 

have small influence on the annual PM2.5 projections in the risk assessment.  The NMB is highest 3 

for model predictions in the Birmingham-Hoover CBSA (NMB: 66%).  As mentioned above, the 4 

effects of model bias are mitigated in part by use of relative response factors (i.e., the ratio model 5 

predictions from a base and emission control simulation is used in projecting PM2.5 6 

concentrations, and some model bias likely cancels in the ratio).  For the risk assessment 7 

projections, the key aspect of the CMAQ modeling is the spatial of pattern of PM2.5 response to 8 

changes in emissions.  The spatial response pattern was examined in the 47 CBSAs and found to 9 

be reasonable even in areas with relatively high bias, such as Birmingham.  In Figure C-13, the 10 

spatial response pattern associated with the 10/30 projection case for the Birmingham-Hoover 11 

CBSA is compared for the proportional projection method and the primary PM projection case 12 

based on CMAQ modeling.  Relatively high PM2.5 responsiveness occurred in the urban part of 13 

Birmingham and along arterial roads in the CMAQ-based approach.  This spatial pattern is 14 

consistent with the location of PM2.5 emission sources in Birmingham and provides a realistic 15 

spatial response pattern despite the relatively high bias in the concentration predictions.  Overall, 16 

both the national model performance evaluation and the evaluation for the 47 CBSAs of the risk 17 

assessment support use of the CMAQ modeling in this application. 18 

To inform PM2.5 projections, annual CMAQ modeling was conducted using the same 19 

configuration and inputs as the 2015 base case simulation but with anthropogenic emissions of 20 

primary PM2.5 or NOx and SO2 scaled by fixed percentages. Specifically, seven simulations were 21 

conducted with changes in anthropogenic NOx and SO2 emissions (i.e., combined NOx and SO2, 22 

not separate NOx and SO2 simulations) of -100%, -75%, -50%, -25%, +25%, +50%, and +75. 23 

Two simulations were conducted with changes in anthropogenic PM2.5 emissions of -50% and 24 

+50%. The sensitivity simulations were based on emission changes applied to all anthropogenic 25 

sources throughout the year. These “across-the-board” emission changes facilitate projecting the 26 

baseline concentrations to just meet a relatively wide range of standards in areas throughout the 27 

U.S. using a feasible number of national sensitivity simulations.   28 

 29 

 30 

 31 

 32 

 33 
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Table C-8. Performance statistics for CMAQ predictions at monitoring sites in the 47 1 

CBSAs considered in the risk assessment. 2 

Season Average 
Observed 
(µg m-3) 

Average 
Modeled 
(µg m-3) 

MB 
(µg m-3) 

NMB 
(%) 

RMSE 
(µg m-3) 

NME (%) r 

Winter 12.40 13.45 1.05  8.5 8.03 42.4 0.61 

Spring 9.17 9.94 0.77  8.4 5.15 38.6 0.62 

Summer 10.35 10.08 -0.27 -2.6 5.51 34.6 0.56 

Fall 9.00 11.11 2.12 23.6 6.26 45.6 0.67 

 3 
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 1 

 Comparison of CMAQ predictions and observations at monitoring sites in the 2 

47 CBSAs considered in the risk assessment. 3 

 4 
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 1 

 2 

 3 

 NMB for CMAQ PM2.5 predictions at monitoring sites in the 47 CBSAs by 4 

season in 2015. 5 

 6 

 7 

 Percent change in 2015 annual average PM2.5 over the Birmingham CBSA 8 

associated with projecting 2014–2016 DVs at monitors to just meet an alternative 9 

NAAQS of 10/30 using the proportional projection method and the primary PM2.5, 10 

CMAQ-based projection method. 11 

 12 
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The two emission sensitivity scenarios (primary PM2.5 and NOx and SO2) were selected 1 

to span a wide range of possible PM2.5 spatial response patterns. NOx and SO2 emission changes 2 

influence concentrations of ammonium nitrate and ammonium sulfate, which are secondary 3 

pollutants that often have broad spatial distributions. Primary PM2.5 emission changes have the 4 

greatest influence on PM2.5 concentrations close to emission sources. The two distinctly different 5 

PM2.5 response patterns for primary PM2.5 and NOx and SO2 emission changes enable PM2.5 to 6 

be projected for a wide range of conditions. Projecting PM2.5 for a wide range of conditions is 7 

desirable in this study because many PM2.5 spatial response patterns can cause PM2.5 8 

concentrations to just meet NAAQS.  9 

C.1.4.4  Relative Response Factors for PM2.5 Projection 10 

The 2015 base case and sensitivity modeling results were used to develop RRFs for 11 

projecting PM2.5 concentrations to correspond to just meeting NAAQS (Figure C-6, Box 2, 12 

“SMAT-CE”). Baseline PM2.5 concentrations are projected by multiplication with RRFs. The 13 

RRF for a PM2.5 species is calculated as the ratio of the concentration in the sensitivity 14 

simulation to that in the base case: 15 

𝑅𝑅𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =
𝐶𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝐶𝑏𝑎𝑠𝑒,𝑠𝑝𝑒𝑐𝑖𝑒𝑠
    (1) 16 

where Csensitivity,species is the concentration of the PM2.5 species in the sensitivity 17 

simulation, and Cbase,species is the concentration of the PM2.5 species in the base case simulation. 18 

RRFs were calculated for each monitor, grid cell, calendar quarter, standard (annual or 24-hr), 19 

species, and sensitivity simulation using SMAT-CE version 1.2.1. RRFs are used in projecting 20 

air quality to help mitigate the influence of systematic biases in model predictions (National 21 

Resources Council,  U.S. EPA, 2018b). More details on the RRF projection method are provided 22 

in EPA’s modeling guidance document (U.S. EPA, 2018b) and the user’s guide for the 23 

predecessor to the SMAT-CE software (Abt Associates, 2014). 24 

To apply the RRF approach for the risk assessment projections, RRFs for total PM2.5 25 

were calculated from RRFs for the individual PM2.5 species using observation-based estimates of 26 

PM2.5 species concentrations in SMAT-CE output. Specifically, total PM2.5 RRFs (RRFTot,PM2.5) 27 

were calculated as the weighted average of the speciated RRFs using the observation-based 28 

species concentrations (Cspecies) as weights:  29 

𝑅𝑅𝐹𝑇𝑜𝑡, 𝑃𝑀2.5 =
∑𝑅𝑅𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝐶𝑠𝑝𝑒𝑐𝑖𝑒𝑠

∑𝐶𝑠𝑝𝑒𝑐𝑖𝑒𝑠
   (2) 30 

Total PM2.5 RRFs were used to project base-case PM2.5 concentrations as follows: 31 

 𝑃𝑀2.5, 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 = 𝑅𝑅𝐹𝑇𝑜𝑡,𝑃𝑀2.5𝑃𝑀2.5, 𝑏𝑎𝑠𝑒  (3) 32 

The species concentrations used in calculating the total PM2.5 RRFs were generally based 33 

on application of the Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous material 34 

balance approacH (SANDWICH) (Frank, 2006) to measurements of PM2.5 species 35 
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concentrations from the Chemical Speciation Network (CSN)25 and the Interagency Monitoring 1 

of Protected Visual Environments (IMPROVE)26 network. The SANDWICH method corrects for 2 

different artifacts in the measurements for PM2.5 species and total PM2.5. An alternative approach 3 

to calculating total PM2.5 RRFs was applied for monitors and grid cells in California due to 4 

factors including missing data at the Bakersfield speciation monitor27 throughout 2014 and part 5 

of 2015. For projections in California, RRFs were calculated directly from the ratio of CMAQ 6 

PM2.5 concentration predictions in the sensitivity simulation to the base simulation.  7 

By default, PM2.5 RRFs for the annual standard are calculated using average 8 

concentrations over all modeled days in the quarter, and RRFs for the 24-hr standard are 9 

calculated using average concentrations over days with the top 10% of modeled PM2.5 10 

concentration in the quarter. The default approach was generally followed here, with exceptions 11 

for counties in the San Joaquin Valley (SJV) of California and Utah. In these counties28, the 12 

average concentration over all days in the quarter was used to calculate RRFs for both the 24-hr 13 

and annual standards for sites with valid 24-hr and annual DVs. This approach was used to 14 

provide stability in projections of annual fields due the variability in the 24-hr and annual 15 

RRFs29. Also, RRFs were set to one30 in the third quarter (July-September) for select counties in 16 

the San Joaquin Valley and Utah31 to better reflect the seasonal nature of PM2.5 in these areas 17 

(i.e., PM2.5 concentrations are relatively high in winter).   18 

RRFs were calculated for each combination of emission sensitivity simulation and the 19 

2015 base case.  RRFs corresponding to the percent change in emissions for each sensitivity 20 

simulation were then interpolated across the range of emission changes from -100 to +100% to 21 

facilitate iterative projections of PM2.5 concentrations to the nearest percent emission change. 22 

PM2.5 RRFs are shown in Figure C-14 and Figure C-15 as a function of changes in anthropogenic 23 

primary PM2.5 and NOx and SO2 emissions for monitors in the U.S. during the first and third 24 

 
25 www.epa.gov/amtic/chemical-speciation-network-csn   

26 http://vista.cira.colostate.edu/Improve/   

27 Site identification number: 060290014 

28 SJV counties: Fresno, Stanislaus, Kern, Merced, Madera, Tulare, San Joaquin, and Kings; Utah counties: Cache, 

Box Elder, Davis, Morgan, Weber, Juab, Utah, Salt Lake, and Tooele. 

29 This variability is less of an issue in regional modeling applications where emission changes can be targeted to 

time periods of elevated PM2.5 concentrations in the area. 

30 When the RRF is 1, the projected concentration equals the base concentration (Equation 3). 

31 SJV counties: Fresno, Stanislaus, Kern, Merced, and Madera; Utah counties: Cache, Box Elder, Davis, Morgan, 

Weber, Juab, Utah, Salt Lake, and Tooele. This approach was not applied for Kings, Tulare, and San Joaquin 

counties in SJV because the percent exceedance of the annual standard was within 10% of the exceedance of the 

24-hr standard suggesting that relatively uniform PM2.5 concentrations occur throughout the year compared with 

the other SJV counties.  

http://www.epa.gov/amtic/chemical-speciation-network-csn
http://vista.cira.colostate.edu/Improve/
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calendar quarters. Spatial fields of PM2.5 RRFs for 50% reductions in anthropogenic primary 1 

PM2.5 and NOx and SO2 emissions are shown in Figure C-16. 2 

 3 

 4 

 Annual standard PM2.5 RRFs for quarters 1 and 3 as a function of the percent 5 

change in anthropogenic primary PM2.5 emissions for monitoring sites in the contiguous 6 

U.S. 7 

 8 

 9 

 Annual standard PM2.5 RRFs for quarters 1 and 3 as a function of the percent 10 

change in anthropogenic NOx and SO2 emissions for monitoring sites in the contiguous 11 

U.S. 12 

 13 
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 1 

 Annual average PM2.5 RRFs at CMAQ grid-cell centers for 50% reductions in 2 

anthropogenic (a) NOx and SO2 and (b) primary PM2.5 emissions.  3 

 4 

C.1.4.5  2015 PM2.5 Concentration Fields 5 

To develop a baseline gridded PM2.5 concentration field for projection with PM2.5 RRFs, 6 

a Bayesian statistical model (i.e., Downscaler) was applied (Figure C-6, Box 2, “Downscaler”) 7 

(Berrocal et al., 2012). Downscaler makes predictions of PM2.5 concentrations to a spatial field 8 

of receptor points using PM2.5 monitoring data and CMAQ model predictions as inputs. 9 

Downscaler takes advantage of the accuracy of the monitoring data and the spatial coverage of 10 

the CMAQ predictions to develop new predictions of PM2.5 concentration over the U.S. 11 

The Downscaler model is routinely applied by U.S. EPA to predict 24-hr average PM2.5 12 

concentrations at the centroids of census tracts in the contiguous U.S. (U.S. EPA, 2018a). The 13 

model configuration used here is generally consistent with the previous applications, but here 14 

predictions were made to the centers of the CMAQ model grid cells rather than to census-tract 15 

centroids. Also, PM2.5 measurements from the IMPROVE monitoring network were used in 16 

addition to measurements included in the AQS database. 24-hr average PM2.5 concentrations 17 

were predicted for the 2015 period, and the 24-hr PM2.5 fields were averaged to the quarterly 18 

periods of the PM2.5 RRFs for use in projection. 19 

Annual average PM2.5 concentrations from the monitoring network and CMAQ 20 

simulation that were used in model fitting are shown in Figure C-17 along with the resulting 21 

Downscaler predictions. Cross-validation statistics are provided in Table C-9 based on 22 

comparisons of Downscaler predictions against the 10% of the observations that were randomly 23 

withheld from model fitting. 24 
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 1 

 Annual average of the 2015 PM2.5 observations and CMAQ predictions used 2 

in the Downscaler model, and the annual average of the Downscaler PM2.5 predictions. 3 

 4 

Table C-9. Cross-validation statistics associated with the 2015 Downscaler predictions. 5 

Number of Monitors Mean Biasa 
(µg m-3) 

Root Mean Squared Errorb 
(µg m-3) 

Mean Coveragec 

1101 0.37 3.17 0.95 
aThe mean of all biases across the CV cases, where the bias of each prediction is the downscaler 
prediction minus the observed value.  

bThe bias is squared for each CV prediction, then the square root of the mean of all squared 
biases across all CV predictions is obtained. 

cA value of 1 is assigned if the measured value lies in the 95th percentile CI of the Downscaler 
prediction (the Downscaler prediction ± the Downscaler standard error), and 0 otherwise. This 
column is the mean of all those 0’s and 1’s. 

 6 

C.1.4.6  Projecting PM2.5 to Just Meet the Standards 7 

PM2.5 was projected from baseline concentrations to levels corresponding to just meeting 8 

NAAQS using the monitoring data (section C.1.4.2), RRFs (section C.1.4.4), and baseline 9 

concentration fields (section C.1.4.5) described above. The projection was done in two steps as 10 

shown in Box 3 of Figure C-6. Projections were performed for the existing (12/35)32 and 11 

alternative (10/30)33 standards. 12 

First, monitors in the CBSA of interest were identified, and concentrations from these 13 

monitors were subset from the national monitoring dataset. The measured concentrations were 14 

then projected using the corresponding PM2.5 RRF. PM2.5 DVs were calculated using the 15 

projected concentrations, and the difference between the maximum projected DV and target 16 

standard was determined. DV projections over the complete range of percent emission changes (-17 

100 to 100%) were performed using bisection iteration until the difference between the 18 

 
32 Annual standard level of 12 µg m-3 and 24-hr standard level of 35 µg m-3 

33 Annual standard level of 10 µg m-3 and 24-hr standard level of 30 µg m-3 
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maximum projected DV in the CBSA and the standard level was zero or within the difference 1 

associated with a 1% emission change. Iterative projections of annual and 24-hr DVs were 2 

performed separately, and the controlling standard was determined as the standard requiring the 3 

greater percent emission change34. In cases where the emission change needed to just meet the 4 

target annual or 24-hr standard was outside of the ± 100% range, the standard could not be met 5 

using the modeled air quality scenarios. If neither the annual nor 24-hr standard could be just met 6 

with emission changes within ± 100%, then an alternative projection approach was used 7 

(discussed below). 8 

Second, 2015 PM2.5 concentration fields developed with Downscaler were projected 9 

according to the percent emission change required for the maximum projected DV to just meet 10 

the controlling standard. The projection was done by multiplying the gridded spatial fields of 11 

quarterly average PM2.5 concentrations based on Downscaler modeling with the gridded spatial 12 

fields of quarterly PM2.5 RRFs corresponding to the percent emission change required to just 13 

meet the controlling standard. The projected fields of quarterly average PM2.5 concentrations 14 

were then averaged to produce the annual average projected field. 15 

Since PM2.5 concentrations can be projected in multiple ways to just meet a standard, 16 

projections were done for two scenarios that provide results for a range of PM2.5 conditions. The 17 

first scenario is referred to as “Primary PM” or Pri-PM because projections were largely based 18 

on RRFs developed using CMAQ sensitivity simulations with primary PM2.5 emission changes. 19 

For three CBSAs35, standards could not be met using primary PM2.5 emission reductions alone. 20 

PM2.5 concentrations were projected for these areas using a combination of primary PM2.5 and 21 

NOx and SO2 emission reductions in the Primary PM scenario36 (Figure C-18).  22 

 
34 Note that calculations are performed in terms of percent emission reduction. Therefore, in cases where DVs are 

projected to just meet standards greater than the baseline DVs, the required percent emission reduction is negative 

(i.e., an emission increase is required), and the smaller absolute percent emission change is selected as the 

controlling case. For example, the annual standard would be selected as controlling in a case where a 10% 

emission increase is needed to meet the annual standard and a 50% emission increase is needed to meet the 24-hr 

standard (because -10 is greater than -50). 

35 Bakersfield, Hanford-Corcoran, and Visalia-Porterville (all in California) 

36 This approach was applied by using RRFs from the NOx and SO2 emission sensitivity simulations to eliminate a 

fraction of the difference between the maximum base DV and the standard level and then using RRFs from the 

primary PM2.5 emission sensitivity simulations to eliminate the remainder of the difference. The fraction of the 

difference eliminated with NOx and SO2 emission reductions was as follows: 0.4 for Bakersfield, 0.5 for Visalia-

Porterville, and 0.6 for Hanford-Corcoran 
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 1 

 Projection method used for each CBSA in the “Primary PM” projection case. 2 

See text for details. 3 

 4 

The second scenario is referred to as “Secondary PM” or Sec-PM because projections 5 

were largely based on RRFs developed using CMAQ modeling with NOx and SO2 emission 6 

changes, which affect concentrations of secondary PM components such as ammonium nitrate 7 

and ammonium sulfate. For 22 CBSAs37, standards could not be just met using NOx and SO2 8 

emission changes alone. These areas were projected using the proportional scaling method38 9 

(Figure C-19). The proportional method was selected to gap-fill the Secondary PM case because 10 

 
37 Altoona, PA; Atlanta-Sandy Springs-Roswell, GA; Bakersfield, CA; Chicago-Naperville-Elgin, IL-IN-WI; El 

Centro, CA; Elkhart-Goshen, IN; Fresno, CA; Hanford-Corcoran, CA; Las Vegas-Henderson-Paradise, NV; Los 

Angeles-Long Beach-Anaheim, CA; Macon, GA; Madera, CA; McAllen-Edinburg-Mission, TX; Modesto, CA; 

Napa, CA; New York-Newark-Jersey City, NY-NJ-PA; Prineville, OR; Riverside-San Bernardino-Ontario, CA; 

St. Louis, MO-IL; San Luis Obispo-Paso Robles-Arroyo Grande, CA; Visalia-Porterville, CA; Wheeling, WV-

OH 

38 In the proportional method, the spatial field is uniformly scaled by a fixed percentage that corresponds to the 

percent difference between the controlling standard level and maximum PM2.5 DV for the controlling standard. 

The controlling standard (annual or 24-hr) is identified as the one with the greater percent difference between the 

maximum DV and the standard level.  
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it is based on a spatially uniform percent change in PM2.5 over the area that is like the 1 

conceptually broad spatial response pattern of PM2.5 to changes in secondary PM2.5 components. 2 

The proportional method has been used previously in the Risk and Exposure Assessment for the 3 

2012 PM NAAQS review (U.S. EPA, 2010).  4 

 5 

 6 

 Projection method used for each CBSA in the “Secondary PM” projection 7 

case. 8 

 9 

The baseline 2015 concentration in the 47 CBSAs is shown in Figure C-20. These 10 

concentrations are the same as those in Figure C-17 but are shown only for the CBSAs included 11 

in the projections. In Figure C-21, the difference in annual concentration projected for the 12/35 12 

case and the 2015 baseline concentration is shown. The positive and negative differences reflect 13 

areas where concentrations were projected to higher and lower levels to just meet the standard, 14 

respectively. In Figure C-22, the difference between the annual concentration projected for the 15 

10/30 case and the and 2015 baseline concentration. Negative values indicate that concentrations 16 
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were projected to lower levels in all cases for the areas. The difference in projected 1 

concentrations for the 10/30 and 12/35 fields is shown in Figure C-23. Baseline and projected 2 

PM2.5 DVs for monitors in the 47 CBSAs are provided in Table C-19, Table C-20, Table C-21, 3 

and Table C-22 in section C.6.39    4 

 5 

 6 

 Annual average 2015 PM2.5 concentrations in the 47 CBSAs based on 7 

Downscaler modeling. 8 

 9 

 
39 The tables report the percent emission reduction associated with just meeting standards in the current modeling. 

These values should not be interpreted as the percent emission reductions that would be required to meet the 

standards in other application (e.g., attainment demonstrations for state implementation plans). The modeling 

done here was designed to quickly project PM2.5 fields throughout the U.S. with a broad range of model response 

patterns, rather than to apply model configurations and emission scenarios specific to just meeting standards most 

efficiently in particular regions.   
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 1 

 Difference between the annual average projected PM2.5 concentrations and 2 

the 2015 baseline concentrations for the 12/35 projection cases (i.e., 12/35 – baseline). 3 

 4 
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 1 

 Difference between the annual average projected PM2.5 concentrations and 2 

the 2015 baseline concentrations for the 10/30 projection cases (i.e., 10/30 – baseline). 3 

 4 
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 1 

 Difference between the annual average projected PM2.5 concentrations in the 2 

10/30 and 12/35 cases (i.e., 10/30 – 12/35) for the Primary PM and Secondary PM 3 

projection cases. 4 

 5 

C.1.4.7  Limitations 6 

There are several limitations associated with the air quality projections. First, the baseline 7 

and projected concentrations rely on model predictions. Although state-of-the-science modeling 8 

methods were applied, and model performance was generally good, there is uncertainty 9 

associated with the model predictions. Second, due to the national scale of the assessment, the 10 
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modeling scenarios are based on “across-the-board” emission changes in which emissions of 1 

primary PM2.5 or NOx and SO2 from all anthropogenic sources throughout the U.S. are scaled by 2 

fixed percentages. Although this approach tends to target the key sources in each area, it does not 3 

tailor emission changes to specific periods or sources. More refined emission scenarios could be 4 

beneficial for projections in areas with relatively large seasonal and/or spatial variability in 5 

PM2.5. Similarly, fine scale simulations (e.g., 4 km or less), which are not possible due to the 6 

national scale of the assessment, would be beneficial in areas with complex terrain and relatively 7 

large spatial gradients in PM2.5. A third limitation arises because many emission cases could be 8 

applied to project PM2.5 concentrations to just meet standards. We applied two projection cases 9 

that span a wide range of possible conditions, but these cases are necessarily a subset of the full 10 

set of possible projection cases.  11 

C.1.5 Risk Modeling Approach 12 

Risk modeling for this assessment was completed using BenMAP-CE version 1.5.40  13 

BenMAP-CE was used to estimate risk at the 12 km grid cell level for grid cells intersected by 14 

the 47 urban study area CBSAs included in risk modeling. BenMAP-CE is an open-source 15 

computer program that calculates the number and economic value of air pollution-related deaths 16 

and illnesses. The software incorporates a database that includes many of the CR relationships, 17 

population files, and health and economic data needed to quantify these impacts. BenMAP-CE 18 

also allows the user to import customized datasets for any of the inputs used in modeling risk. 19 

For this analysis, CR functions developed specifically for this assessment were imported into 20 

BenMAP-CE (section C.1.1). The BenMAP-CE tool estimates the number of health impacts 21 

resulting from changes in air quality. BenMAP-CE can also translate these incidence estimates 22 

into monetized benefits, although that functionality was not employed for this risk assessment. 23 

Inputs to BenMAP-CE used for this risk assessment are identified above in Figure C-1 and 24 

described in detail in sections C.1.1, C.1.2C.1.3, and C.1.4.  25 

 An overall flow diagram of the risk assessment approach is provided in Figure C-24. 26 

Application of this approach resulted in separate sets of risk estimates being generated for the 27 

following three groupings of urban study areas:  28 

− the full set of 47,  29 

− the 30 areas controlled by the annual standard, and  30 

− the 11 areas controlled by the 24-hr standard.  31 

Available air quality modeling surfaces for each of the three study area groupings are 32 

summarized in Table C-10. 33 

 34 

 
40 BenMAP-CE is a free program which can be downloaded from: https://www.epa.gov/benmap. 
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Selection of standards modeled in the risk assessment 
 

     

 
Identified 47 urban study areas with annual and daily 

design values ≥10 and 30 ug/m3, respectively, that include 

~60 million people aged 30+ 

Modeled/simulated air quality surfaces of the 47 urban study areas for: 

1. 2015 recent conditions (RC) 

2. Current standard combination of annual-12 ug/m3 and daily-35 ug/m3 (12/35) 

3. Alternate standard combination of annual-10 ug/m3 and daily-30 ug/m3 (10/30) 

Interpolated/extrapolated 

additional alternate annual 

standards of 11.0, 9.0, and 8.0 

ug/m3 

Estimated risk in all 

47 study areas for RC, 

12/35, and 10/30 ug/m3 

Estimated risk in 30 annual-

controlled study areas (~50M 

people 30+) for RC, 12.0, 11.0, 

10.0, 9.0, and 8.0 ug/m3 

Estimated risk in 11 

daily-controlled study 

areas (~4M people 30+) 

for RC, 35, and 30 ug/m3
 

 
 1 

 Flow diagram of risk assessment technical approach. 2 

 3 

Table C-10. Summary of available air quality scenarios for each study area set 4 

 

47 Study Areas  
(full set) 

30 Study Areas 
(annually controlled) 

11 Study Areas 
(daily controlled) 

Recent Conditions (2015) X X X 

Just meeting 12/35 µg/m
3
 X X X 

11 µg/m
3 
(interpolated) 

 X  

Just meeting 10/30 µg/m
3
 X X X 

9 µg/m
3 
(extrapolated) 

 X  

8 µg/m
3 
(extrapolated) 

 X  

 5 

Risk estimates are presented and discussed for each of these groupings in draft PA 6 

section 3.4.2, with greater emphasis being placed on results generated for the full set of 47 urban 7 

study areas and 30 annual-controlled study areas, given interest in national representation and on 8 
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those study areas where we could also consider the alternative annual standards of 8.0, 9.0 and 1 

11.0 µg/m3.  2 

C.2 SUPPLEMENTAL RISK RESULTS 3 

As noted earlier, this appendix also presents additional granular risk results that supplement the 4 

aggregated risk estimates presented and discussed in section 3.4.2 of the draft PA. The 5 

supplemental results are intended to provide additional context for the interpretation of summary 6 

risk estimates presented in draft PA section 3.4.2 and include additional line plots, maps and 7 

scatter plots illustrating the distribution of the grid-level risk estimates across ambient PM2.5 8 

concentrations (section C.2). Graphics provide insight into various aspects of the grid-level data 9 

underlying the summary tables presented in the draft PA, such as the spatial distribution of risk 10 

across the cities included in the risk assessment and how the distribution of grid-cell level risk 11 

estimates shifts as lower alternative standards are considered.  12 

It can be challenging to understand how patterns of risk are changing under air quality 13 

simulated to just meet the current or alternative standards, due to differences in underlying 14 

demographics (e.g., size and age of population), health status (e.g., underlying death rates) and 15 

exposure (air quality conditions). To better illustrate the distribution of risk under the current 16 

standards and how that distribution changes under potential alternative standards, this section 17 

presents graphics depicting these changes both in aggregate and at the grid-cell level.  18 

As the pattern of risk and risk reduction is similar across mortality endpoints, we focus on 19 

a single CR function to illustrate the changes graphically. Consequently, as with the graphics 20 

presented in draft PA section 3.4.2, the graphics presented in this section are also based on long-21 

term exposure-related all-cause mortality modeled using a CR function obtained from Turner et 22 

al., 2016. The first set of graphics presented in this section (Figure C-25, Figure C-26, Figure C-23 

27, Figure C-28, and Figure C-29) include results for the full set of 47 urban study areas and the 24 

second set (Figure C-30 and Figure C-31) include results for the 30 annual-controlled study 25 

areas. Graphical plots include: 26 

• Histograms showing the distribution of 12 km gridded risk estimates across annual-27 

averaged PM2.5 concentrations (Figure C-25 and Figure C-30). These figures allow 28 

consideration of how the distribution of risk shifts when simulating air quality that just 29 

meets the current standards (12/35 µg/m3) relative to 2015 recent conditions and 30 

subsequently how that distribution of risk shifts downward when simulating air quality 31 

that just meets alternative standards of 10/30 µg/m3.    32 

• Maps showing the 12 km grid-level risk estimates associated with each of the 47 urban 33 

study areas. In these representative maps each grid cell is shown as a square, with the 34 

color of the square going from green (lower risk estimates) to red (higher risk estimate) 35 
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colors. The center of the color scales (the beginning of yellow) has been set to a risk 1 

estimate of two premature deaths. This means that green squares represent grid cells 2 

where 0-1 premature deaths are estimated, yellow squares represent grid cells in which at 3 

least two premature deaths are estimated, and as the color graduation approaches red the 4 

number of estimated premature deaths increases. Separate maps are presented for  5 

(a) the unadjusted 2015 recent conditions simulation (Figure C-26),  6 

(b) simulation of the current standards (12/35 µg/m3) (Figure C-27), and  7 

(c) simulation of the change (delta) in risk between the current and alternative 8 

standards (10/30 µg/m3) (Figure C-28).  9 

• Scatter plots depicting the distribution of modeled risk by annual-average PM2.5 10 

concentration (Figure C-29 and Figure C-31). While these scatter plots present similar 11 

distributional information as the line graphs, the scatter plots allow for a more detailed 12 

consideration of the nature of the risk distribution in relation to ambient PM2.5 levels. In 13 

these figures, each grid cell is shown as a dot, with the frequency of dots shown on a 14 

color scale from cool (green – lower frequency) to hot (red – higher frequency) colors.41 15 

Consequently, it is possible to consider whether, for example, a shift in risk involves a 16 

change in the magnitude of risk across higher-risk cells, or in a change in the density of 17 

lower risk cells.  18 

 19 

Key observations resulting from review of these graphics are presented below the figures.  20 

 21 

 
41 For adjusted air quality, a small amount of risk is estimated at concentrations higher than the level of the annual 

standard (e.g., some risk is estimated at an average concentration of 13 µg/m3 when air quality is adjusted to just 

meet the current standard). This can result because risk estimates are for a single year (i.e., 2015) within the 3-

year design value period (i.e., 2014 to 2016). While the three-year average design value is 12.0 µg/m3, a single 

year can have grid cells with annual average concentrations above or below 12.0 µg/m3. 
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C.2.1 Results from Full Set of 47 Study Areas 1 

 2 

 Distribution of estimated PM2.5-associated mortality for recent conditions 3 

(2015), current standards (12/35 µg/m3), and alternative standards (10/30 µg/m3) 4 

simulated for all 47 urban study areas.42  5 

 6 

 7 

 
42 Risk is rounded toward zero into whole PM2.5 concentration values (e.g., risk estimate at 10 µg/m3 includes risk 

occurring at 10.0-10.9 µg/m3). Blue lines represent the Pri-PM risk estimates, green lines represent the Sec-PM 

risk estimates, and black lines represent the 2015 recent conditions risk estimates. 
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 1 

 2 

 Estimated number of premature deaths (by 12 km grid cell) under 2015 recent conditions in all 47 study areas. 3 

  4 
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 1 

 2 

 3 

 Estimated number of premature deaths (by 12 km grid cell) when just meeting the current PM standards (12/35) 4 

in all 47 study areas (Pri-PM simulation). 5 

 6 

  7 
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 1 

 2 

 3 

 Estimated reduction in the number of premature deaths (by 12 km grid cell) when going from just meeting the 4 

current standards (12/35) to just meeting the alternative standards (10/30) in all 47 study areas (Pri-PM simulation). 5 
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 1 

 Distribution of estimated premature death (by 12 km grid cell) for the current 2 

standards (12/35 µg/m3), alternative standards (10/30 µg/m3), and recent conditions 3 

(2015) for all 47 urban study areas (Pri-PM simulation). 4 

 5 
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C.2.2 Results from Set of 30 Study Areas controlled by the Annual Standard 1 

 2 

 Distribution of estimated PM2.5-associated mortality for recent conditions 3 

(2015), the current annual standard (12/35 µg/m3), and alternative standards (8.0, 9.0, 4 

10.0, and 11.0 µg/m3) simulated for the 30 annual-controlled urban study areas (blue 5 

and green bars represent the Pri-PM2.5 and Sec-PM2.5 estimates, respectively).43  6 

 7 

 8 

 
43 Risk is rounded toward zero into whole PM2.5 concentration values (e.g., risk estimate at 10 µg/m3 includes risk 

occurring at 10.0-10.9 µg/m3). Blue lines represent the Pri-PM risk estimates, green lines represent the Sec-PM risk 

estimates, and black lines represent the 2015 recent conditions risk estimates. 
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 1 

 Distribution of estimated premature death (by 12 km grid cell) 47 urban 2 

study areas (Pri-PM simulation) for recent conditions (2015), the current annual 3 

standard (12.0 µg/m3), alternative annual standards (8.0, 9.0, 10.0, 11.0 µg/m3). 4 

 5 

C.2.3 Key Observations from the Suppmental Risk Results 6 

Review of the distributional risk estimates presented in section C.2 further support the 7 

key observations presented in draft PA section 3.4.2. Briefly, these observations include: 8 

• Across the full set of alternative annual standards modeled including 11.0, 10.0, 9.0, and 9 

8.0 µg/m3 (each evaluated for the 30 annually-controlled study areas), we see a consistent 10 

reduction in mortality (Figure C-30 and Figure C-31). In addition, we note that these risk 11 

reductions are associated with iteratively lower ambient PM2.5 concentrations, such that 12 

with the lowest annual standard considered (8.0 µg/m3) the majority of remaining risk 13 

occurs in grid cells with ambient PM2.5 concentrations between 6 and 9 µg/m3. In 14 

contrast, most of the risk occurring under the current standard occurs in grid cells with 15 

ambient concentrations in the range of 10-12 µg/m3 (Figure C-29).  16 

• Patterns of risk reduction seen in the summary (aggregated) risk results tables presented 17 

both in draft PA section 3.4 and this appendix are driven by considerable underlying 18 
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variability across both CBSAs and across the 12km grid-level risk estimates. Specifically, 1 

if we consider the maps and scatter plots presented in section C.2, we see considerable 2 

spread (i.e., variability) in the grid-level risk estimates. We note that this underlying 3 

variability in risk reflects local patterns of population density, baseline incidence, and 4 

modeled ambient PM2.5 levels. However, it is important to also note that the underlying 5 

variability does not result from differences in CR functions, since for all mortality 6 

endpoints modeled in this analysis, national-level effect estimates were utilized.   7 

• When considering the shift in the distribution of risks for the alternative standards (Figure 8 

C-29 and Figure C-31), we note that risk reductions are estimated in grid cells 9 

encompassing a wide range of PM2.5 concentrations. This includes grid cells with typical 10 

(i.e., frequently occurring) concentrations (orange and red dots) as well as cells with 11 

concentrations that occur relatively infrequently (green dots). Furthermore, these shifts 12 

reflect reductions both in areas with relatively few estimated premature deaths (as 13 

represented by points near the bottom of each of the scatter plots) and in areas with much 14 

larger numbers of estimated deaths (points higher on the y-axis in these scatter plots).  15 

 16 

C.3 ADDITIONAL TECHNICAL DETAIL ON THE AT-RISK ANALYSIS 17 

Our consideration of estimated risks among potentially at-risk populations in the draft PA 18 

focuses on addressing the following policy-relevant questions:  19 

• How does PM2.5 exposure and risk compare between demographic groups when air quality just 20 

meets the current and potential alternative primary PM2.5 annual standards?  21 

• To what extent are risks estimated to decline within each demographic group when air quality 22 

is adjusted to just meet potential alternative annual standards with lower levels? 23 

 24 

Estimating PM2.5 exposure and risk within various demographic populations when just 25 

meeting the current or alternative annual standard or moving from the current annual standard to 26 

an alternative annual standard requires multiple input parameters and several simplifying 27 

assumptions. An overall summary of the analytical components is provided in Table C-11 and 28 

below we discuss in detail the various data inputs and assumptions associated with the at-risk 29 

analysis presented in the draft PA. 30 
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Table C-11. Summary of At-Risk Analysis Variablesa 1 

Race/Ethnicity Concentration-

Response Function 

Baseline Incidence Rate 

1. White 

2. Black 

3. Asian 

4. Hispanic 

5. (Non-Hispanic) 

6. (All) 

1. (Overall function) 

2. Race/Ethnicity-

stratified 

functions 

1. (Overall baseline incidence rate) 

2. Race/ethnicity-stratified 

baseline incidence rates 

a Parentheses indicate the variable was used in sensitivity analyses only. 2 

C.3.1 Race/Ethnicity 3 

As the 2019 ISA and the draft ISA Supplement noted strong support for non-White 4 

populations, and particularly Black/African American populations, being at increased risk from 5 

PM2.5-related health effects, in part due to disparities in exposure, we focused on comparing 6 

exposure and risk in Black and White populations. We also included exposure and risk 7 

information from Asians, Native Americans, and Hispanics, although there is less evidence in the 8 

PM ISAs that those demographic groups are at increased risk of PM2.5 -related health effects or 9 

experience disparities in PM2.5 exposure (U.S. EPA, 2019, U.S. EPA, 2021a). 10 

Population information for each demographic group from both the at-risk assessment 11 

population and the original cohort population can be found in Table C-12. In general, the 12 

proportions of White, Black, and Native American people in the Di et al., 2017 study were 13 

comparable to the proportions in the 47 urban study areas, though a slightly higher proportion of 14 

the population in the 47 areas was White. In contrast, the Asian and Hispanic subpopulations 15 

represented a smaller proportion of the Di et al., 2017 cohort than the respective population 16 

proportions in the 47 areas. Importantly, the 0.3% of Native Americans assessed by Di et al., 17 

2017 equates to approximately 180,000 individuals, which is nearly a third of the ACS cohort 18 

(Turner et al., 2016). 19 
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Table C-12. Demographic populations aged 65 and over residing in the full set of 47 study 1 

areas, the subset of 30 study areas controlled by the annual standard, and the 2 

original cohort. 3 

Ethnicity & 
Race 

Population 
in 47 Areas 

Percent of 
Population 
in 47 Areas 

Population 
in 30 Areas 

Percent of 
Population 
in 30 Areas 

Percent of 
Population 
in Di et al., 

2017 cohort 

White 10,560,891 80.0 8,756,815 78.6 85.4 

Black 1,655,695 12.6 1,551,743 13.9 8.7 

Asian 927,966 7.0 801,487 7.2 1.8 

Native American 51,263 0.4 36,477 0.3 0.3 

Non-Hispanic 11,647,164 88.3 9,897,164 88.8 - 

Hispanic 1,548,639 11.7 1,249,353 11.2 1.9 

 4 

C.3.2 Concentration-Response Functions 5 

The following eight epidemiologic long-term exposure studies of PM2.5 exposure and all-6 

cause/nonaccidental/total mortality in nonwhite populations were identified in the 2019 ISA and 7 

draft ISA Supplement, met the minimum criteria discussed in the Estimating PM2.5 and Ozone- 8 

Attributable Health Benefits TSD (U.S. EPA, 2019, U.S. EPA, 2021a, U.S. EPA, 2021b), and 9 

were considered for inclusion in the at-risk assessment: Awad et al., 2019, Di et al., 2017, 10 

Kioumourtzoglou et al., 2016, Parker et al., 2018, Lipfert and Wyzga, 2020, Son et al., 2020, 11 

Wang et al., 2017, and Wang et al., 2020. Summary information regarding these eight studies is 12 

available in Table C-13. Consistent with the main risk assessment, we focused on long-term 13 

exposure studies so as to not double-count effects of short-term exposures. No mortality studies 14 

for the at-risk group of children met the initial screening criteria. 15 
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Table C-13. Summary information for available epidemiology studies of nonwhite populations considered for the at-risk 1 

assessment. 2 

Study Cohort Study Location 
Health 

Outcome 
Study Size 

Health 
Years 

Air Quality 
Years 

Ages 
Exposure 
Method 

Awad et al., 
2019 

Medicare 
enrollees 

National US All-cause 
mortality 

12,095,504 movers 2000-2012 2000-2012 >64 Hybrid 

Di et al., 2017 Medicare 
enrollees 

National US All-cause 
mortality 

60,925,443 persons; 
22,567,924 deaths 

2000-2012 2000-2012 >64 Hybrid or 
Monitor 

Kioumourtzogl
ou et al., 2016 

Medicare 
enrollees 

National US (207 
US cities) 

All-cause 
mortality 

35,295,005 subjects; 
11,411,282 deaths 

2000–2010 2000–2010 >64 Monitor 

Lipfert and 
Wyzga, 2020 

Veterans 31 VA clinics 
across 27 states 

Mortality 
risk 

Approximately 
700,000 males 

1976-2001 1999-2001 Average age at entry 
approximately 52 

Hybrid or 
Monitor 

Parker et al., 
2018 

NHIS National US All-cause 
mortality 

657,238 adults 1997-2009 2004 >24 Hybrid 

Son et al., 
2020 

North 
Carolina 
residents 

North Carolina Total 
mortality 

775,338 cases (i.e., 
total deaths) with 
3,410,015 control days 

2002-2013 2002-2013 All Hybrid or 
Monitor 

Wang et al., 
2017 

Medicare 
enrollees 

7 U.S. southeast 
states: AL, FL, GA, 
MS, NC, SC, TN 

All-cause 
mortality 

13.1 million Medicare 
beneficiaries; 4.7 
million deaths 

2000-2013 2000-2013 >64 Hybrid 

Wang et al., 
2020 

Medicare 
enrollees 

National US Non-
accidental 
mortality 

52,954,845 Medicare 
beneficiaries; 
15,324,059 deaths 

2000-2008 2000-2008 >64 Hybrid 

3 
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 1 

We evaluated the available studies and concentration-response functions to determine if 2 

sufficient information exists for use in a quantitative analysis and to determine which study or 3 

studies best characterizes at-risk populations across the U.S. Of the available studies from the 4 

2019 ISA, Di et al., 2017 was the largest nationwide study, covered one of the most recent and 5 

longest time spans, used a sophisticated exposure estimation technique, and provided sufficient 6 

information to apply risk models quantifying increased risks to the following demographic 7 

groups: White, Black, Asian, Native American, and Hispanic (Table C-14). Although effect 8 

estimates from Di et al., 2017 were derived from a cohort aged 65 and older and the study did 9 

not provide a non-Hispanic concentration-response function to directly compare to the Hispanic 10 

concentration-response function, it was identified as best characterizing populations potentially 11 

at increased risk of long-term PM2.5-attributable all-cause mortality. Health impact functions, 12 

including beta parameters and standard errors (SE), were developed for each at-risk population 13 

demographic described by Di et al., 2017 and are available in Table C-14.  14 

Table C-14. At-risk hazard ratios, beta coefficients, and standard errors from Di et al., 15 

2017 used in this at-risk assessment. 16 

Demographic 
Population 

Risk of Death Associated with 

10 µg/m
3 

Increase in PM
2.5

 

Beta Coefficient 
(SE) 

White  1.063 (1.060, 1.065) 0.0061 (0.0001) 

All 1.073 (1.071, 1.075) 0.0070 (0.0001) 

Hispanic 1.116 (1.100, 1.133) 0.0110 (0.0008) 

Black 1.208 (1.199, 1.217) 0.0189 (0.0004) 

Asian 1.096 (1.075, 1.117) 0.0092 (0.0010) 

Native American 1.100 (1.060, 1.140) 0.0095 (0.0019) 

C.3.3 Age 17 

Concentration-response functions stratified by race and ethnicity from Di et al., 2017 18 

were only available for ages 65-99. Therefore, this at-risk analysis only evaluated a single age 19 

range group of 65-99 years. 20 

C.3.4 Baseline Incidence Rates 21 

BenMAP-CE includes baseline incidence rates at the most geographically- and age-22 

specific levels available for each health endpoint assessed. For many locations within the U.S., 23 

these data are resolved at the county- or state-level, providing a better characterization of the 24 

geographic distribution of mortality rates than the national-level rates. Race- and ethnicity-25 

stratified baseline incidence rates from 2007-2016 Census data were recently improved for the 26 

all-cause mortality health endpoint, by adding the geographic level option of rural/urban state 27 
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between county-level and state-level (sections C.3.4.1 and C.3.4.2). Both overall and 1 

race/ethnicity-stratified baseline rates are used in this at-risk analysis (section C.3.4.2).  2 

C.3.4.1  Race-Stratified Baseline Incidence Rates 3 

To estimate race-stratified and age-stratified incidence rates at the county level, we 4 

downloaded all-cause and respiratory mortality data from 2007 to 2016 from the CDC 5 

WONDER mortality database.44 Race-stratified incidence rates were calculated for the following 6 

age groups: < 1 year, 1-4 years, 5-14 years, 15-24 years, 25-34 years, 35-44 years, 45-54 years, 7 

55-64 years, 65-74 years, 75-84 years, and 85+ years. To address the frequent county-level data 8 

suppression for race-specific death counts, we stratified the county-level data into two broad race 9 

categories, White and Non-White populations. In a later step, we stratified the non-White 10 

incidence rates by race (Black, Asian, Native American) using the relative magnitudes of 11 

incidence values by race at the regional level, described in more detail below.  12 

We followed methods outlined in Section D.1.1 of the BenMAP User Manual with one 13 

notable difference in methodology; we included an intermediate spatial scale between county and 14 

state for imputation purposes.45 We designated urban and rural counties within each state using 15 

CDC WONDER and, where possible, imputed missing data using the state-urban and state-rural 16 

classifications before relying on broader statewide data. We followed methods for dealing with 17 

suppressed and unreliable data at each spatial scale as described in Section D.1.1. 18 

A pooled non-White incidence rate masks important differences in mortality risks by 19 

race. To estimate county-level mortality rates by individual race (Black, Asian, Native 20 

American), we applied regional race-specific incidence relationships to the county-level pooled 21 

non-White incidence rates. We calculated a weighted average of race-specific incidence rates 22 

using regional incidence rates for each region/age/race group normalized to one reference 23 

population (the Asian race group) and county population proportions based on race-specific 24 

county populations from CDC WONDER where available. In cases of population suppression 25 

across two or more races per county, we replaced all three race-specific population proportions 26 

derived from CDC WONDER with population proportions derived from 2010 Census data in 27 

BenMAP-CE (e.g., 50 percent Black, 30 percent Asian, 20 percent Native American). 28 

C.3.4.2  Ethnicity-Stratified Baseline Incidence Rates 29 

To estimate ethnicity-stratified and age-stratified incidence rates at the county level, we 30 

downloaded all-cause and respiratory mortality data from 2007 to 2016 from the CDC 31 

 
44 https://wonder.cdc.gov/ 

45 https://www.epa.gov/sites/default/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf 
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WONDER mortality database.46 Ethnicity-stratified incidence rates were calculated for the 1 

following age groups: < 1 year, 1-4 years, 5-14 years, 15-24 years, 25-34 years, 35-44 years, 45-2 

54 years, 55-64 years, 65-74 years, 75-84 years, and 85+ years. We stratified county-level data 3 

by Hispanic origin (Hispanic and non-Hispanic). We followed the methods outlined in Section 4 

D.1.1 to deal with suppressed and unreliable data. We also included an intermediate spatial scale 5 

between county and state designating urban and rural counties for imputation purposes, 6 

described in detail in Section D.1.3 of the BenMAP User Manual. 47 7 

C.3.5 Selection of Air Quality Simulation Approach 8 

Concentration fields associated with just meeting the current and alternative standards in 9 

the 47 urban study areas were based on adjusting 2015 modeled concentrations using CMAQ 10 

sensitivity modeling with emission reductions applied throughout the modeling domain. This 11 

approach was applied to develop realistic concentration fields that correspond to just meeting 12 

standards in the 47 areas. Two distinctly different emission cases were used (Pri-PM and Sec-13 

PM) to examine the sensitivity of results to the air quality adjustment approach. For 14 

characterizing risk in at-risk populations, we used air quality fields from the Pri-PM adjustment 15 

case alone. In the Pri-PM case, the air quality adjustments for a given area are largely associated 16 

with emission reductions within that area due to the local nature of air quality impacts from 17 

primary PM sources. For the Sec-PM case, the air quality adjustments may be strongly 18 

associated with sources located outside of the area. Since the at-risk calculations are performed 19 

for population groups within the 47 urban study areas alone, the Pri-PM adjustment case (in 20 

which air quality adjustments are primarily associated with emission sources within the 47 areas) 21 

is most appropriate for the at-risk analysis.   22 

C.4 SUPPLEMENTAL AT-RISK RESULTS 23 

Absolute numbers of all-cause premature mortality cases within each racial and ethnic 24 

population demographic are available in Table C-15 for total attributable burden under either the 25 

current or alternative standards and Table C-16 for the change in risk estimates when moving 26 

from the current to a potential alternative annual standard for both the full set of 47 urban study 27 

areas and the subset of 30 annually-controlled areas. 28 

 29 

 
46 https://wonder.cdc.gov/ 

47 https://www.epa.gov/sites/default/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf 
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Table C-15. Estimates of total PM2.5-associated mortality by demographic population for 1 

air quality adjusted to just meet the current or alternative standards. 2 

 3 

Table C-16. Change in PM2.5-associated mortality by demographic population for air 4 

quality adjusted to just meet the current or alternative standards. 5 

 6 

 7 

For visual purposes only the central risk estimates are included in the at-risk results 8 

presented in chapter 3 of the draft PA (section 3.4.2), but an example of the 95th percentile 9 

confidence interval (CI) risk estimate spans resulting from the epidemiologic concentration-10 

response functions are provided in Figure C-32. The lower open circle represents the 2.5th 11 

percentile and the higher open circle represents the 97.5th percentile CI for each population 12 

demographic. CIs are derived from the concentration-response relationships presented in Di et 13 

al., 2017 (Figure C-13). While the Hispanic and Native American risk rate CIs often overlap, the 14 

Black risk rate estimates are consistently higher than the White risk rates, and the Asian risk 15 

rates are consistently lower than the White risk rates (Figure C-32). 16 

 17 

White Black Hispanic Asian Native American

Just meeting 12/35 µg/m³ 29,400 

(28,200 to 30,400)

13,600 

(13,100 to 14,100)

4,850 

(4,220 to 5,460)

1,930 

(1,530 to 2,300)

125 

(77.9 to 169)

Just meeting 10/30 µg/m³ 25,200 

(24,300 to 26,200)

11,700 

(11,300 to 12,100)

4,160 

(3,610 to 4,680)

1,650 

(1,310 to 1,970)

108 

(66.9 to 146)

Just meeting 12/35 µg/m³ 24,900 

(23,900 to 25,800)

12,800 

(12,400 to 13,300)

3,970 

(3,450 to 4,460)

1,640 

(1,300 to 1,960)

87.9 

(54.6 to 119)

Interpolated to 11 µg/m³ 23,100 

(22,200 to 24,000)

11,900 

(11,500 to 12,400)

3,680 

(3,200 to 4,140)

1,520 

(1,210 to 1,820)

81.5 

(50.6 to 110)

Just meeting 10/30 µg/m³ 21,300 

(20,500 to 22,100)

11,000 

(10,600 to 11,400)

3,380 

(2,940 to 3,810)

1,400 

(1,110 to 1,670)

75.1 

(46.5 to 102)

Extrapolated to 9 µg/m³ 19,600 

(18,800 to 20,300)

10,100 

(9,740 to 10,500)

3,090 

(2,680 to 3,480)

1,280 

(1,010 to 1,530)

68.6 

(42.4 to 93.0)

Extrapolated to 8 µg/m³ 17,800 

(17,100 to 18,400)

9,180 

(8,840 to 9,510)

2,790 

(2,420 to 3,140)

1,150 

(913 to 1,380)

62.0 

(38.3 to 84.3)

47 areas

30 areas

Ethnicity & Race
Modeling ScenarioStudy Areas

White Black Hispanic Asian Native American

47 areas 12/35-10/30 µg/m³ 4,380 

(4,200 to 4,540)

2,280 

(2,190 to 2,370)

771 

(665 to 872)

302 

(238 to 364)

18.9 

(11.6 to 26.0)

12/35-11 (interpolated) µg/m³ 1,890 

(1,810 to 1,960)

1,090 

(1,050 to 1,130)

327 

(282 to 371)

133 

(104 to 160)

7.04 

(4.29 to 9.68)

12/35-10/30 µg/m³ 3,760 

(3,610 to 3,900)

2,170 

(2,080 to 2,250)

652 

(563 to 737)

264 

(208 to 319)

14.0 

(8.57 to 19.3)

12/35-9 (extrapolated) µg/m³ 5,630 

(5,410 to 5,840)

3,220 

(3,100 to 3,340)

973 

(840 to 1,100)

395 

(311 to 476)

21.0 

(12.8 to 28.7)

12/35-8 (extrapolated) µg/m³ 7,490 

(7,190 to 7,770)

4,260 

(4,090 to 4,420)

1,290 

(1,120 to 1,460)

525 

(414 to 631)

27.8 

(17.0 to 38.1)

Study Areas Modeling Scenario
Ethnicity & Race

30 areas
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 1 

 Race- and ethnicity-stratified 95th percentile (2.5th percentile to 97.5th 2 

percentile) confidence interval risk estimates for recent conditions (2015), the current 3 

standard, and potential alternative standard air quality surfaces. 4 

 5 

As the risk rate calculation integrates both population-specific baseline incidence rates 6 

and concentration-response relationships with exposure information, we wanted to separate the 7 

impacts of each data input. To distinguish the impacts of race-stratified concentration-response 8 

functions from baseline incidence rates on the results, we provide the average PM2.5-attributable 9 

risk by demographic population in the full set of 47 urban study areas for the current standards, 10 

potential alternative standards, and recent condition (2015) air quality surfaces within each 11 

demographic group. Figure C-33 and Figure C-34 provide this information when just meeting 12 

current and alternative standards or shifting between the current and potential alternative annual 13 

standards, respectively.  14 
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Generally, race-stratified concentration-response functions increased the population-1 

normalized risk estimated in nonwhite populations, with the greatest magnitude increase 2 

occuring in Black populations, followed by Hispanic populations, and decreased risk estimated 3 

in White populations. Di et al., 2017 did not provide a concentration-response function for the 4 

non-Hispanic population, so only the overall concentration-response function was applied to 5 

non-Hispanics in these supplemental analyses.  6 

Many factors effect race/ethnicity-stratified baseline incidence rates, such as access to 7 

medical care, socioeconomic status, and underlying health issues. As such, race/ethnicity-8 

stratified baseline incidence rates impacted by each race and ethnicity differently. Race/ethnicity-9 

stratified baseline incidence rates increased risk estimates substantially in Black populations and 10 

slightly in White and non-Hispanic populations. In contrast, race/ethnicity-stratified baseline 11 

incidence rates decreased risk rates estimated in Hispanic, Asian, and Native American 12 

populations. 13 
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 1 

 Effect of race-stratified concentration-response (CR) functions and baseline 2 

incidence rates on the average PM2.5-attributable risk by demographic population in 3 

the 47 study areas for the current standard, potential alternative standard, and recent 4 

conditions (2015) air quality surfaces within each demographic group. 5 

 6 
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 1 

 Effect of race-stratified CR functions and baseline incidence rates on the 2 

average PM2.5-attributable risk reductions by demographic population in the 47 study 3 

areas when shifting from the current to the potential alternative standards within each 4 

demographic group. 5 

 6 

As the annual design values for many study areas required rolling up to just meet the 7 

current standard (section C.1.4.6), for informational purposes we provide cumulative distribution 8 

plots of PM2.5 exposure and PM2.5-attributable mortality risk per 100,000 people by demographic 9 

group for the recent condition year 2015, along with the plots for just meeting the current 10 

standards for direct comparison (Figure C-35). Several caveats should be noted when comparing 11 

the recent conditions air quality surface to those adjusted to just meet current or recent air quality 12 

conditions. Importantly, the at-risk analysis focuses on the Pri-PM adjustment approach (section 13 

C.3.4.2), in which emission increases in areas below the current standard occur predominately at 14 

and around the urban cores of the study areas. This could lead to a simulated increase of 15 

disproportionate PM2.5 exposures in demographic populations that frequently reside at and 16 

around the urban core. Conversely, disproportionate PM2.5 concentrations in demographic 17 

populations residing in areas above the current standards may be obscured when concentrations 18 

are adjusted downward to just meet the current standard. 19 
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 1 

 PM2.5 concentrations and PM2.5-attributable risk by demographic population 2 

for recent air quality conditions (2015) and air quality simulated to just meet the 3 

current PM standards. 4 

 5 

Another aspect of lowering the annual PM2.5 standard is the percent of overall risk 6 

attributable to PM2.5 exposure. Table C-17 shows that the percent of baseline risk is higher in 7 

racial/ethnic minority demographics in all scenarios analyzed. Additionally, some minority 8 

populations may experience a greater decrease in the percent of baseline PM2.5-attributable risk. 9 
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Table C-17. Percent of mortality baseline incidence attributable to PM2.5 under the current 1 

and potential alternative standards. 2 

Ethnicity 
& Race 

% of Baseline 
PM2.5-Attributable 

Risk Under the 
Current Standard 

(12/35) 

% of Baseline 
PM2.5-

Attributable 
Risk Under an 

Alternative 
Standard (11) 

% of Baseline 
PM2.5-Attributable 

Risk Under an 
Alternative 

Standard (10/30) 

% of Baseline 
PM2.5-

Attributable 
Risk Under an 

Alternative 
Standard (9) 

% of Baseline 
PM2.5-

Attributable 
Risk Under an 

Alternative 
Standard (8) 

47 
areas 

30 
areas 

30 areas 
47 

areas 
30 

areas 
30 areas 30 areas 

White 6 7 6 5 6 5 5 

Black 19 20 18 17 17 15 14 

Hispanic 11 12 11 10 10 9 8 

Asian 10 10 9 8 8 8 7 

Native 
American 9 10 9 8 9 8 7 

 3 

C.5 CHARACTERIZING VARIABILITY AND UNCERTAINTY IN RISK 4 

ESTIMATES 5 

An important component of the risk assessment is the characterization of variability and 6 

uncertainty. Variability refers to the heterogeneity of a variable of interest within a population or 7 

across different populations. Variability is inherent and cannot be reduced through further 8 

research. Hence, the design of a population-level risk assessment is often focused on effectively 9 

characterizing variability in estimated risks across populations. Uncertainty refers to the lack of 10 

knowledge regarding the actual values of inputs to an analysis. In contrast to variability, 11 

uncertainty can be reduced through improved measurement of key variables and ongoing model 12 

refinement. This section discusses our approaches to addressing key sources of variability and 13 

uncertainty in the PM2.5 risk assessment.  14 

Variability in the risk of PM2.5-associated mortality could result from a number of factors. 15 

These can include variation in PM2.5 exposures within and across populations (e.g., due to 16 

differences in behavior patterns, building characteristics, air quality patterns etc.) and in the 17 

health responses to those exposures (e.g., because some groups are at increased risk of PM-18 

related health effects). There is also variation over space and time in both PM2.5 itself (e.g., 19 

concentrations, air quality patterns) and in the ambient pollutants that co-occur with PM2.5. In the 20 

PM2.5 risk assessment discussed in this draft PA, we account for these and other sources of 21 

variability, in part, by estimating risks based on CR functions from a number of epidemiologic 22 

studies. These studies evaluate PM2.5 health effect associations for either annual or daily PM2.5 23 

exposures across various time periods; in numerous geographic locations, encompassing much or 24 

all of the U.S.; in various populations, including some with the potential to be at higher risk than 25 
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the general population (e.g., older adults); and using a variety of methods to estimate PM2.5 1 

exposures (e.g., hybrid modeling approaches and monitors) and to control for potential 2 

confounders. In selecting areas in which to estimate PM2.5-associated risks, we include areas that 3 

cover multiple regions of the U.S., with varying population demographics. Additionally, we use 4 

two different strategies for adjusting PM2.5 air quality, reflecting the potential for changes in 5 

ambient PM2.5 concentrations to be influenced by changes in primary PM2.5 emissions and by 6 

changes in precursor emissions that contribute to secondary particle formation.  7 

Beyond the reliance on information from multiple epidemiologic studies to account for 8 

the variability in key risk assessment inputs, we use a combination of quantitative and qualitative 9 

approaches to characterize the remaining risk estimates uncertainty more explicitly. The 10 

characterization of uncertainty associated with risk assessments is often addressed in the 11 

regulatory context using a tiered approach in which progressively more sophisticated methods 12 

are used to evaluate and characterize sources of uncertainty depending on the overall complexity 13 

of the risk assessment (WHO, 2008). Guidance documents developed by the EPA for assessing 14 

air toxics-related risk and Superfund Site risks (U.S. EPA, 2004 U.S. EPA, 2001) as well as 15 

recent guidance from the World Health Organization (WHO, 2008) specify multitiered 16 

approaches for addressing uncertainty. The WHO guidance presents a four-tiered approach, 17 

where the decision to proceed to the next tier is based on the outcome of the previous tier’s 18 

assessment. The four tiers described in the WHO guidance include: 19 

• Tier 0 – recommended for routine screening assessments, uses default uncertainty factors 20 

(rather than developing site-specific uncertainty characterizations);  21 

• Tier 1 – the lowest level of site-specific uncertainty characterization, involves qualitative 22 

characterization of sources of uncertainty (e.g., a qualitative assessment of the general 23 

magnitude and direction of the effect on risk results);  24 

• Tier 2 – site-specific deterministic quantitative analysis involving sensitivity analysis, 25 

interval-based assessment, and possibly probability bound (high- and low-end) 26 

assessment; and 27 

• Tier 3 – uses probabilistic methods to characterize the effects on risk estimates of sources 28 

of uncertainty, individually and combined. 29 

With this four-tiered approach, the WHO framework provides a means for systematically 30 

linking the characterization of uncertainty to the sophistication of the underlying risk assessment. 31 

Ultimately, the decision as to which tier of uncertainty characterization to include in a risk 32 

assessment will depend both on the overall sophistication of the risk assessment and the 33 

availability of information for characterizing the various sources of uncertainty. EPA staff used 34 

the WHO guidance as a framework for developing the approach used for characterizing 35 

uncertainty in this risk assessment. The overall analysis in the PM NAAQS risk assessment is 36 

relatively complex, thereby warranting consideration of a full probabilistic (WHO Tier 3) 37 
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uncertainty analysis. However, limitations in available information prevent this level of analysis 1 

from being completed at this time. In particular, the incorporation of uncertainty related to key 2 

elements of CR functions (e.g., alternative functional forms, etc.) into a full probabilistic WHO 3 

Tier 3 analysis would require that probabilities be assigned to each competing specification of a 4 

given model element (with each probability reflecting a subjective assessment of the probability 5 

that the given specification is the “correct” description of reality). However, for many model 6 

elements there is insufficient information on which to base these probabilities. One approach that 7 

has been taken in such cases is expert elicitation; however, this approach is resource- and time-8 

intensive and consequently, it was not feasible to use this technique in the current PM NAAQS 9 

reconsideration to support a WHO Tier 3 analysis.  10 

For most elements of this risk assessment, rather than conducting a full probabilistic 11 

uncertainty analysis, we have included qualitative discussions of the potential impact of 12 

uncertainty on risk results (WHO Tier1) and/or completed sensitivity analyses assessing the 13 

potential impact of sources of uncertainty on risk results. The remainder of this section is 14 

organized as follows. Those sources of uncertainty addressed quantitively in the risk assessment 15 

are discussed in section C.5.1. Those sources of uncertainty addressed qualitatively in the risk 16 

assessment are discussed in section C.5.2. Below we summarize key findings from both the 17 

qualitative and quantitative assessments of variability and uncertainty in the context of assessing 18 

overall confidence in the risk assessment and its estimates.  19 

C.5.1 Quantitative Assessment of Uncertainty 20 

The risk assessment includes three components which allow us to quantitatively evaluate 21 

the impact of potentially important sources of uncertainty on the risk estimates generated. Each 22 

of these is discussed below including conclusions drawn from each assessment regarding the 23 

potential importance of each source of uncertainty: 24 

• 95 percent CIs around point estimates of mortality risk: Each of the point estimates 25 

presented in the results section includes 95 percent CIs generated by BenMAP-CE, 26 

reflecting the standard error associated with the underlying effect estimate (i.e., a 27 

measure of the statistical precision of the effect estimate). There is variation in the range 28 

of 95 percent CIs associated with the point estimates generated for this analysis, with 29 

some CR functions displaying substantially greater variability than others (e.g., Ito et al., 30 

2013, tables in section 3.4.2 of the draft PA). There are a number of factors potentially 31 

responsible for the varying degrees of statistical precision in effect estimates, including 32 

sample size, exposure measurement error, degree of control for confounders/effect 33 

modifiers, and variability in PM2.5 concentrations. 34 

• Inclusion of multiple mortality estimates reflecting variation in CR functions across 35 

studies: For mortality endpoints, we include risk estimates reflecting multiple 36 

epidemiology studies and associated study designs (e.g., age ranges, methods for 37 

controlling potential confounders). In some instances, we find that the CR function used 38 
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has only a small impact on risk estimates(e.g., Turner et al., 2016 and Di et al., 2017). 1 

The degree to which different CR functions result in different risk estimates could reflect 2 

differences in study design and/or study populations evaluated, as well as other factors. In 3 

most instances in this risk assessment, the CR function used has only a small impact on 4 

risk estimates (e.g., Di et al., 2017). Details regarding the design of epidemiology studies 5 

providing effect estimates for this risk assessment are presented in Table C-1.  6 

• Evaluation of two different strategies for simulating air quality scenarios: Two methods 7 

are employed to adjust air quality in order to simulate just meeting the current and 8 

alternative standards, which could represent potential bounding scenarios of PM2.5 9 

concentrations changes across the study area (i.e., the Pri-PM-based method and the Sec-10 

PM based method). Our evaluation of these methods reflects the fact that there is both 11 

variability and uncertainty in how emissions in a particular area could change such that 12 

the area “just meets” either the current or alternative standards. By modeling risks based 13 

on adjusted primary PM2.5 emissions and based on adjusted precursor emissions that 14 

contribute to secondary PM2.5 formation, the risk assessment provides insight into the 15 

potential significance of this source of uncertainty. As discussed in section 3.4.2 of this 16 

draft PA, the approach to adjusting air quality had relatively modest impacts on overall 17 

risk estimates. Specifically, the difference between the absolute risk estimates from two 18 

air quality modeling approach methods was generally less than 5% (draft PA section 19 

3.4.2).  20 

C.5.2 Qualitative Uncertainty Analysis 21 

While the methods described above address some of the potentially important sources of 22 

uncertainty and variability in the risk assessment, there are a range of additional sources that 23 

cannot be analyzed quantitatively due to limitations in data, methods and/or resources. We have 24 

addressed these additional sources of uncertainty qualitatively (Table C-18).  25 

In describing each source of uncertainty, we attempt to characterize both the magnitude 26 

and direction of impact on mortality risk estimates, including our rationale for these 27 

characterizations. The categories used in describing the potential magnitude of impact (i.e., low, 28 

medium, or high) reflect EPA staff judgments on the degree to which a particular source of 29 

uncertainty could produce a sufficient impact on risk estimates to influence the interpretation of 30 

those estimates in the context of the PM NAAQS reconsideration. Sources classified as having a 31 

low impact would not be expected to influence conclusions from the risk assessment. Sources 32 

classified as having a medium impact have the potential to affect such conclusions and sources 33 

classified as high are likely to influence conclusions. Because this classification of the potential 34 

magnitude of impact of sources of uncertainty is qualitative, it is not possible to place a 35 

quantitative level of impact on each of the categories.  36 
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Table C-18. Qualitative analysis of sources of uncertainty and assessment of potential impact on risk assessment. 1 

Source of Uncertainty Description Direction Magnitude Comments 

Shape and 
corresponding statistical 
uncertainty around the 
CR function for long-term 
and short-term exposure-
related mortality 
(especially at lower 
ambient PM levels) 

Interpreting the shapes of concentration-
response relationships, particularly at PM2.5 
concentrations near the lower end of the air 
quality distribution, can be complicated by 
relatively low data density in the lower 
concentration range, the possible influence 
of exposure measurement error, and 
variability among individuals with respect to 
air pollution health effects. These sources 
of variability and uncertainty tend to 
smooth and “linearize” population-level 
concentration-response functions, and thus 
could obscure the existence of a threshold 
or nonlinear relationship (U.S. EPA, 2015, 
section 6.c).   

Both Medium-
High 

With regard to long-term exposure-related 
(nonaccidental) mortality, the ISA concludes that the 
majority of evidence supports a linear, no-threshold 
concentration-response relationship, though there is 
initial evidence indicating that the slope of the 
concentration-response curve may be steeper at 
lower concentrations for cardiovascular mortality 
(U.S. EPA, 2019, section 1.5.3.2). For long-term 
exposure-related mortality, the ISA notes that there 
is less certainty in the shape of the concentration-
response curve at mean annual PM2.5 concentrations 
generally below 8 μg/m3 because data density is 
reduced below this concentration (2019 ISA, section 
11.2.4). Given that a portion of risk modeling in the 
risk assessment does involve locations with ambient 
PM2.5 concentrations below 8 ug/m3 (although most 
of the population modeled is associated with level 
above this), we note the potential for significant 
uncertainty being introduced into the risk 
assessment (particularly for that portion of risk 
modeled at or below 8 ug/m3). With regard to short-
term exposure-related mortality, the ISA concludes 
that, while difficulties remain in assessing the shape 
of the PM2.5-mortality concentration-response 
relationship, as identified in the 2009 PM ISA, and 
studies have not conducted systematic evaluations 
of alternatives to linearity, recent studies continue to 
provide evidence of a no-threshold linear 
relationship, with less confidence at concentrations 
lower than 5 μg/m3.  

 Representing 
population-level 
exposure with 12 km grid 

As with long-term exposure-related 
mortality, short-term exposure-related 
mortality endpoints were also modeled 

Both Medium-
High 

Three studies providing effect estimates for short-
term exposure-related mortality in the risk 
assessment all utilized some form of urban-level 
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Source of Uncertainty Description Direction Magnitude Comments 

cell spatial framework (in 
context of modeling 
short-term exposure-
related mortality) 

using the same 12 km grid cell template. 
The disconnect between the spatial 
template used in the underlying short-term 
epidemiology studies and the 12 km grid 
template used in the risk assessment 
introduces uncertainty into risk estimates.  

spatial unit in characterizing exposure (e.g., Baxter 
et al. (2017) utilizes the CBSA, Ito et al. (2013), 
utilizes the MSA), which are larger (less spatially 
differentiated) in general than the 12 km grid cells 
used in modeling risk. This means that we are 
generally modeling short-term exposure-related 
mortality at a finer level of spatial resolution in the 
risk assessment than reflected in the epidemiology 
studies supplying the effect estimates, which does 
introduce uncertainty into the analysis.   

Representing population-
level exposure with 12 
km grid cell spatial 
framework (in context of 
modeling long-term 
exposure-related 
mortality) 

The risk assessment utilizes a 12 km grid 
structure in modeling risk. A source of 
uncertainty associated with this approach 
is the mismatch between the 12 km grid 
cell framework and the exposure 
estimation approaches used in the 
epidemiology studies providing effect 
estimates for the risk assessment. This 
mismatch can introduce additional 
exposure error to risk estimates, beyond 
the error inherent to the underlying 
epidemiologic study.  

Both Medium There are a variety of spatial templates used across 
the epidemiology studies providing CR functions 
used in the risk assessment and none of them are 
an exact match with the 12 km grid cell template 
used in the risk assessment. Jerrett et al. (2013), 
Pope et al. (2015)Differences between the exposure 
metric used in the risk assessment and those used 
in the underlying epidemiologic studies introduce 
uncertainty into risk estimates.  

Simulating just meeting 
alternative annual 
standards with levels of 
8.0, 9.0, and 11.0 ug/m3 
using linear 
extrapolation/ 
interpolation 

The use of extrapolation/ interpolation in 
simulating just meeting annual standards 
introduces uncertainty into the risk 
assessment since this approach does not 
fully capture potential non-linearities 
associated with the formation of secondary 
PM2.5. 

Both Medium Extrapolation to generate the surfaces for 9.0 and 
8.0 µg/m3 are subject to greater uncertainty than 
interpolation to 11.0 µg/m3 (i.e., since the former 
estimates concentrations below those in modeled 
surfaces, while the latter estimates a surface 
between two sets of modeled results). In addition, 
linear extrapolation/interpolation based on the 
primary-PM modeled surfaces (for current standard 
and 10.0 µg/m3) is likely subject to less uncertainty 
than extrapolation/interpolation based on the 
secondary-PM modeled surfaces since the latter 
focus on secondary formation which could involve a 
higher degree of non-linearity.  
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Source of Uncertainty Description Direction Magnitude Comments 

Simulating just meeting 
current and alternative 
standards using model-
based (Downscaler) 
methods 

The baseline and adjusted concentration 
fields were developed using modeling to fill 
spatial and temporal gaps in monitoring 
and to explore air quality scenarios of 
policy interest. State-of-the-science 
modeling methods were used, but model-
related biases and errors can introduce 
uncertainty into the PM2.5 concentration 
estimates.  
b) Due to the national scale of the 
assessment, the modeling scenarios are 
based on “across-the-board” emission 
changes in which emissions of primary 
PM2.5 or NOx and SO2 from all 
anthropogenic sources throughout the U.S. 
are scaled by fixed percentages. Although 
this approach tends to target the key 
sources in each area, it does not tailor 
emission changes to specific periods or 
sources. 
c) Two adjustment cases were applied that 
span a wide range of emission conditions, 
but these cases are necessarily a subset of 
the full set of possible emission cases that 
could be used to adjust PM2.5 
concentrations to just meet standards.    

This source of 
uncertainty 
could bias 
results in 
either 
direction.  

Medium Use of state-of-the-science modeling systems with 
the relative response factor adjustment approach 
provides confidence in the broad features of the 
simulated national PM2.5 distributions and how the 
distributions shift with changing standards levels. 
Due to challenges in modeling local features in the 
national annual simulations, quantitative results for 
individual areas or small subsets of grid cells are 
relatively uncertain compared with broad features of 
the national PM2.5 distributions. 

Potential confounding of 
the PM2.5-mortalty effect   

Factors are considered potential 
confounders if demonstrated in the 
scientific literature to be related to health 
effects and correlated with PM. Omitting 
potential confounders from analyses could 
either increase or decrease the magnitude 
of PM2.5 effect estimates (e.g., Di et al., 
2017, Figure S2 in Supplementary 
Materials). Thus, not accounting for 

Both Medium Long-term PM2.5 exposure and mortality studies: For 
studies of long-term exposures, potential 
confounders are those that vary spatially or 
temporally. These may include socioeconomic 
status, race, age, medication use, smoking status, 
stress, noise, occupational exposures, and 
copollutant concentrations. Cohort studies used to 
characterize the PM2.5 -mortality relationship used a 
variety of approaches to account for these and other 
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Source of Uncertainty Description Direction Magnitude Comments 

confounders can introduce uncertainty into 
effect estimates and, consequently, into the 
risk estimates generated using those effect 
estimates. Confounders vary according to 
study design, exposure duration, and 
health effect. While a range of approaches 
to control for potential confounders have 
been adopted across the studies used in 
the risk assessment, and across the 
broader body of PM2.5 epidemiologic 
studies assessed in the ISA, no individual 
study adjusts for all potential confounders. 

potential confounders (e.g., see Appendix B). Across 
studies, a variety of study designs and statistical 
approaches have been used to account for potential 
confounding in the PM2.5-mortality relationship. The 
fact that across this diverse body of evidence 
epidemiologic studies continue to report consistently 
positive associations that are often similar in 
magnitude, adds support the conclusion that the 
PM2.5-mortality association is robust. Specifically 
regarding copollutants, the final PM ISA notes that, 
overall, associations remained relatively unchanged 
in copollutant models for total (nonaccidental) 
mortality, cardiovascular, and respiratory adjusted 
for ozone. Studies focusing on copollutant models 
with NO2, PM10−2.5, SO2 and benzene were examined 
in individual studies, and across these studies the 
PM2.5-mortality association was relatively 
unchanged.  
Short-term PM2.5 exposure and mortality studies: For 
studies of short-term exposures, potential 
confounders are those that vary temporally. These 
may include meteorology (e.g., temperature, 
humidity), day of week, season, medication use, 
allergen exposure, copollutant concentrations, and 
long-term temporal trends. Some recent studies 
have expanded the examination of potential 
confounders, including long-term temporal trends, 
weather, and copollutants. Overall, the ISA 
concludes that alternative approaches to controlling 
for long-term temporal trends and for the potential 
confounding effects of weather may influence the 
magnitude of the association between PM2.5 
exposures and mortality, but have not been found to 
influence the direction of the observed association 
(U.S. EPA, 2019, section 11.1.5.1). With regard to 
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Source of Uncertainty Description Direction Magnitude Comments 

copollutants, recent studies conducted outside the 
U.S. provide additional evidence that associations 
between short-term PM2.5 exposures and mortality 
remain positive and relatively unchanged in 
copollutant models with both gaseous pollutants and 
PM10-2.5 (U.S. EPA, 2019, Section 11.1.4).   

Lag structure in short-
term exposure-related 
mortality epidemiology 
studies 

It can be challenging to characterize the 
timing associated with specific PM2.5-
related health effects and consequently 
specify the lag-structure that should be 
used in modeling those health effects. This 
can introduce uncertainty into the modeling 
of risk for short-term exposure-related 
endpoints.  

Both Low-
Medium 

Given the emphasis placed in the risk assessment 
on mortality, we focus here on lags associated with 
all-cause mortality. 

Compositional and 
source differences in PM 

The composition of PM2.5 can differ across 
study areas reflecting underlying 
differences in primary and secondary PM2.5 
sources (both natural and anthropogenic). 
If these compositional differences lead to 
differences in public health impacts (per 
unit concentration in ambient air) for PM2.5, 
then uncertainty may be introduced into 
risk estimates that are based on 
concentration-response relationships for 
PM2.5 mass.  

Both Low The Integrated Synthesis chapter of the final ISA 
(Chapter 1, U.S. EPA, 2019) states that, the 
assessment of PM sources and components 
confirms and continues to support the conclusion 
from the 2009 PM ISA: Many PM2.5 components and 
sources are associated with health effects, and the 
evidence does not indicate that any one source or 
component is more strongly related with health 
effects than PM2.5 mass.  

Temporal mismatch 
between ambient air 
quality data 
characterizing exposure 
and mortality in long-term 
exposure-related 
epidemiology studies 

Several of the epidemiology studies for 
long-term exposure-related mortality have 
a mismatch between the time period 
associated with ambient PM2.5 
concentrations used to characterize 
population-level exposure and mortality 
data Jerrett et al. (2016), Pope et al. 
(2015).  

Both Low This approach can be reasonable in the context of 
an epidemiologic study evaluating health effect 
associations with long-term PM2.5 exposures, under 
the assumption that spatial patterns in PM2.5 
concentrations are not appreciably different during 
time periods for which air quality information is not 
available (e.g., Chen et al. (2016)), Thus, as long as 
the overall spatial pattern of ambient PM2.5 levels in 
relation to population-level exposure and mortality 
rates has held relatively stable over time, then a 
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Source of Uncertainty Description Direction Magnitude Comments 

temporal disconnect between the time-period 
associated with mortality and the ambient PM2.5 level 
used in characterizing exposure would not be 
expected to introduce significant uncertainty into the 
epidemiology studies and associated effect 
estimates.  

Exposure measurement 
error in epidemiologic 
studies assessing the 
relationship between 
mortality and exposure to 
ambient PM2.5 

Epidemiologic studies have employed a 
variety of approaches to estimate 
population-level PM2.5 exposures (e.g., 
stationary monitors, hybrid modeling 
approaches). These approaches are based 
on using measured or predicted ambient 
PM2.5 concentrations as surrogates for 
population exposures. As such, exposure 
estimates in epidemiologic studies are 
subject to exposure error. This error in the 
underlying epidemiologic studies 
contributes to uncertainty in the risk 
estimates that are based on concentration-
response relationships in those studies.  

Both Low Available studies indicate that PM2.5 health effect 
associations are robust across various approaches 
to estimating PM2.5 exposures. This includes recent 
studies that estimate exposures using ground-based 
monitors alone and studies that estimate exposures 
using data from multiple sources (e.g., satellites, 
land use information, modeling), in addition to 
monitors. While none of these approaches 
eliminates the potential for exposure error in 
epidemiologic studies, such error does not call into 
question the findings of key PM2.5 epidemiologic 
studies. The ISA notes that, while bias in either 
direction can occur, exposure error tends to result in 
underestimation of health effects in epidemiologic 
studies of PM exposure (U.S. EPA, 2019, section 
3.5). Consistent with this, a recent study Hart et al. 
(2015) reports that correction for PM2.5 exposure 
error using personal exposure information results in 
a moderately larger effect estimate for long-term 
PM2.5 exposure and mortality (though with wider 
confidence intervals). While most PM2.5 
epidemiologic studies have not employed similar 
corrections for exposure error, several studies report 
that restricting analyses to populations in close 
proximity to a monitor (i.e., in order to reduce 
exposure error) result in larger PM2.5 effect estimates 
(e.g., Willis et al., 2003; Kloog et al., 2013). Thus, to 
the extent key PM2.5 epidemiologic studies are 
subject to exposure error, correction for that error 
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would likely result in larger effect estimates, and thus 
larger estimates of PM2.5-associated mortality 
incidence in the risk assessment.   
 

Use of associations 
reported in epidemiologic 
studies to estimate how 
mortality incidence may 
change with changing 
PM2.5 air quality.  
 
 

The ISA’s determination that the evidence 
supports a causal relationship between 
PM2.5 exposure and mortality is based on 
assessing a broad body of evidence from 
epidemiologic and experimental studies. 
Thus, the use of the concentration-
response relationship from any individual 
epidemiologic study to estimate how 
mortality incidence may change with 
changing PM2.5 air quality is subject to 
uncertainty.   

Both Low The ISA assesses a longstanding body of health 
evidence supporting relationships between PM2.5 
exposures (short- and long-term) and mortality. 
Much of this evidence comes from epidemiologic 
studies conducted in North America, Europe, or Asia 
that demonstrate generally positive, and often 
statistically significant, associations between PM2.5 
exposures and total or cause-specific mortality. In 
addition, recent experimental evidence, as well as 
evidence from panel studies, strengthens support for 
potential biological pathways through which PM2.5 
exposures could lead to serious health outcomes, 
including mortality. While this broad body of 
evidence from across disciplines provides the 
foundation for the ISA’s conclusions, the risk 
assessment necessarily focuses on a small number 
of individual studies. Although the studies selected 
for the risk assessment are part of the evidence 
base supporting the ISA’s causality determinations 
for mortality, the concentration-response relationship 
in any given study reflects the particular time period, 
locations, air quality distribution and populations 
evaluated in that study. Thus, the use of the 
concentration-response relationship from any 
individual epidemiologic study to estimate mortality 
incidence across the U.S. for populations, locations 
and PM2.5 air quality distributions different from those 
present during the study period is subject to 
uncertainty.  
 

1 
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C.5.3 Conclusion 1 

To increase overall confidence in the risk assessment, a deliberative process has been 2 

used in specifying each of the analytical elements comprising the risk model, including selection 3 

of urban study areas as well as specification of other inputs such as CR functions. This 4 

deliberative process involved rigorous review of available literature addressing both PM2.5 5 

exposure and risk combined with the application of a formal set of criteria to guide development 6 

of each of the key analytical elements in the risk assessment. The application of this deliberative 7 

process increases overall confidence in the risk estimates by ensuring that the estimates are based 8 

on the best available science and data characterizing PM2.5 exposure and risk, and that they 9 

reflect consideration of input from experts on PM exposure and risk through CASAC and public 10 

reviews.  11 

 12 

13 
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C.6 PM2.5 DESIGN VALUES FOR THE AIR QUALITY PROJECTIONS  1 

 2 

Table C-19. PM2.5 DVs for the Primary PM projection case and 12/35 standard level. 3 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes 0 -18 10.99 11.99 23.7 25.4 

AkronO 391530023 Annual No 0 -18 9.16 9.90 20.2 21.4 

Altoon 420130801 Annual Yes 0 -41 10.11 12.02 23.8 29.5 

Atlant 131210039 Annual Yes 0 -27 10.38 11.99 19.7 22.6 

Atlant 132230003 Annual No 0 -27 7.82 8.62 16.2 17.5 

Atlant 131350002 Annual No 0 -27 8.84 10.05 17.9 20.2 

Atlant 130890002 Annual No 0 -27 9.34 10.63 19.2 21.7 

Atlant 130670003 Annual No 0 -27 9.51 10.79 18.6 21.0 

Atlant 130630091 Annual No 0 -27 9.86 11.19 19.1 21.6 

Bakers 060290010 24-hr Yes 79 77 16.52 10.23 70.0 35.4 

Bakers 060290016 24-hr No 79 77 18.45 11.45 61.3 31.7 

Bakers 060290015 24-hr No 79 77 5.15 3.97 15.8 13.6 

Bakers 060290014 24-hr No 79 77 16.53 9.81 61.4 31.7 

Bakers 060290011 24-hr No 79 77 6.06 4.84 19.6 16.6 

Birmin 010732059 Annual Yes 0 -10 11.25 12.00 22.3 23.9 

Birmin 010732003 Annual No 0 -10 10.08 10.70 19.0 20.1 

Birmin 010731010 Annual No 0 -10 9.78 10.30 19.2 20.1 

Birmin 010730023 Annual No 0 -10 10.94 11.66 22.8 24.2 

Canton 391510017 Annual Yes 0 -23 10.81 12.04 23.7 26.1 

Canton 391510020 Annual No 0 -23 9.91 10.96 22.0 23.6 

Chicag 170313103 Annual Yes 0 -15 11.10 12.00 22.6 24.2 

Chicag 550590019 Annual No 0 -15 8.04 8.56 20.4 21.5 

Chicag 181270024 Annual No 0 -15 9.51 10.30 22.4 24.1 

Chicag 180892004 Annual No 0 -15 9.84 10.71 24.7 26.7 

Chicag 180890031 Annual No 0 -15 10.12 11.01 23.6 25.6 

Chicag 180890026 Annual No 0 -15 - - 25.2 27.1 

Chicag 180890022 Annual No 0 -15 - - 22.7 24.8 

Chicag 180890006 Annual No 0 -15 10.03 10.93 23.1 25.2 

Chicag 171971011 Annual No 0 -15 8.36 8.85 18.4 19.3 

Chicag 171971002 Annual No 0 -15 7.69 8.23 20.0 21.2 

Chicag 170890007 Annual No 0 -15 8.94 9.55 19.2 20.5 

Chicag 170890003 Annual No 0 -15 - - 19.2 20.0 

Chicag 170434002 Annual No 0 -15 8.87 9.48 19.9 20.7 

Chicag 170316005 Annual No 0 -15 10.79 11.66 24.1 26.1 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Chicag 170314201 Annual No 0 -15 9.00 9.61 21.4 22.6 

Chicag 170314007 Annual No 0 -15 9.49 10.17 - - 

Chicag 170313301 Annual No 0 -15 10.37 11.18 23.5 25.2 

Chicag 170310076 Annual No 0 -15 10.18 10.96 22.5 24.0 

Chicag 170310057 Annual No 0 -15 11.03 11.89 26.8 28.4 

Chicag 170310052 Annual No 0 -15 10.00 10.78 23.3 24.9 

Chicag 170310022 Annual No 0 -15 10.38 11.30 22.4 23.9 

Chicag 170310001 Annual No 0 -15 10.13 10.88 21.7 23.4 

Cincin 390610014 Annual Yes 0 -24 10.70 12.02 22.9 24.7 

Cincin 390610042 Annual No 0 -24 10.29 11.47 22.6 24.5 

Cincin 390610040 Annual No 0 -24 9.45 10.53 21.0 22.9 

Cincin 390610010 Annual No 0 -24 9.43 10.41 21.3 22.9 

Cincin 390610006 Annual No 0 -24 9.46 10.56 20.3 21.8 

Cincin 390170020 Annual No 0 -24 - - 24.2 26.5 

Cincin 390170019 Annual No 0 -24 10.24 11.51 22.0 23.8 

Cincin 390170016 Annual No 0 -24 9.79 10.91 22.1 23.7 

Cincin 210373002 Annual No 0 -24 9.06 10.00 20.9 22.6 

Clevel 390350065 Annual Yes 0 2 12.17 12.03 24.9 24.6 

Clevel 391030004 Annual No 0 2 8.73 8.66 19.6 19.5 

Clevel 390933002 Annual No 0 2 8.10 8.03 20.2 20.1 

Clevel 390850007 Annual No 0 2 7.88 7.82 17.4 17.3 

Clevel 390351002 Annual No 0 2 8.86 8.78 19.5 19.4 

Clevel 390350045 Annual No 0 2 10.61 10.50 22.9 22.7 

Clevel 390350038 Annual No 0 2 11.38 11.25 25.0 24.8 

Clevel 390350034 Annual No 0 2 8.87 8.79 20.4 20.2 

Detroi 261630033 Annual Yes 0 -15 11.30 12.04 26.8 28.4 

Detroi 261630039 Annual No 0 -15 9.11 9.63 22.3 23.7 

Detroi 261630036 Annual No 0 -15 8.68 9.13 21.8 23.2 

Detroi 261630025 Annual No 0 -15 8.98 9.54 24.1 25.2 

Detroi 261630019 Annual No 0 -15 9.18 9.75 22.4 24.1 

Detroi 261630016 Annual No 0 -15 9.62 10.19 24.4 25.4 

Detroi 261630015 Annual No 0 -15 11.19 11.91 25.5 27.0 

Detroi 261630001 Annual No 0 -15 9.50 10.14 23.3 24.9 

Detroi 261470005 Annual No 0 -15 8.89 9.34 24.3 25.4 

Detroi 261250001 Annual No 0 -15 8.86 9.41 24.2 25.7 

Detroi 260990009 Annual No 0 -15 8.80 9.29 26.2 27.6 

ElCent 060250005 Annual Yes 0 12 12.63 12.00 33.5 31.3 

ElCent 060251003 Annual No 0 12 7.44 7.01 19.8 18.5 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

ElCent 060250007 Annual No 0 12 8.37 7.99 21.5 20.8 

Elkhar 180390008 Annual Yes 0 -47 10.24 12.01 28.6 33.2 

Evansv 181630023 Annual Yes 0 -44 10.11 12.03 21.5 24.0 

Evansv 211010014 Annual No 0 -44 9.64 11.32 20.7 22.3 

Evansv 181630021 Annual No 0 -44 9.84 11.68 21.6 23.3 

Evansv 181630016 Annual No 0 -44 10.02 11.91 22.0 24.0 

Fresno 060195001 24-hr Yes 0 70 14.08 10.87 49.3 35.4 

Fresno 060195025 24-hr No 0 70 13.63 9.98 47.9 31.7 

Fresno 060192009 24-hr No 0 70 8.47 7.26 31.3 25.1 

Fresno 060190011 24-hr No 0 70 14.07 10.01 53.8 34.4 

Hanfor 060310004 24-hr Yes 65 79 21.98 11.79 72.0 35.4 

Hanfor 060311004 24-hr No 65 79 16.49 9.68 58.9 30.7 

Housto 482011035 Annual Yes 0 -14 11.19 12.04 22.4 24.0 

Housto 482011039 Annual No 0 -14 9.22 9.82 21.7 23.1 

Housto 482010058 Annual No 0 -14 9.67 10.37 22.3 23.8 

Housto 481671034 Annual No 0 -14 7.36 7.57 20.3 20.8 

Indian 180970087 Annual Yes 0 -10 11.44 12.01 25.9 26.8 

Indian 180970083 Annual No 0 -10 11.06 11.59 23.9 24.9 

Indian 180970081 Annual No 0 -10 11.07 11.61 25.0 26.0 

Indian 180970078 Annual No 0 -10 10.14 10.60 24.4 24.9 

Indian 180970043 Annual No 0 -10 - - 26.0 26.4 

Indian 180950011 Annual No 0 -10 9.05 9.40 21.8 22.3 

Indian 180570007 Annual No 0 -10 9.02 9.39 21.4 22.1 

Johnst 420210011 Annual Yes 0 -25 10.68 12.03 25.8 30.3 

Lancas 420710012 Annual Yes 0 12 12.83 12.00 32.7 30.4 

Lancas 420710007 Annual No 0 12 10.57 9.88 29.8 27.4 

LasVeg 320030561 Annual Yes 0 -22 10.28 11.98 24.5 29.4 

LasVeg 320032002 Annual No 0 -22 9.79 11.38 19.8 23.4 

LasVeg 320031019 Annual No 0 -22 5.18 5.70 11.5 12.2 

LasVeg 320030540 Annual No 0 -22 8.80 10.21 21.7 25.9 

Lebano 420750100 Annual Yes 0 -15 11.20 12.02 31.4 33.9 

Little 051191008 Annual Yes 0 -41 10.27 12.03 21.7 24.7 

Little 051190007 Annual No 0 -41 9.78 11.76 20.5 24.0 

LoganU 490050007 24-hr Yes 0 -7 6.95 7.15 34.0 35.4 

LosAng 060371103 Annual Yes 0 5 12.38 12.03 32.8 32.1 

LosAng 060592022 Annual No 0 5 7.48 7.33 15.3 15.0 

LosAng 060590007 Annual No 0 5 9.63 9.37 - - 

LosAng 060374004 Annual No 0 5 10.25 9.97 27.3 26.7 
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(µg m-3) 
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LosAng 060374002 Annual No 0 5 11.06 10.76 29.2 28.6 

LosAng 060371602 Annual No 0 5 11.86 11.52 32.3 31.5 

LosAng 060371302 Annual No 0 5 11.99 11.64 31.5 30.8 

LosAng 060371201 Annual No 0 5 9.46 9.24 25.6 25.0 

LosAng 060370002 Annual No 0 5 10.52 10.27 29.2 28.6 

Louisv 180190006 Annual Yes 0 -27 10.64 12.04 23.9 26.2 

Louisv 211110075 Annual No 0 -27 10.42 11.84 22.3 24.3 

Louisv 211110067 Annual No 0 -27 9.55 10.78 21.4 23.6 

Louisv 211110051 Annual No 0 -27 10.29 11.48 21.8 23.7 

Louisv 211110043 Annual No 0 -27 10.37 11.72 22.0 24.1 

Louisv 180431004 Annual No 0 -27 9.96 11.20 22.0 24.2 

Louisv 180190008 Annual No 0 -27 8.72 9.69 20.1 21.5 

MaconG 130210007 Annual Yes 0 -39 10.13 12.01 21.2 24.8 

MaconG 130210012 Annual No 0 -39 7.68 8.90 16.6 18.6 

Madera 060392010 24-hr Yes 0 56 13.30 11.03 45.1 35.3 

McAlle 482150043 Annual Yes 0 -67 10.09 12.02 25.0 27.4 

Merced 060470003 24-hr Yes 0 28 11.81 10.97 39.0 35.4 

Merced 060472510 24-hr No 0 28 11.68 10.57 39.8 35.1 

Modest 060990006 24-hr Yes 0 51 13.02 10.70 45.7 35.3 

Modest 060990005 24-hr No 0 51 - - 38.8 32.5 

NapaCA 060550003 Annual Yes 0 -47 10.36 12.03 25.1 29.1 

NewYor 360610128 Annual Yes 0 -26 10.20 12.00 23.9 27.8 

NewYor 361030002 Annual No 0 -26 7.18 8.10 18.8 21.0 

NewYor 360810124 Annual No 0 -26 7.52 8.65 19.5 22.4 

NewYor 360710002 Annual No 0 -26 6.95 7.81 17.5 19.6 

NewYor 360610134 Annual No 0 -26 9.70 11.38 21.6 25.0 

NewYor 360610079 Annual No 0 -26 8.42 9.82 22.8 25.6 

NewYor 360470122 Annual No 0 -26 8.66 10.10 20.5 23.7 

NewYor 360050133 Annual No 0 -26 9.05 10.53 24.0 28.0 

NewYor 360050110 Annual No 0 -26 7.39 8.56 19.4 22.8 

NewYor 340392003 Annual No 0 -26 8.59 9.87 23.6 26.3 

NewYor 340390004 Annual No 0 -26 9.87 11.40 24.2 27.3 

NewYor 340310005 Annual No 0 -26 8.42 9.63 22.2 24.7 

NewYor 340292002 Annual No 0 -26 7.23 8.04 18.1 19.8 

NewYor 340273001 Annual No 0 -26 6.78 7.56 17.1 18.8 

NewYor 340171003 Annual No 0 -26 8.79 10.15 23.4 26.9 

NewYor 340130003 Annual No 0 -26 8.89 10.21 23.8 27.3 

NewYor 340030003 Annual No 0 -26 8.90 10.22 24.5 27.4 
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OgdenC 490110004 24-hr Yes 0 -18 7.28 7.77 32.6 35.4 

OgdenC 490570002 24-hr No 0 -18 8.99 9.73 - - 

OgdenC 490030003 24-hr No 0 -18 6.35 6.76 - - 

Philad 420450002 Annual Yes 0 -8 11.46 12.04 26.0 27.2 

Philad 421010057 Annual No 0 -8 10.86 11.37 27.0 28.4 

Philad 421010055 Annual No 0 -8 11.43 12.03 27.5 29.0 

Philad 421010048 Annual No 0 -8 10.27 10.77 25.6 27.0 

Philad 420290100 Annual No 0 -8 9.64 10.03 23.9 25.1 

Philad 340150004 Annual No 0 -8 8.33 8.69 20.6 21.5 

Philad 340071007 Annual No 0 -8 8.84 9.23 21.0 22.0 

Philad 340070002 Annual No 0 -8 10.19 10.61 23.5 24.6 

Philad 240150003 Annual No 0 -8 8.70 9.02 22.6 23.4 

Philad 100031012 Annual No 0 -8 9.04 9.40 23.0 23.8 

Pittsb 420030064 Annual Yes 0 13 12.82 12.00 35.8 32.8 

Pittsb 421290008 Annual No 0 13 8.65 8.15 19.6 18.9 

Pittsb 421255001 Annual No 0 13 8.35 7.89 17.8 17.2 

Pittsb 421250200 Annual No 0 13 8.95 8.44 19.3 18.2 

Pittsb 421250005 Annual No 0 13 11.02 10.38 22.7 21.2 

Pittsb 420070014 Annual No 0 13 10.11 9.48 21.9 20.5 

Pittsb 420050001 Annual No 0 13 11.03 10.30 21.9 20.5 

Pittsb 420031301 Annual No 0 13 11.00 10.30 24.8 23.0 

Pittsb 420031008 Annual No 0 13 9.78 9.16 20.5 19.3 

Pittsb 420030008 Annual No 0 13 9.50 8.85 20.5 19.0 

Prinev 410130100 24-hr Yes 0 10 8.60 8.17 37.6 35.3 

ProvoO 490494001 24-hr Yes 0 -30 7.74 8.57 30.9 35.3 

ProvoO 490495010 24-hr No 0 -30 6.73 7.52 - - 

ProvoO 490490002 24-hr No 0 -30 7.41 8.31 28.9 33.2 

Rivers 060658005 24-hr Yes 0 36 14.48 11.51 43.2 35.3 

Rivers 060658001 24-hr No 0 36 - - 36.5 29.6 

Sacram 060670006 24-hr Yes 0 -23 9.31 10.40 31.4 35.4 

Sacram 061131003 24-hr No 0 -23 6.62 7.19 15.8 17.3 

Sacram 060670012 24-hr No 0 -23 7.30 8.01 19.8 21.2 

Sacram 060670010 24-hr No 0 -23 8.67 9.65 26.5 29.9 

Sacram 060610006 24-hr No 0 -23 7.58 8.47 20.3 22.3 

Sacram 060610003 24-hr No 0 -23 6.71 7.26 19.3 20.2 

SaltLa 490353010 24-hr Yes 0 44 - - 41.5 35.3 

SaltLa 490353006 24-hr No 0 44 7.62 6.19 36.8 30.2 

SaltLa 490351001 24-hr No 0 44 7.07 5.85 32.1 25.8 
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SanLui 060792007 Annual Yes 0 -46 10.70 12.04 25.9 29.4 

SanLui 060798002 Annual No 0 -46 5.71 6.33 - - 

SanLui 060792004 Annual No 0 -46 8.25 9.26 19.8 21.4 

SouthB 181410015 24-hr Yes 0 -23 10.45 11.37 32.5 35.4 

St.Lou 290990019 Annual Yes 0 -39 10.12 12.02 22.8 24.9 

St.Lou 295100094 Annual No 0 -39 9.57 11.38 23.3 25.9 

St.Lou 295100093 Annual No 0 -39 - - 23.7 26.6 

St.Lou 295100085 Annual No 0 -39 10.10 12.01 23.6 26.2 

St.Lou 295100007 Annual No 0 -39 9.78 11.52 23.7 26.4 

St.Lou 291893001 Annual No 0 -39 9.85 11.72 22.4 25.2 

Stockt 060771002 24-hr Yes 0 17 12.23 11.30 38.7 35.4 

Stockt 060772010 24-hr No 0 17 10.74 9.96 37.3 34.3 

Visali 061072002 24-hr Yes 48 56 16.23 10.93 54.0 35.4 

Weirto 390810017 Annual Yes 0 -5 11.75 12.02 27.2 27.8 

Weirto 540090011 Annual No 0 -5 9.75 9.95 22.8 23.5 

Weirto 540090005 Annual No 0 -5 10.52 10.74 22.4 22.9 

Weirto 390810021 Annual No 0 -5 9.29 9.47 22.2 22.6 

Wheeli 540511002 Annual Yes 0 -44 10.24 12.02 22.5 25.4 

Wheeli 540690010 Annual No 0 -44 9.61 11.32 19.7 22.6 

a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case. 

 1 
  2 
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Table C-20. PM2.5 DVs for the Secondary PM projection case and 12/35 standard level. 1 

CBSA a Site 
Controlling 
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Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes -67 0 10.99 12.04 23.7 26.8 

AkronO 391530023 Annual No -67 0 9.16 10.20 20.2 21.8 

Altoon 420130801 Annual Yes N/A N/A 10.11 12.04 23.8 28.3 

Atlant 131210039 Annual Yes N/A N/A 10.38 12.04 19.7 22.9 

Atlant 132230003 Annual No N/A N/A 7.82 9.07 16.2 18.8 

Atlant 131350002 Annual No N/A N/A 8.84 10.25 17.9 20.8 

Atlant 130890002 Annual No N/A N/A 9.34 10.83 19.2 22.3 

Atlant 130670003 Annual No N/A N/A 9.51 11.03 18.6 21.6 

Atlant 130630091 Annual No N/A N/A 9.86 11.44 19.1 22.2 

Bakers 060290010 24-hr Yes N/A N/A 16.52 10.40 70.0 35.4 

Bakers 060290016 24-hr No N/A N/A 18.45 11.61 61.3 31.0 

Bakers 060290015 24-hr No N/A N/A 5.15 3.24 15.8 8.0 

Bakers 060290014 24-hr No N/A N/A 16.53 10.40 61.4 31.1 

Bakers 060290011 24-hr No N/A N/A 6.06 3.81 19.6 9.9 

Birmin 010732059 Annual Yes -56 0 11.25 12.03 22.3 24.2 

Birmin 010732003 Annual No -56 0 10.08 10.86 19.0 21.5 

Birmin 010731010 Annual No -56 0 9.78 10.68 19.2 21.4 

Birmin 010730023 Annual No -56 0 10.94 11.73 22.8 25.3 

Canton 391510017 Annual Yes -78 0 10.81 12.04 23.7 26.1 

Canton 391510020 Annual No -78 0 9.91 11.14 22.0 24.8 

Chicag 170313103 Annual Yes N/A N/A 11.10 12.04 22.6 24.5 

Chicag 550590019 Annual No N/A N/A 8.04 8.72 20.4 22.1 

Chicag 181270024 Annual No N/A N/A 9.51 10.32 22.4 24.3 

Chicag 180892004 Annual No N/A N/A 9.84 10.67 24.7 26.8 

Chicag 180890031 Annual No N/A N/A 10.12 10.98 23.6 25.6 

Chicag 180890026 Annual No N/A N/A - - 25.2 27.3 

Chicag 180890022 Annual No N/A N/A - - 22.7 24.6 

Chicag 180890006 Annual No N/A N/A 10.03 10.88 23.1 25.1 

Chicag 171971011 Annual No N/A N/A 8.36 9.07 18.4 20.0 

Chicag 171971002 Annual No N/A N/A 7.69 8.34 20.0 21.7 

Chicag 170890007 Annual No N/A N/A 8.94 9.70 19.2 20.8 

Chicag 170890003 Annual No N/A N/A - - 19.2 20.8 

Chicag 170434002 Annual No N/A N/A 8.87 9.62 19.9 21.6 

Chicag 170316005 Annual No N/A N/A 10.79 11.70 24.1 26.1 

Chicag 170314201 Annual No N/A N/A 9.00 9.76 21.4 23.2 

Chicag 170314007 Annual No N/A N/A 9.49 10.29 - - 

Chicag 170313301 Annual No N/A N/A 10.37 11.25 23.5 25.5 
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CBSA a Site 
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Projected 
24-hr DV 
(µg m-3) 

Chicag 170310076 Annual No N/A N/A 10.18 11.04 22.5 24.4 

Chicag 170310057 Annual No N/A N/A 11.03 11.96 26.8 29.1 

Chicag 170310052 Annual No N/A N/A 10.00 10.85 23.3 25.3 

Chicag 170310022 Annual No N/A N/A 10.38 11.26 22.4 24.3 

Chicag 170310001 Annual No N/A N/A 10.13 10.99 21.7 23.5 

Cincin 390610014 Annual Yes -72 0 10.70 12.04 22.9 26.1 

Cincin 390610042 Annual No -72 0 10.29 11.66 22.6 26.2 

Cincin 390610040 Annual No -72 0 9.45 10.79 21.0 25.4 

Cincin 390610010 Annual No -72 0 9.43 10.75 21.3 24.4 

Cincin 390610006 Annual No -72 0 9.46 10.75 20.3 24.3 

Cincin 390170020 Annual No -72 0 - - 24.2 27.8 

Cincin 390170019 Annual No -72 0 10.24 11.40 22.0 24.5 

Cincin 390170016 Annual No -72 0 9.79 11.06 22.1 25.1 

Cincin 210373002 Annual No -72 0 9.06 10.42 20.9 25.1 

Clevel 390350065 Annual Yes 6 0 12.17 12.04 24.9 24.7 

Clevel 391030004 Annual No 6 0 8.73 8.61 19.6 19.2 

Clevel 390933002 Annual No 6 0 8.10 7.99 20.2 19.9 

Clevel 390850007 Annual No 6 0 7.88 7.78 17.4 17.1 

Clevel 390351002 Annual No 6 0 8.86 8.74 19.5 19.2 

Clevel 390350045 Annual No 6 0 10.61 10.49 22.9 22.6 

Clevel 390350038 Annual No 6 0 11.38 11.26 25.0 24.7 

Clevel 390350034 Annual No 6 0 8.87 8.75 20.4 20.1 

Detroi 261630033 Annual Yes -56 0 11.30 12.04 26.8 30.2 

Detroi 261630039 Annual No -56 0 9.11 9.88 22.3 24.8 

Detroi 261630036 Annual No -56 0 8.68 9.39 21.8 23.4 

Detroi 261630025 Annual No -56 0 8.98 9.75 24.1 26.5 

Detroi 261630019 Annual No -56 0 9.18 9.97 22.4 24.1 

Detroi 261630016 Annual No -56 0 9.62 10.38 24.4 27.4 

Detroi 261630015 Annual No -56 0 11.19 11.97 25.5 28.2 

Detroi 261630001 Annual No -56 0 9.50 10.20 23.3 25.0 

Detroi 261470005 Annual No -56 0 8.89 9.50 24.3 26.1 

Detroi 261250001 Annual No -56 0 8.86 9.65 24.2 26.7 

Detroi 260990009 Annual No -56 0 8.80 9.48 26.2 28.4 

ElCent 060250005 Annual Yes N/A N/A 12.63 12.04 33.5 31.9 

ElCent 060251003 Annual No N/A N/A 7.44 7.09 19.8 18.9 

ElCent 060250007 Annual No N/A N/A 8.37 7.98 21.5 20.5 

Elkhar 180390008 Annual Yes N/A N/A 10.24 12.04 28.6 33.6 

Evansv 181630023 Annual Yes -89 0 10.11 12.03 21.5 32.5 



October 2021 C-90 Draft – Do Not Quote or Cite 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Evansv 211010014 Annual No -89 0 9.64 11.58 20.7 30.2 

Evansv 181630021 Annual No -89 0 9.84 11.79 21.6 32.4 

Evansv 181630016 Annual No -89 0 10.02 11.95 22.0 32.8 

Fresno 060190011 24-hr Yes N/A N/A 14.07 10.46 53.8 35.4 

Fresno 060195025 24-hr No N/A N/A 13.63 10.13 47.9 31.5 

Fresno 060195001 24-hr No N/A N/A 14.08 10.47 49.3 32.4 

Fresno 060192009 24-hr No N/A N/A 8.47 6.30 31.3 20.6 

Hanfor 060310004 24-hr Yes N/A N/A 21.98 10.81 72.0 35.4 

Hanfor 060311004 24-hr No N/A N/A 16.49 8.11 58.9 29.0 

Housto 482011035 Annual Yes -91 0 11.19 12.04 22.4 25.2 

Housto 482011039 Annual No -91 0 9.22 10.16 21.7 24.9 

Housto 482010058 Annual No -91 0 9.67 10.52 22.3 24.8 

Housto 481671034 Annual No -91 0 7.36 8.27 20.3 23.3 

Indian 180970087 Annual Yes -24 0 11.44 12.02 25.9 27.5 

Indian 180970083 Annual No -24 0 11.06 11.64 23.9 25.2 

Indian 180970081 Annual No -24 0 11.07 11.65 25.0 26.7 

Indian 180970078 Annual No -24 0 10.14 10.72 24.4 26.2 

Indian 180970043 Annual No -24 0 - - 26.0 27.6 

Indian 180950011 Annual No -24 0 9.05 9.51 21.8 23.1 

Indian 180570007 Annual No -24 0 9.02 9.52 21.4 22.8 

Johnst 420210011 Annual Yes -86 0 10.68 12.04 25.8 27.9 

Lancas 420710012 Annual Yes 40 0 12.83 12.03 32.7 31.6 

Lancas 420710007 Annual No 40 0 10.57 9.78 29.8 28.5 

LasVeg 320030561 Annual Yes N/A N/A 10.28 12.04 24.5 28.7 

LasVeg 320032002 Annual No N/A N/A 9.79 11.47 19.8 23.2 

LasVeg 320031019 Annual No N/A N/A 5.18 6.07 11.5 13.5 

LasVeg 320030540 Annual No N/A N/A 8.80 10.31 21.7 25.4 

Lebano 420750100 Annual Yes -61 0 11.20 12.04 31.4 32.4 

Little 051191008 Annual Yes -98 0 10.27 12.04 21.7 26.7 

Little 051190007 Annual No -98 0 9.78 11.40 20.5 25.5 

LoganU 490050007 24-hr Yes -28 0 6.95 7.12 34.0 35.4 

LosAng 060371103 Annual Yes N/A N/A 12.38 12.04 32.8 31.9 

LosAng 060592022 Annual No N/A N/A 7.48 7.27 15.3 14.9 

LosAng 060590007 Annual No N/A N/A 9.63 9.37 - - 

LosAng 060374004 Annual No N/A N/A 10.25 9.97 27.3 26.6 

LosAng 060374002 Annual No N/A N/A 11.06 10.76 29.2 28.4 

LosAng 060371602 Annual No N/A N/A 11.86 11.53 32.3 31.4 

LosAng 060371302 Annual No N/A N/A 11.99 11.66 31.5 30.6 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

LosAng 060371201 Annual No N/A N/A 9.46 9.20 25.6 24.9 

LosAng 060370002 Annual No N/A N/A 10.52 10.23 29.2 28.4 

Louisv 180190006 Annual Yes -65 0 10.64 12.04 23.9 28.4 

Louisv 211110075 Annual No -65 0 10.42 11.76 22.3 26.4 

Louisv 211110067 Annual No -65 0 9.55 10.84 21.4 25.4 

Louisv 211110051 Annual No -65 0 10.29 11.67 21.8 25.9 

Louisv 211110043 Annual No -65 0 10.37 11.71 22.0 26.1 

Louisv 180431004 Annual No -65 0 9.96 11.32 22.0 25.8 

Louisv 180190008 Annual No -65 0 8.72 10.07 20.1 24.3 

MaconG 130210007 Annual Yes N/A N/A 10.13 12.04 21.2 25.2 

MaconG 130210012 Annual No N/A N/A 7.68 9.13 16.6 19.7 

Madera 060392010 24-hr Yes N/A N/A 13.30 11.15 45.1 35.4 

McAlle 482150043 Annual Yes N/A N/A 10.09 12.04 25.0 29.8 

Merced 060472510 24-hr Yes 32 0 11.68 10.79 39.8 35.4 

Merced 060470003 24-hr No 32 0 11.81 10.89 39.0 34.1 

Modest 060990006 24-hr Yes N/A N/A 13.02 10.82 45.7 35.4 

Modest 060990005 24-hr No N/A N/A - - 38.8 30.1 

NapaCA 060550003 Annual Yes N/A N/A 10.36 12.04 25.1 29.2 

NewYor 360610128 Annual Yes N/A N/A 10.20 12.04 23.9 28.2 

NewYor 361030002 Annual No N/A N/A 7.18 8.48 18.8 22.2 

NewYor 360810124 Annual No N/A N/A 7.52 8.88 19.5 23.0 

NewYor 360710002 Annual No N/A N/A 6.95 8.20 17.5 20.7 

NewYor 360610134 Annual No N/A N/A 9.70 11.45 21.6 25.5 

NewYor 360610079 Annual No N/A N/A 8.42 9.94 22.8 26.9 

NewYor 360470122 Annual No N/A N/A 8.66 10.22 20.5 24.2 

NewYor 360050133 Annual No N/A N/A 9.05 10.68 24.0 28.3 

NewYor 360050110 Annual No N/A N/A 7.39 8.72 19.4 22.9 

NewYor 340392003 Annual No N/A N/A 8.59 10.14 23.6 27.9 

NewYor 340390004 Annual No N/A N/A 9.87 11.65 24.2 28.6 

NewYor 340310005 Annual No N/A N/A 8.42 9.94 22.2 26.2 

NewYor 340292002 Annual No N/A N/A 7.23 8.53 18.1 21.4 

NewYor 340273001 Annual No N/A N/A 6.78 8.00 17.1 20.2 

NewYor 340171003 Annual No N/A N/A 8.79 10.38 23.4 27.6 

NewYor 340130003 Annual No N/A N/A 8.89 10.49 23.8 28.1 

NewYor 340030003 Annual No N/A N/A 8.90 10.51 24.5 28.9 

OgdenC 490110004 24-hr Yes -53 0 7.28 7.65 32.6 35.4 

OgdenC 490570002 24-hr No -53 0 8.99 9.37 - - 

OgdenC 490030003 24-hr No -53 0 6.35 6.70 - - 



October 2021 C-92 Draft – Do Not Quote or Cite 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 
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(%) c 

Base 
Annual 

DV 
(µg m-3) 
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DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 
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24-hr DV 
(µg m-3) 

Philad 420450002 Annual Yes -75 0 11.46 12.04 26.0 27.4 

Philad 421010057 Annual No -75 0 10.86 11.54 27.0 28.1 

Philad 421010055 Annual No -75 0 11.43 12.03 27.5 28.8 

Philad 421010048 Annual No -75 0 10.27 10.91 25.6 27.4 

Philad 420290100 Annual No -75 0 9.64 10.38 23.9 25.2 

Philad 340150004 Annual No -75 0 8.33 8.94 20.6 23.2 

Philad 340071007 Annual No -75 0 8.84 9.51 21.0 21.9 

Philad 340070002 Annual No -75 0 10.19 10.95 23.5 24.6 

Philad 240150003 Annual No -75 0 8.70 9.47 22.6 23.7 

Philad 100031012 Annual No -75 0 9.04 9.81 23.0 23.6 

Pittsb 420030064 Annual Yes 30 0 12.82 12.02 35.8 34.8 

Pittsb 421290008 Annual No 30 0 8.65 8.06 19.6 18.0 

Pittsb 421255001 Annual No 30 0 8.35 7.78 17.8 16.4 

Pittsb 421250200 Annual No 30 0 8.95 8.32 19.3 18.2 

Pittsb 421250005 Annual No 30 0 11.02 10.30 22.7 21.7 

Pittsb 420070014 Annual No 30 0 10.11 9.52 21.9 20.6 

Pittsb 420050001 Annual No 30 0 11.03 10.45 21.9 20.4 

Pittsb 420031301 Annual No 30 0 11.00 10.28 24.8 23.6 

Pittsb 420031008 Annual No 30 0 9.78 9.20 20.5 19.0 

Pittsb 420030008 Annual No 30 0 9.50 8.89 20.5 19.2 

Prinev 410130100 24-hr Yes N/A N/A 8.60 8.10 37.6 35.4 

ProvoO 490494001 24-hr Yes -76 0 7.74 8.29 30.9 35.4 

ProvoO 490495010 24-hr No -76 0 6.73 7.21 - - 

ProvoO 490490002 24-hr No -76 0 7.41 7.95 28.9 33.2 

Rivers 060658005 24-hr Yes N/A N/A 14.48 11.87 43.2 35.4 

Rivers 060658001 24-hr No N/A N/A - - 36.5 29.9 

Sacram 060670006 24-hr Yes -99 0 9.31 10.04 31.4 35.3 

Sacram 061131003 24-hr No -99 0 6.62 7.08 15.8 19.0 

Sacram 060670012 24-hr No -99 0 7.30 7.85 19.8 21.3 

Sacram 060670010 24-hr No -99 0 8.67 9.30 26.5 30.2 

Sacram 060610006 24-hr No -99 0 7.58 8.08 20.3 22.2 

Sacram 060610003 24-hr No -99 0 6.71 7.04 19.3 20.7 

SaltLa 490353010 24-hr Yes 58 0 - - 41.5 35.4 

SaltLa 490353006 24-hr No 58 0 7.62 6.91 36.8 31.5 

SaltLa 490351001 24-hr No 58 0 7.07 6.30 32.1 25.8 

SanLui 060792007 Annual Yes N/A N/A 10.70 12.04 25.9 29.1 

SanLui 060798002 Annual No N/A N/A 5.71 6.43 - - 

SanLui 060792004 Annual No N/A N/A 8.25 9.28 19.8 22.3 



October 2021 C-93 Draft – Do Not Quote or Cite 

CBSA a Site 
Controlling 
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Controlling 
Site? 

NOx & 
SO2 
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(%) b 

Primary 
PM2.5 
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DV 
(µg m-3) 

Projected 
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DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 
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24-hr DV 
(µg m-3) 

SouthB 181410015 Annual Yes -92 0 10.45 12.04 32.5 34.8 

St.Lou 290990019 Annual Yes N/A N/A 10.12 12.04 22.8 27.1 

St.Lou 295100094 Annual No N/A N/A 9.57 11.39 23.3 27.7 

St.Lou 295100093 Annual No N/A N/A - - 23.7 28.2 

St.Lou 295100085 Annual No N/A N/A 10.10 12.02 23.6 28.1 

St.Lou 295100007 Annual No N/A N/A 9.78 11.64 23.7 28.2 

St.Lou 291893001 Annual No N/A N/A 9.85 11.72 22.4 26.6 

Stockt 060771002 24-hr Yes 42 0 12.23 11.41 38.7 35.4 

Stockt 060772010 24-hr No 42 0 10.74 9.96 37.3 34.3 

Visali 061072002 24-hr Yes N/A N/A 16.23 10.64 54.0 35.4 

Weirto 390810017 Annual Yes -14 0 11.75 12.03 27.2 27.5 

Weirto 540090011 Annual No -14 0 9.75 10.02 22.8 23.6 

Weirto 540090005 Annual No -14 0 10.52 10.80 22.4 23.1 

Weirto 390810021 Annual No -14 0 9.29 9.55 22.2 22.8 

Wheeli 540511002 Annual Yes N/A N/A 10.24 12.04 22.5 26.5 

Wheeli 540690010 Annual No N/A N/A 9.61 11.30 19.7 23.2 

a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 

 1 

2 
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Table C-21.  PM2.5 DVs for the Primary PM projection case and 10/30 standard level. 1 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes 0 17 10.99 10.03 23.7 22.6 

AkronO 391530023 Annual No 0 17 9.16 8.46 20.2 19.1 

Altoon 420130801 Annual Yes 0 2 10.11 10.02 23.8 23.5 

Atlant 131210039 Annual Yes 0 6 10.38 10.01 19.7 19.0 

Atlant 132230003 Annual No 0 6 7.82 7.64 16.2 15.9 

Atlant 131350002 Annual No 0 6 8.84 8.57 17.9 17.3 

Atlant 130890002 Annual No 0 6 9.34 9.04 19.2 18.7 

Atlant 130670003 Annual No 0 6 9.51 9.22 18.6 18.2 

Atlant 130630091 Annual No 0 6 9.86 9.56 19.1 18.5 

Bakers 060290016 Annual Yes 91 100 18.45 10.01 61.3 29.1 

Bakers 060290015 Annual No 91 100 5.15 3.66 15.8 13.6 

Bakers 060290014 Annual No 91 100 16.53 8.37 61.4 26.0 

Bakers 060290011 Annual No 91 100 6.06 4.58 19.6 15.9 

Bakers 060290010 Annual No 91 100 16.52 8.87 70.0 27.9 

Birmin 010732059 Annual Yes 0 16 11.25 10.03 22.3 19.8 

Birmin 010732003 Annual No 0 16 10.08 9.06 19.0 17.2 

Birmin 010731010 Annual No 0 16 9.78 8.94 19.2 17.7 

Birmin 010730023 Annual No 0 16 10.94 9.77 22.8 20.6 

Canton 391510017 Annual Yes 0 15 10.81 10.01 23.7 22.6 

Canton 391510020 Annual No 0 15 9.91 9.21 22.0 21.0 

Chicag 170313103 Annual Yes 0 18 11.10 10.01 22.6 21.0 

Chicag 550590019 Annual No 0 18 8.04 7.42 20.4 18.8 

Chicag 181270024 Annual No 0 18 9.51 8.55 22.4 20.4 

Chicag 180892004 Annual No 0 18 9.84 8.78 24.7 22.8 

Chicag 180890031 Annual No 0 18 10.12 9.05 23.6 21.1 

Chicag 180890026 Annual No 0 18 - - 25.2 22.8 

Chicag 180890022 Annual No 0 18 - - 22.7 20.4 

Chicag 180890006 Annual No 0 18 10.03 8.93 23.1 20.5 

Chicag 171971011 Annual No 0 18 8.36 7.78 18.4 17.4 

Chicag 171971002 Annual No 0 18 7.69 7.04 20.0 18.7 

Chicag 170890007 Annual No 0 18 8.94 8.21 19.2 17.8 

Chicag 170890003 Annual No 0 18 - - 19.2 18.1 

Chicag 170434002 Annual No 0 18 8.87 8.13 19.9 18.9 

Chicag 170316005 Annual No 0 18 10.79 9.73 24.1 21.7 

Chicag 170314201 Annual No 0 18 9.00 8.25 21.4 19.9 

Chicag 170314007 Annual No 0 18 9.49 8.66 - - 

Chicag 170313301 Annual No 0 18 10.37 9.38 23.5 21.3 
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Chicag 170310076 Annual No 0 18 10.18 9.24 22.5 20.7 

Chicag 170310057 Annual No 0 18 11.03 9.99 26.8 25.1 

Chicag 170310052 Annual No 0 18 10.00 9.06 23.3 21.4 

Chicag 170310022 Annual No 0 18 10.38 9.28 22.4 20.9 

Chicag 170310001 Annual No 0 18 10.13 9.22 21.7 19.7 

Cincin 390610014 Annual Yes 0 12 10.70 10.04 22.9 21.8 

Cincin 390610042 Annual No 0 12 10.29 9.69 22.6 21.6 

Cincin 390610040 Annual No 0 12 9.45 8.91 21.0 20.0 

Cincin 390610010 Annual No 0 12 9.43 8.93 21.3 20.5 

Cincin 390610006 Annual No 0 12 9.46 8.91 20.3 19.5 

Cincin 390170020 Annual No 0 12 - - 24.2 23.3 

Cincin 390170019 Annual No 0 12 10.24 9.60 22.0 21.1 

Cincin 390170016 Annual No 0 12 9.79 9.22 22.1 21.2 

Cincin 210373002 Annual No 0 12 9.06 8.58 20.9 20.0 

Clevel 390350065 Annual Yes 0 33 12.17 10.00 24.9 21.3 

Clevel 391030004 Annual No 0 33 8.73 7.57 19.6 17.8 

Clevel 390933002 Annual No 0 33 8.10 6.95 20.2 18.7 

Clevel 390850007 Annual No 0 33 7.88 6.84 17.4 15.4 

Clevel 390351002 Annual No 0 33 8.86 7.64 19.5 17.5 

Clevel 390350045 Annual No 0 33 10.61 8.84 22.9 20.1 

Clevel 390350038 Annual No 0 33 11.38 9.37 25.0 22.0 

Clevel 390350034 Annual No 0 33 8.87 7.58 20.4 18.2 

Detroi 261630033 Annual Yes 0 26 11.30 10.00 26.8 24.9 

Detroi 261630039 Annual No 0 26 9.11 8.21 22.3 20.3 

Detroi 261630036 Annual No 0 26 8.68 7.88 21.8 19.8 

Detroi 261630025 Annual No 0 26 8.98 7.99 24.1 21.7 

Detroi 261630019 Annual No 0 26 9.18 8.18 22.4 19.7 

Detroi 261630016 Annual No 0 26 9.62 8.63 24.4 22.6 

Detroi 261630015 Annual No 0 26 11.19 9.94 25.5 22.8 

Detroi 261630001 Annual No 0 26 9.50 8.39 23.3 20.4 

Detroi 261470005 Annual No 0 26 8.89 8.11 24.3 22.4 

Detroi 261250001 Annual No 0 26 8.86 7.90 24.2 22.2 

Detroi 260990009 Annual No 0 26 8.80 7.94 26.2 23.8 

ElCent 060250005 Annual Yes 0 50 12.63 10.01 33.5 25.0 

ElCent 060251003 Annual No 0 50 7.44 5.67 19.8 14.6 

ElCent 060250007 Annual No 0 50 8.37 6.80 21.5 18.5 

Elkhar 180390008 Annual Yes 0 6 10.24 10.01 28.6 27.8 

Evansv 181630023 Annual Yes 0 2 10.11 10.02 21.5 21.5 
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Evansv 211010014 Annual No 0 2 9.64 9.56 20.7 20.7 

Evansv 181630021 Annual No 0 2 9.84 9.76 21.6 21.5 

Evansv 181630016 Annual No 0 2 10.02 9.94 22.0 21.9 

Fresno 060195001 24-hr Yes 0 100 14.08 9.49 49.3 30.3 

Fresno 060195025 24-hr No 0 100 13.63 8.41 47.9 26.4 

Fresno 060192009 24-hr No 0 100 8.47 6.74 31.3 22.2 

Fresno 060190011 24-hr No 0 100 14.07 8.27 53.8 27.1 

Hanfor 060310004 Annual Yes 82 98 21.98 10.00 72.0 29.5 

Hanfor 060311004 Annual No 82 98 16.49 8.36 58.9 25.2 

Housto 482011035 Annual Yes 0 19 11.19 10.01 22.4 20.2 

Housto 482011039 Annual No 0 19 9.22 8.40 21.7 19.6 

Housto 482010058 Annual No 0 19 9.67 8.70 22.3 20.3 

Housto 481671034 Annual No 0 19 7.36 7.07 20.3 19.6 

Indian 180970087 Annual Yes 0 25 11.44 10.01 25.9 24.2 

Indian 180970083 Annual No 0 25 11.06 9.72 23.9 22.5 

Indian 180970081 Annual No 0 25 11.07 9.71 25.0 23.4 

Indian 180970078 Annual No 0 25 10.14 8.97 24.4 22.8 

Indian 180970043 Annual No 0 25 - - 26.0 24.6 

Indian 180950011 Annual No 0 25 9.05 8.17 21.8 20.7 

Indian 180570007 Annual No 0 25 9.02 8.07 21.4 20.0 

Johnst 420210011 Annual Yes 0 12 10.68 10.02 25.8 23.5 

Lancas 420710012 Annual Yes 0 41 12.83 9.98 32.7 25.5 

Lancas 420710007 Annual No 0 41 10.57 8.20 29.8 22.0 

LasVeg 320030561 Annual Yes 0 4 10.28 9.97 24.5 23.6 

LasVeg 320032002 Annual No 0 4 9.79 9.50 19.8 19.2 

LasVeg 320031019 Annual No 0 4 5.18 5.08 11.5 11.3 

LasVeg 320030540 Annual No 0 4 8.80 8.55 21.7 20.9 

Lebano 420750100 Annual Yes 0 21 11.20 10.04 31.4 28.0 

Little 051191008 Annual Yes 0 6 10.27 10.00 21.7 21.3 

Little 051190007 Annual No 0 6 9.78 9.48 20.5 20.1 

LoganU 490050007 24-hr Yes 0 19 6.95 6.40 34.0 30.3 

LosAng 060371103 Annual Yes 0 34 12.38 9.99 32.8 27.8 

LosAng 060592022 Annual No 0 34 7.48 6.43 15.3 13.3 

LosAng 060590007 Annual No 0 34 9.63 7.84 - - 

LosAng 060374004 Annual No 0 34 10.25 8.36 27.3 23.7 

LosAng 060374002 Annual No 0 34 11.06 9.02 29.2 24.9 

LosAng 060371602 Annual No 0 34 11.86 9.55 32.3 26.5 

LosAng 060371302 Annual No 0 34 11.99 9.64 31.5 27.0 
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LosAng 060371201 Annual No 0 34 9.46 7.93 25.6 21.6 

LosAng 060370002 Annual No 0 34 10.52 8.81 29.2 25.0 

Louisv 180190006 Annual Yes 0 12 10.64 10.01 23.9 22.8 

Louisv 211110075 Annual No 0 12 10.42 9.79 22.3 21.4 

Louisv 211110067 Annual No 0 12 9.55 8.99 21.4 20.5 

Louisv 211110051 Annual No 0 12 10.29 9.76 21.8 21.2 

Louisv 211110043 Annual No 0 12 10.37 9.77 22.0 21.2 

Louisv 180431004 Annual No 0 12 9.96 9.41 22.0 21.0 

Louisv 180190008 Annual No 0 12 8.72 8.29 20.1 19.5 

MaconG 130210007 Annual Yes 0 2 10.13 10.03 21.2 21.0 

MaconG 130210012 Annual No 0 2 7.68 7.61 16.6 16.5 

Madera 060392010 24-hr Yes 0 84 13.30 9.89 45.1 30.4 

McAlle 482150043 Annual Yes 0 2 10.09 10.03 25.0 24.9 

Merced 060470003 24-hr Yes 0 65 11.81 9.87 39.0 30.4 

Merced 060472510 24-hr No 0 65 11.68 9.11 39.8 28.8 

Modest 060990006 24-hr Yes 0 77 13.02 9.52 45.7 30.3 

Modest 060990005 24-hr No 0 77 - - 38.8 29.2 

NapaCA 060550003 Annual Yes 0 9 10.36 10.04 25.1 24.6 

NewYor 360610128 Annual Yes 0 3 10.20 9.99 23.9 23.5 

NewYor 361030002 Annual No 0 3 7.18 7.07 18.8 18.6 

NewYor 360810124 Annual No 0 3 7.52 7.39 19.5 19.1 

NewYor 360710002 Annual No 0 3 6.95 6.84 17.5 17.2 

NewYor 360610134 Annual No 0 3 9.70 9.51 21.6 21.2 

NewYor 360610079 Annual No 0 3 8.42 8.26 22.8 22.5 

NewYor 360470122 Annual No 0 3 8.66 8.49 20.5 20.2 

NewYor 360050133 Annual No 0 3 9.05 8.87 24.0 23.6 

NewYor 360050110 Annual No 0 3 7.39 7.25 19.4 19.1 

NewYor 340392003 Annual No 0 3 8.59 8.44 23.6 23.2 

NewYor 340390004 Annual No 0 3 9.87 9.69 24.2 23.8 

NewYor 340310005 Annual No 0 3 8.42 8.28 22.2 21.9 

NewYor 340292002 Annual No 0 3 7.23 7.13 18.1 17.9 

NewYor 340273001 Annual No 0 3 6.78 6.69 17.1 16.9 

NewYor 340171003 Annual No 0 3 8.79 8.64 23.4 22.9 

NewYor 340130003 Annual No 0 3 8.89 8.73 23.8 23.4 

NewYor 340030003 Annual No 0 3 8.90 8.75 24.5 24.1 

OgdenC 490110004 24-hr Yes 0 15 7.28 6.89 32.6 30.3 

OgdenC 490570002 24-hr No 0 15 8.99 8.39 - - 

OgdenC 490030003 24-hr No 0 15 6.35 6.02 - - 
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CBSA a Site 
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Philad 420450002 Annual Yes 0 20 11.46 9.99 26.0 22.9 

Philad 421010057 Annual No 0 20 10.86 9.56 27.0 23.4 

Philad 421010055 Annual No 0 20 11.43 9.94 27.5 24.2 

Philad 421010048 Annual No 0 20 10.27 9.00 25.6 22.7 

Philad 420290100 Annual No 0 20 9.64 8.66 23.9 21.2 

Philad 340150004 Annual No 0 20 8.33 7.43 20.6 18.2 

Philad 340071007 Annual No 0 20 8.84 7.86 21.0 18.8 

Philad 340070002 Annual No 0 20 10.19 9.11 23.5 20.6 

Philad 240150003 Annual No 0 20 8.70 7.90 22.6 20.5 

Philad 100031012 Annual No 0 20 9.04 8.15 23.0 21.1 

Pittsb 420030064 Annual Yes 0 44 12.82 10.04 35.8 26.2 

Pittsb 421290008 Annual No 0 44 8.65 6.96 19.6 16.9 

Pittsb 421255001 Annual No 0 44 8.35 6.78 17.8 15.7 

Pittsb 421250200 Annual No 0 44 8.95 7.22 19.3 15.7 

Pittsb 421250005 Annual No 0 44 11.02 8.85 22.7 18.0 

Pittsb 420070014 Annual No 0 44 10.11 7.98 21.9 17.5 

Pittsb 420050001 Annual No 0 44 11.03 8.58 21.9 17.8 

Pittsb 420031301 Annual No 0 44 11.00 8.64 24.8 18.7 

Pittsb 420031008 Annual No 0 44 9.78 7.68 20.5 16.1 

Pittsb 420030008 Annual No 0 44 9.50 7.30 20.5 16.3 

Prinev 410130100 24-hr Yes 0 33 8.60 7.19 37.6 30.4 

ProvoO 490494001 24-hr Yes 0 3 7.74 7.65 30.9 30.4 

ProvoO 490495010 24-hr No 0 3 6.73 6.65 - - 

ProvoO 490490002 24-hr No 0 3 7.41 7.32 28.9 28.4 

Rivers 060658005 24-hr Yes 0 58 14.48 9.69 43.2 30.4 

Rivers 060658001 24-hr No 0 58 - - 36.5 25.4 

Sacram 060670006 24-hr Yes 0 6 9.31 9.02 31.4 30.4 

Sacram 061131003 24-hr No 0 6 6.62 6.47 15.8 15.4 

Sacram 060670012 24-hr No 0 6 7.30 7.11 19.8 19.4 

Sacram 060670010 24-hr No 0 6 8.67 8.41 26.5 25.7 

Sacram 060610006 24-hr No 0 6 7.58 7.34 20.3 19.9 

Sacram 060610003 24-hr No 0 6 6.71 6.56 19.3 19.0 

SaltLa 490353010 24-hr Yes 0 85 - - 41.5 30.4 

SaltLa 490353006 24-hr No 0 85 7.62 4.85 36.8 23.8 

SaltLa 490351001 24-hr No 0 85 7.07 4.72 32.1 21.0 

SanLui 060792007 Annual Yes 0 22 10.70 10.04 25.9 24.9 

SanLui 060798002 Annual No 0 22 5.71 5.42 - - 

SanLui 060792004 Annual No 0 22 8.25 7.76 19.8 19.2 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

SouthB 181410015 24-hr Yes 0 18 10.45 9.72 32.5 30.3 

St.Lou 290990019 Annual Yes 0 2 10.12 10.02 22.8 22.7 

St.Lou 295100094 Annual No 0 2 9.57 9.48 23.3 23.2 

St.Lou 295100093 Annual No 0 2 - - 23.7 23.5 

St.Lou 295100085 Annual No 0 2 10.10 10.00 23.6 23.4 

St.Lou 295100007 Annual No 0 2 9.78 9.69 23.7 23.6 

St.Lou 291893001 Annual No 0 2 9.85 9.76 22.4 22.3 

Stockt 060771002 24-hr Yes 0 43 12.23 9.86 38.7 30.3 

Stockt 060772010 24-hr No 0 43 10.74 8.75 37.3 29.6 

Visali 061072002 24-hr Yes 58 74 16.23 9.67 54.0 30.4 

Weirto 390810017 Annual Yes 0 33 11.75 10.00 27.2 22.6 

Weirto 540090011 Annual No 0 33 9.75 8.42 22.8 19.8 

Weirto 540090005 Annual No 0 33 10.52 9.07 22.4 19.8 

Weirto 390810021 Annual No 0 33 9.29 8.06 22.2 19.3 

Wheeli 540511002 Annual Yes 0 5 10.24 10.03 22.5 22.1 

Wheeli 540690010 Annual No 0 5 9.61 9.42 19.7 19.4 

a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case. 

  1 
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Table C-22. PM2.5 DVs for the Secondary PM projection case and 10/30 standard level. 1 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes 45 0 10.99 10.04 23.7 20.8 

AkronO 391530023 Annual No 45 0 9.16 8.24 20.2 17.7 

Altoon 420130801 Annual Yes N/A N/A 10.11 10.04 23.8 23.6 

Atlant 131210039 Annual Yes N/A N/A 10.38 10.04 19.7 19.1 

Atlant 132230003 Annual No N/A N/A 7.82 7.56 16.2 15.7 

Atlant 131350002 Annual No N/A N/A 8.84 8.55 17.9 17.3 

Atlant 130890002 Annual No N/A N/A 9.34 9.03 19.2 18.6 

Atlant 130670003 Annual No N/A N/A 9.51 9.20 18.6 18.0 

Atlant 130630091 Annual No N/A N/A 9.86 9.54 19.1 18.5 

Bakers 060290010 24-hr Yes N/A N/A 16.52 8.99 70.0 30.4 

Bakers 060290016 24-hr No N/A N/A 18.45 10.04 61.3 26.6 

Bakers 060290015 24-hr No N/A N/A 5.15 2.80 15.8 6.9 

Bakers 060290014 24-hr No N/A N/A 16.53 9.00 61.4 26.7 

Bakers 060290011 24-hr No N/A N/A 6.06 3.30 19.6 8.5 

Birmin 010732059 Annual Yes 71 0 11.25 10.04 22.3 20.2 

Birmin 010732003 Annual No 71 0 10.08 8.86 19.0 16.1 

Birmin 010731010 Annual No 71 0 9.78 8.39 19.2 16.6 

Birmin 010730023 Annual No 71 0 10.94 9.72 22.8 20.3 

Canton 391510017 Annual Yes 36 0 10.81 10.04 23.7 21.7 

Canton 391510020 Annual No 36 0 9.91 9.13 22.0 19.4 

Chicag 170313103 Annual Yes N/A N/A 11.10 10.04 22.6 20.4 

Chicag 550590019 Annual No N/A N/A 8.04 7.27 20.4 18.5 

Chicag 181270024 Annual No N/A N/A 9.51 8.60 22.4 20.3 

Chicag 180892004 Annual No N/A N/A 9.84 8.90 24.7 22.3 

Chicag 180890031 Annual No N/A N/A 10.12 9.15 23.6 21.3 

Chicag 180890026 Annual No N/A N/A - - 25.2 22.8 

Chicag 180890022 Annual No N/A N/A - - 22.7 20.5 

Chicag 180890006 Annual No N/A N/A 10.03 9.07 23.1 20.9 

Chicag 171971011 Annual No N/A N/A 8.36 7.56 18.4 16.6 

Chicag 171971002 Annual No N/A N/A 7.69 6.96 20.0 18.1 

Chicag 170890007 Annual No N/A N/A 8.94 8.09 19.2 17.4 

Chicag 170890003 Annual No N/A N/A - - 19.2 17.4 

Chicag 170434002 Annual No N/A N/A 8.87 8.02 19.9 18.0 

Chicag 170316005 Annual No N/A N/A 10.79 9.76 24.1 21.8 

Chicag 170314201 Annual No N/A N/A 9.00 8.14 21.4 19.4 

Chicag 170314007 Annual No N/A N/A 9.49 8.58 - - 

Chicag 170313301 Annual No N/A N/A 10.37 9.38 23.5 21.3 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Chicag 170310076 Annual No N/A N/A 10.18 9.21 22.5 20.4 

Chicag 170310057 Annual No N/A N/A 11.03 9.98 26.8 24.2 

Chicag 170310052 Annual No N/A N/A 10.00 9.05 23.3 21.1 

Chicag 170310022 Annual No N/A N/A 10.38 9.39 22.4 20.3 

Chicag 170310001 Annual No N/A N/A 10.13 9.16 21.7 19.6 

Cincin 390610014 Annual Yes 28 0 10.70 10.03 22.9 21.2 

Cincin 390610042 Annual No 28 0 10.29 9.61 22.6 20.8 

Cincin 390610040 Annual No 28 0 9.45 8.78 21.0 19.0 

Cincin 390610010 Annual No 28 0 9.43 8.78 21.3 19.6 

Cincin 390610006 Annual No 28 0 9.46 8.82 20.3 18.4 

Cincin 390170020 Annual No 28 0 - - 24.2 22.5 

Cincin 390170019 Annual No 28 0 10.24 9.66 22.0 20.6 

Cincin 390170016 Annual No 28 0 9.79 9.16 22.1 20.1 

Cincin 210373002 Annual No 28 0 9.06 8.38 20.9 18.9 

Clevel 390350065 Annual Yes 79 0 12.17 10.04 24.9 20.5 

Clevel 391030004 Annual No 79 0 8.73 6.75 19.6 13.9 

Clevel 390933002 Annual No 79 0 8.10 6.28 20.2 13.8 

Clevel 390850007 Annual No 79 0 7.88 6.10 17.4 12.9 

Clevel 390351002 Annual No 79 0 8.86 6.81 19.5 14.4 

Clevel 390350045 Annual No 79 0 10.61 8.50 22.9 17.0 

Clevel 390350038 Annual No 79 0 11.38 9.33 25.0 19.7 

Clevel 390350034 Annual No 79 0 8.87 6.90 20.4 15.4 

Detroi 261630033 Annual Yes 60 0 11.30 10.03 26.8 24.3 

Detroi 261630039 Annual No 60 0 9.11 7.82 22.3 18.8 

Detroi 261630036 Annual No 60 0 8.68 7.43 21.8 19.1 

Detroi 261630025 Annual No 60 0 8.98 7.63 24.1 19.1 

Detroi 261630019 Annual No 60 0 9.18 7.83 22.4 20.3 

Detroi 261630016 Annual No 60 0 9.62 8.33 24.4 21.3 

Detroi 261630015 Annual No 60 0 11.19 9.88 25.5 22.0 

Detroi 261630001 Annual No 60 0 9.50 8.26 23.3 20.1 

Detroi 261470005 Annual No 60 0 8.89 7.81 24.3 20.6 

Detroi 261250001 Annual No 60 0 8.86 7.49 24.2 20.5 

Detroi 260990009 Annual No 60 0 8.80 7.57 26.2 21.8 

ElCent 060250005 Annual Yes N/A N/A 12.63 10.04 33.5 26.6 

ElCent 060251003 Annual No N/A N/A 7.44 5.91 19.8 15.7 

ElCent 060250007 Annual No N/A N/A 8.37 6.65 21.5 17.1 

Elkhar 180390008 Annual Yes N/A N/A 10.24 10.04 28.6 28.0 

Evansv 181630023 Annual Yes 3 0 10.11 10.03 21.5 21.2 
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CBSA a Site 
Controlling 
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Evansv 211010014 Annual No 3 0 9.64 9.56 20.7 20.3 

Evansv 181630021 Annual No 3 0 9.84 9.76 21.6 21.2 

Evansv 181630016 Annual No 3 0 10.02 9.95 22.0 21.7 

Fresno 060190011 24-hr Yes N/A N/A 14.07 9.48 53.8 30.4 

Fresno 060195025 24-hr No N/A N/A 13.63 9.18 47.9 27.1 

Fresno 060195001 24-hr No N/A N/A 14.08 9.49 49.3 27.9 

Fresno 060192009 24-hr No N/A N/A 8.47 5.71 31.3 17.7 

Hanfor 060310004 24-hr Yes N/A N/A 21.98 9.28 72.0 30.4 

Hanfor 060311004 24-hr No N/A N/A 16.49 6.96 58.9 24.9 

Housto 482011035 Annual Yes 84 0 11.19 10.04 22.4 19.6 

Housto 482011039 Annual No 84 0 9.22 8.09 21.7 18.7 

Housto 482010058 Annual No 84 0 9.67 8.57 22.3 19.1 

Housto 481671034 Annual No 84 0 7.36 6.29 20.3 17.8 

Indian 180970087 Annual Yes 48 0 11.44 10.03 25.9 21.8 

Indian 180970083 Annual No 48 0 11.06 9.64 23.9 21.4 

Indian 180970081 Annual No 48 0 11.07 9.66 25.0 20.8 

Indian 180970078 Annual No 48 0 10.14 8.73 24.4 19.9 

Indian 180970043 Annual No 48 0 - - 26.0 20.9 

Indian 180950011 Annual No 48 0 9.05 7.86 21.8 18.3 

Indian 180570007 Annual No 48 0 9.02 7.75 21.4 17.8 

Johnst 420210011 Annual Yes 31 0 10.68 10.04 25.8 25.1 

Lancas 420710012 Annual Yes 98 0 12.83 10.01 32.7 26.2 

Lancas 420710007 Annual No 98 0 10.57 7.81 29.8 23.4 

LasVeg 320030561 Annual Yes N/A N/A 10.28 10.04 24.5 23.9 

LasVeg 320032002 Annual No N/A N/A 9.79 9.56 19.8 19.3 

LasVeg 320031019 Annual No N/A N/A 5.18 5.06 11.5 11.2 

LasVeg 320030540 Annual No N/A N/A 8.80 8.59 21.7 21.2 

Lebano 420750100 Annual Yes 53 0 11.20 10.03 31.4 28.6 

Little 051191008 Annual Yes 11 0 10.27 10.04 21.7 21.1 

Little 051190007 Annual No 11 0 9.78 9.57 20.5 19.9 

LoganU 490050007 24-hr Yes 56 0 6.95 6.51 34.0 30.4 

LosAng 060371103 Annual Yes N/A N/A 12.38 10.04 32.8 26.6 

LosAng 060592022 Annual No N/A N/A 7.48 6.07 15.3 12.4 

LosAng 060590007 Annual No N/A N/A 9.63 7.81 - - 

LosAng 060374004 Annual No N/A N/A 10.25 8.31 27.3 22.1 

LosAng 060374002 Annual No N/A N/A 11.06 8.97 29.2 23.7 

LosAng 060371602 Annual No N/A N/A 11.86 9.62 32.3 26.2 

LosAng 060371302 Annual No N/A N/A 11.99 9.72 31.5 25.5 
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CBSA a Site 
Controlling 
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Controlling 
Site? 

NOx & 
SO2 
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(%) b 

Primary 
PM2.5 
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DV 
(µg m-3) 

Projected 
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DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 
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24-hr DV 
(µg m-3) 

LosAng 060371201 Annual No N/A N/A 9.46 7.67 25.6 20.8 

LosAng 060370002 Annual No N/A N/A 10.52 8.53 29.2 23.7 

Louisv 180190006 Annual Yes 24 0 10.64 10.02 23.9 22.0 

Louisv 211110075 Annual No 24 0 10.42 9.83 22.3 20.3 

Louisv 211110067 Annual No 24 0 9.55 8.96 21.4 19.9 

Louisv 211110051 Annual No 24 0 10.29 9.68 21.8 20.2 

Louisv 211110043 Annual No 24 0 10.37 9.77 22.0 20.2 

Louisv 180431004 Annual No 24 0 9.96 9.37 22.0 20.4 

Louisv 180190008 Annual No 24 0 8.72 8.13 20.1 18.3 

MaconG 130210007 Annual Yes N/A N/A 10.13 10.04 21.2 21.0 

MaconG 130210012 Annual No N/A N/A 7.68 7.61 16.6 16.5 

Madera 060392010 24-hr Yes N/A N/A 13.30 10.04 45.1 30.4 

McAlle 482150043 Annual Yes N/A N/A 10.09 10.04 25.0 24.9 

Merced 060472510 24-hr Yes 68 0 11.68 9.74 39.8 30.4 

Merced 060470003 24-hr No 68 0 11.81 9.82 39.0 29.8 

Modest 060990006 24-hr Yes N/A N/A 13.02 9.75 45.7 30.4 

Modest 060990005 24-hr No N/A N/A - - 38.8 25.8 

NapaCA 060550003 Annual Yes N/A N/A 10.36 10.04 25.1 24.3 

NewYor 360610128 Annual Yes N/A N/A 10.20 10.04 23.9 23.5 

NewYor 361030002 Annual No N/A N/A 7.18 7.07 18.8 18.5 

NewYor 360810124 Annual No N/A N/A 7.52 7.40 19.5 19.2 

NewYor 360710002 Annual No N/A N/A 6.95 6.84 17.5 17.2 

NewYor 360610134 Annual No N/A N/A 9.70 9.55 21.6 21.3 

NewYor 360610079 Annual No N/A N/A 8.42 8.29 22.8 22.4 

NewYor 360470122 Annual No N/A N/A 8.66 8.52 20.5 20.2 

NewYor 360050133 Annual No N/A N/A 9.05 8.91 24.0 23.6 

NewYor 360050110 Annual No N/A N/A 7.39 7.27 19.4 19.1 

NewYor 340392003 Annual No N/A N/A 8.59 8.46 23.6 23.2 

NewYor 340390004 Annual No N/A N/A 9.87 9.72 24.2 23.8 

NewYor 340310005 Annual No N/A N/A 8.42 8.29 22.2 21.9 

NewYor 340292002 Annual No N/A N/A 7.23 7.12 18.1 17.8 

NewYor 340273001 Annual No N/A N/A 6.78 6.67 17.1 16.8 

NewYor 340171003 Annual No N/A N/A 8.79 8.65 23.4 23.0 

NewYor 340130003 Annual No N/A N/A 8.89 8.75 23.8 23.4 

NewYor 340030003 Annual No N/A N/A 8.90 8.76 24.5 24.1 

OgdenC 490110004 24-hr Yes 29 0 7.28 7.01 32.6 30.4 

OgdenC 490570002 24-hr No 29 0 8.99 8.71 - - 

OgdenC 490030003 24-hr No 29 0 6.35 6.10 - - 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Philad 420450002 Annual Yes 86 0 11.46 10.04 26.0 22.3 

Philad 421010057 Annual No 86 0 10.86 9.12 27.0 22.5 

Philad 421010055 Annual No 86 0 11.43 9.95 27.5 23.9 

Philad 421010048 Annual No 86 0 10.27 8.70 25.6 21.1 

Philad 420290100 Annual No 86 0 9.64 7.87 23.9 19.5 

Philad 340150004 Annual No 86 0 8.33 6.99 20.6 16.9 

Philad 340071007 Annual No 86 0 8.84 7.23 21.0 17.1 

Philad 340070002 Annual No 86 0 10.19 8.40 23.5 20.2 

Philad 240150003 Annual No 86 0 8.70 6.90 22.6 17.5 

Philad 100031012 Annual No 86 0 9.04 7.21 23.0 17.7 

Pittsb 420030064 24-hr Yes 100 0 12.82 9.22 35.8 30.4 

Pittsb 421290008 24-hr No 100 0 8.65 6.04 19.6 12.9 

Pittsb 421255001 24-hr No 100 0 8.35 5.90 17.8 11.1 

Pittsb 421250200 24-hr No 100 0 8.95 6.10 19.3 13.7 

Pittsb 421250005 24-hr No 100 0 11.02 7.78 22.7 18.1 

Pittsb 420070014 24-hr No 100 0 10.11 7.38 21.9 15.2 

Pittsb 420050001 24-hr No 100 0 11.03 8.39 21.9 15.5 

Pittsb 420031301 24-hr No 100 0 11.00 7.79 24.8 19.7 

Pittsb 420031008 24-hr No 100 0 9.78 7.11 20.5 14.7 

Pittsb 420030008 24-hr No 100 0 9.50 6.81 20.5 14.2 

Prinev 410130100 24-hr Yes N/A N/A 8.60 6.95 37.6 30.4 

ProvoO 490494001 24-hr Yes 6 0 7.74 7.68 30.9 30.4 

ProvoO 490495010 24-hr No 6 0 6.73 6.68 - - 

ProvoO 490490002 24-hr No 6 0 7.41 7.36 28.9 28.4 

Rivers 060658005 Annual Yes N/A N/A 14.48 10.04 43.2 30.0 

Rivers 060658001 Annual No N/A N/A - - 36.5 25.3 

Sacram 060670006 24-hr Yes 18 0 9.31 9.11 31.4 30.4 

Sacram 061131003 24-hr No 18 0 6.62 6.50 15.8 15.1 

Sacram 060670012 24-hr No 18 0 7.30 7.17 19.8 19.3 

Sacram 060670010 24-hr No 18 0 8.67 8.50 26.5 25.5 

Sacram 060610006 24-hr No 18 0 7.58 7.45 20.3 19.9 

Sacram 060610003 24-hr No 18 0 6.71 6.63 19.3 18.9 

SaltLa 490353010 24-hr Yes 79 0 - - 41.5 30.3 

SaltLa 490353006 24-hr No 79 0 7.62 6.46 36.8 29.3 

SaltLa 490351001 24-hr No 79 0 7.07 5.88 32.1 23.2 

SanLui 060792007 Annual Yes N/A N/A 10.70 10.04 25.9 24.3 

SanLui 060798002 Annual No N/A N/A 5.71 5.36 - - 

SanLui 060792004 Annual No N/A N/A 8.25 7.74 19.8 18.6 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

SouthB 181410015 24-hr Yes 30 0 10.45 9.68 32.5 30.4 

St.Lou 290990019 Annual Yes N/A N/A 10.12 10.04 22.8 22.6 

St.Lou 295100094 Annual No N/A N/A 9.57 9.49 23.3 23.1 

St.Lou 295100093 Annual No N/A N/A - - 23.7 23.5 

St.Lou 295100085 Annual No N/A N/A 10.10 10.02 23.6 23.4 

St.Lou 295100007 Annual No N/A N/A 9.78 9.70 23.7 23.5 

St.Lou 291893001 Annual No N/A N/A 9.85 9.77 22.4 22.2 

Stockt 060771002 Annual Yes 97 0 12.23 10.04 38.7 29.7 

Stockt 060772010 Annual No 97 0 10.74 8.69 37.3 28.4 

Visali 061072002 24-hr Yes N/A N/A 16.23 9.14 54.0 30.4 

Weirto 390810017 Annual Yes 62 0 11.75 10.02 27.2 23.8 

Weirto 540090011 Annual No 62 0 9.75 8.14 22.8 19.9 

Weirto 540090005 Annual No 62 0 10.52 8.82 22.4 18.8 

Weirto 390810021 Annual No 62 0 9.29 7.68 22.2 18.5 

Wheeli 540511002 Annual Yes N/A N/A 10.24 10.04 22.5 22.1 

Wheeli 540690010 Annual No N/A N/A 9.61 9.42 19.7 19.3 
a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 

 1 
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APPENDIX D. QUANTITATIVE ANALYSES FOR 1 

VISIBILITY IMPAIRMENT 2 

D.1 BACKGROUND  3 

To inform the EPA’s decision in the 2012 review on the adequacy of protection provided 4 

by the secondary PM standards the EPA conducted a technical analysis of the relationships 5 

between a 3-year average daily visibility metric and the 24-hour PM2.5 mass-based standard 6 

(Kelly et al., 2012). The 3-year visibility metric was calculated as the 3-year average of the 90th 7 

percentile of daily visibility index values.1 Light extinction coefficient (bext) values for the 8 

visibility index were calculated using the original IMPROVE equation (Equation D-1 in section 9 

D.2.2 below), which at the time of the 2012 review, the EPA considered to be better suited to 10 

urban sites that were the focus of the analysis than other versions of the IMPROVE equation, 11 

with a few modifications to the equation: excluding the coarse mass2 and sea salt3 terms in the 12 

equation and using a multiplier of 1.6 for converting OC to OM.4  13 

 
1 The visibility index is a logarithmic transformation of the light extinction coefficient, bext, the use of which ensures 

that increases or decreases in light extinction coefficient always produce, respectively, increases or decreases in 

visibility index (Kelly et al., 2012). 

2 PM2.5 is the size fraction of PM responsible for most of the visibility impairment in urban areas (U.S. EPA, 2009, 

section 9.2.2.2). Data available at the time of the 2012 review suggested that, generally, PM10-2.5 was a minor 

contributor to visibility impairment most of the time (U.S. EPA, 2010) although the coarse fraction may be a 

major contributor in some areas in the desert southwestern region of the country. Moreover, at the time of the 

2012 review, there were few data available from continuous PM10-2.5 monitors to quantify the contribution of 

coarse PM to calculated light extinction. 

3 In estimating light extinction in the 2012 review, the EPA did not consider it appropriate to include the term for 

hygroscopic sea salt in evaluating urban light extinction, given that sea salt is not a major contributor to light 

extinction in urban areas compared with more remote coastal locations. In particular, Pitchford (2010) estimated 

that the contribution of sea salt to PM2.5 light extinction was generally well below 5% for PM2.5 light extinction 

greater than 24 dv (U.S. EPA, 2010, p. 3-22; U.S. EPA, 2012, p. IV-5). 

4 At the time of the 2012 review, the EPA considered the multiplier of 1.8 recommended by Pitchford et al. (2007) 

to convert OC to OM for use in the revised IMPROVE equation (Equation D-2 below) to be too high for urban 

environments. The composition of, and the mix of emission sources contributing to, PM2.5 differ between urban 

and remote areas, and consequently, the light extinction may differ between urban and remote areas. Organic 

mass in urban areas is often from local and regional sources and would have a greater percentage of fresh 

emissions compared with aged emissions, which tend to be more prominent in rural areas, and a different PM 

mass to OC ratio than in urban areas. The EPA also considered the multiplier of 1.4 used with the original 

IMPROVE equation to be too low to adequately account for the contribution of OM to visibility impairment, 

particularly in urban areas where OM concentrations tend to be higher. Based on these considerations, along with 

an evaluation of the OC to OM relationship at CSN sites (2011 PA, Appendix F, section F.6), the EPA chose to 

use a multiplier of 1.6 to convert OC to OM in the light extinction calculations used in the 2012 review (U.S. 

EPA, 2012, pages IV-5-IV-8). 
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Using 2008-2010 air quality data for 102 CSN network sites,5 the 2012 analysis explored 1 

the relationship between the 3-year design values for the existing 24-hour PM2.5 standard and 2 

values of the 3-year visibility metric.6 The analysis indicated that increases in 24-hour PM2.5 3 

design values generally correspond to increases in the 3-year visibility metric values, and vice-4 

versa (78 FR 3201, January 15, 2013). The analysis also found linear correlations between the 5 

24-hour PM2.5 design values and the 3-year visibility metric with an average r2 value of 0.75 6 

across all of the sites (Kelly et al., 2012). A key implication of this analysis was that for the level 7 

proposed by the EPA for a visibility index-based standard, the 24-hour PM2.5 standard of 35 8 

µg/m3 would be controlling in almost all or all instances (78 FR 3202, January 15, 2013). 9 

D.2 ANALYSIS: METHODS AND INPUTS 10 

Consistent with the analyses conducted in the 2012 review described above and the 2020 11 

review described in the 2020 PA ({U.S. EPA, 2020 #285}, section 5.2.1.2), we have conducted 12 

analyses examining the relationship between PM mass concentrations and estimated light 13 

extinction in terms of a PM visibility metric. These analyses are intended to inform our 14 

understanding of visibility impairment in the U.S. under recent air quality conditions, 15 

particularly those conditions that meet the current standards, and our understanding of the 16 

relative influence of various factors on light extinction. These analyses were conducted using 17 

three versions of the IMPROVE equation (Equations D-1 through D-3 below) to estimate light 18 

extinction to better understand the influence of variability in inputs across the three equations. 19 

This analysis included 60 monitoring sites that are geographically distributed across the U.S. in 20 

both urban and rural areas (see Figure D-1). The data set is comprised of sites with data for the 21 

2017-2019 period that supported a valid 24-hour PM2.5 design value7 and met strict criteria for 22 

PM species. Light extinction calculations at these 60 monitoring sites also included the coarse 23 

fraction in the IMPROVE equations.8 Results for these analyses are presented in Figures 5-3 and 24 

5-4 and discussed in section 5.2.1.2 of Chapter 5 and presented in Table D-7 and Figure D-2 in 25 

section D.3 below. 26 

 
5 The 102 sites included in the Kelly et al. (2012) analysis were those sites that met the data completeness criteria 

used for that analysis (Kelly et al., 2012, p. 15). 

6 The EPA used monthly average relative humidity values rather than shorter-term (e.g., hourly) values to estimate 

light extinction in the 2012 review in order to capture seasonal variability of relative humidity and its effects on 

visibility impairment. This was intended to focus more on the underlying aerosol contributions to visibility 

impairment and less on the day-to-day variations in humidity (U.S. EPA, 2012, p. IV-10). 

7 The design value (DV) for the standard is the metric used to determine whether areas meet or exceed the NAAQS. 

A design value is a statistic that describes the air quality status of a given area relative to the NAAQS. 

8 In the 2020 analyses, PM10 data were available for only a subset of 20 of the 67 monitoring sites included in the 

analysis ({U.S. EPA, 2020 #285}, section 5.2.1.2). 
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 1 

 2 

Figure D-1. Locations of monitoring sites with data for 2017-2019 with a valid PM2.5 design 3 

value and meeting completeness criteria for PM species. 4 

 5 

D.2.1 Data Sources for Inputs to Estimate Light Extinction  6 

D.2.1.1 Relative Humidity 7 

Relative humidity data were downloaded from the North American Regional Reanalysis 8 

(NARR). NARR is the National Centers for Environmental Prediction’s (NCEP) high resolution 9 

combined model and assimilated meteorological dataset. NARR is an extension of the NCEP 10 

Global Reanalysis which is run over North American using the Eta Model (32 km) together with 11 

the Regional Data Assimilation System. Files for 3-hour average 10 m relative humidity data for 12 

2017-2019 are available at https://esrl.noaa.gov/psd/data/gridded/data.narr.html. 13 

 Using NARR latitudes, relative humidity data were reassigned to each grid cell from 14 

coordinated universal time (UTC) to their closest time zone and the 3-hour relative humidity data 15 

were then averaged to 24-hour local time averages in order to approximate the 24-hour averaging 16 

https://esrl.noaa.gov/psd/data/gridded/data.narr.html
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time (midnight-midnight) of the daily PM2.5 measurements. The PM2.5 and PM2.5 component 1 

daily mass data (described in subsequent sections) were temporally and spatially matched with 2 

the closest 24-hour average relative humidity grid cell. 3 

D.2.1.2 PM2.5 Concentrations 4 

The raw data for PM2.5 site-level daily mass concentrations came from an Air Quality 5 

System (AQS)9 query of the daily site-level concentrations. Data files used were for 24-hour 6 

average values from regulatory monitors for all sites in the U.S. for all available days (including 7 

potential exceptional events) for 2017-2019. When a single site had multiple monitors, the 8 

previously-determined primary monitor concentration was used. If the primary monitor value 9 

was missing, the average of the collocated monitors was used. These data were screened so that 10 

all days either had a valid filter-based 24-hour concentration measurement10 or at least 18 valid 11 

hourly concentrations measurements. 12 

D.2.1.3 Coarse PM Concentrations 13 

The raw data for PM10-2.5 monitor-level daily mass concentrations came from an AQS 14 

query of the daily monitor-level concentrations. Data files used were for 24-hour average 15 

concentrations from monitors mainly in the Interagency Monitoring of Protected Visual 16 

Environments (IMPROVE) network and NCore Multipollutant Monitoring Network. Data were 17 

included for sites with ≥ 11 valid days for each quarter of 2017-2019. 18 

D.2.1.4 PM2.5 Component Concentrations 19 

The raw data for PM2.5 component concentrations for the components listed in Table D-1 20 

came from an AQS query of the daily monitor-level concentrations. Data files used were for 21 

filter-based, 24-hour average concentrations from monitors in the Interagency Monitoring of 22 

Protected Visual Environments (IMPROVE) network, Chemical Speciation Network (CSN), and 23 

NCore Multipollutant Monitoring Network. Data were included for days with valid data for all 24 

chemical components listed in Table D-1 below and for sites with ≥ 11 valid days for each 25 

quarter of 2017-2019. 26 

  27 

 
9 The Air Quality System is an EPA database of ambient air quality monitoring data (https://www.epa.gov/aqs). 

10 A valid filter-based 24-hour concentration measurement is one collected via FRM, and that has undergone 

laboratory equilibration (at least 24 hours at standardized conditions of 20-23°C and 30-40% relative humidity) 

prior to analysis (see Appendix L of 40 CFR Part 50 for the 2012 NAAQS for PM). 

https://www.epa.gov/aqs
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Table D-1. PM2.5 components from AQS used in IMPROVE equations. 1 

PM2.5 Component Drawn from AQS AQS Parameter Code 

Sulfate 88403 

Nitrate 88306 

OC (TORa) 88320, 88370 

EC (TORa) 88321, 88380 

Aluminum (Al), Silica (Si), Calcium (Ca), Iron 
(Fe), Titanium (Ti) 

88104 (Al), 88165 (Si), 88111 (Ca), 88126 
(Fe), 88161 (Ti) 

Chloride, Chlorine 88115 (Chlorine), 88203 (Chloride) 

a OC and EC values are based on the thermal optical reflectance (TOR) analytical method, 
which replaced the NIOSH 5040-like thermal optical transmittance (TOT) method in the CSN 
network after 2009 (Spada and Hyslop, 2018). 

 2 

D.2.1.5 24-Hour PM2.5 Design Values 3 

Files for 24-hour PM2.5 design values for 2017-2019 are located at 4 

https://www.epa.gov/air-trends/air-quality-design-values. Data handling of the 2017-2019 PM2.5 5 

design values is described in Appendix N of 40 CFR Part 50 for the 2012 National Ambient Air 6 

Quality Standards (NAAQS) for Particulate Matter (PM). 7 

 8 

D.2.1.6 24-Hour PM10 Design Values 9 

 Files for 24-hour PM10 design values for 2017-2019 are located at 10 

https://www.epa.gov/air-trends/air-quality-design-values. Data handling of the 2017-2019 PM10 11 

design values is described in Appendix K of 40 CFR Part 50. 12 

 13 

D.2.1.7 Annual PM2.5 Design Values 14 

Files for annual PM2.5 design values for 2017-2019 are located at 15 

https://www.epa.gov/air-trends/air-quality-design-values. Data handling of the 2017-2019 PM2.5 16 

design values is described in Appendix N of 40 CFR Part 50 for the 2012 National Ambient Air 17 

Quality Standards (NAAQS) for Particulate Matter (PM). 18 

 19 

D.2.2 Calculating Light Extinction for Visibility Impairment Analyses  20 

For all days with a valid relative humidity value, PM2.5 mass concentration, and all 21 

chemical components listed in Table D-1, daily light extinction was calculated using three 22 

versions of the IMPROVE equation, as shown below. Formulas for derivation of the equation 23 

variables from the AQS parameters are presented in Table D-6. 24 

  25 

https://www.epa.gov/air-trends/air-quality-design-values
https://www.epa.gov/air-trends/air-quality-design-values
https://www.epa.gov/air-trends/air-quality-design-values
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 1 

Original IMPROVE Equation (Malm et al., 1994): 2 

𝑏𝑒𝑥𝑡  ≅ 3𝑓(𝑅𝐻)([𝐴𝑆] + [𝐴𝑁]) + 4[𝑂𝑀] + 10[𝐸𝐶] + 1[𝐹𝑆] + 0.6[𝐶𝑀] + 10 3 

Equation D-1 4 

where:  5 

 [AS] is concentration in µg/m3 of ammonium sulfate,  6 

 [AN] is concentration in µg/m3 of ammonium nitrate,  7 

 [OM] is concentration in µg/m3 of organic matter,  8 

 [EC] is concentration in µg/m3 of elemental carbon,  9 

 [FS] is concentration in µg/m3 of fine soil,  10 

 [CM] is concentrations in µg/m3 of coarse mass, and 11 

f(RH) is the relative-humidity-dependent water growth function, assigned values as shown 12 

in Table D-2: 13 

Table D-2. Relatively-humidity-dependent water growth function for use in the original 14 

IMPROVE equation.  15 

RH (%) 1-36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 

f(RH) 1 1.02 1.04 1.06 1.08 1.1 1.13 1.15 1.18 1.2 1.23 1.26 1.28 1.31 1.34 1.37 1.41 1.44 1.47 1.51 1.54 

                      

RH (%) 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 

f(RH) 1.58 1.62 1.66 1.7 1.74 1.79 1.83 1.88 1.93 1.98 2.03 2.08 2.14 2.19 2.25 2.31 2.37 2.43 2.5 2.56 2.63 

                      

RH (%) 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 a 

f(RH) 2.7 2.78 2.86 2.94 3.03 3.12 3.22 3.33 3.45 3.58 3.74 3.93 4.16 4.45 4.84 5.37 6.16 7.4 9.59 14.1 26.4 

Note: See fRHOriginalIMPROVE.csv file from http://vista.cira.colostate.edu/Improve/the-improve-algorithm/ (Malm et al., 1994). 
a For our application, any relative humidity values greater than 98% were assigned the f(RH) value associated with 98%, the highest 
value available for the relative humidity function. 

http://vista.cira.colostate.edu/Improve/the-improve-algorithm/
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The various coefficients are the empirically derived extinction efficiency (mass scattering and 1 

absorption) coefficients, as originally specified by Malm et al. (1994). 2 

 3 

Revised IMPROVE Equation (Pitchford et al., 2007): 4 

𝑏𝑒𝑥𝑡  ≅ 2.2𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 4.8𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 2.4𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑛𝑖𝑡𝑟𝑎𝑡𝑒]5 

+ 5.1𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑛𝑖𝑡𝑟𝑎𝑡𝑒] + 2.8[𝑠𝑚𝑎𝑙𝑙 𝑂𝑀] + 6.1[𝑙𝑎𝑟𝑔𝑒 𝑂𝑀] + 10[𝐸𝐶]6 

+ 1[𝐹𝑆] + 1.7𝑓𝑆𝑆(𝑅𝐻)[𝑆𝑆] + 0.6[𝐶𝑀] + 10 7 

Equation D-2 8 

where:  9 

[small sulfate], [large sulfate], [small nitrate], [large nitrate], [small OM] and [large OM] 10 

are defined as follows in Table D-3: 11 

Table D-3. Values for use in the revised IMPROVE equation for small and large sulfate, 12 

nitrate, and organic matter concentrations. 13 

 If [  ] > 20 If [  ] <20 

Large sulfate [AS] [AS]÷20 

Small sulfate 0 [AS] - ([AS]÷20) 

Large nitrate [AN] [AN]÷20 

Small nitrate 0 [AN] - ([AN]÷20) 

Large OM [OM] [OM]÷20 

Small OM 0 [OM] - ([OM]÷20) 

Note: [AS], [AN] and [OM] are defined as for Equation D-1. 

 14 

 [SS] is sea salt; and,  15 

 fSS(RH), fS(RH), and fL(RH) are defined as shown in Table D-4: 16 

  17 
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Table D-4. Relatively-humidity-dependent water growth function for sea salt, small 1 

particles, and large particles for use in the revised IMPROVE equation.  2 

RH (%) 1-36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

fSS(RH) 1 1 1 1 1 1 1 1 1 1 1 2.3584 2.3799 2.4204 2.4488 

fS(RH) 1 1.38 1.4 1.42 1.44 1.46 1.48 1.49 1.51 1.53 1.55 1.57 1.59 1.62 1.64 

fL(RH) 1 1.31 1.32 1.34 1.35 1.36 1.38 1.39 1.41 1.42 1.44 1.45 1.47 1.49 1.5 

                

RH (%) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 

fSS(RH) 2.4848 2.5006 2.5052 2.5279 2.5614 2.5848 2.5888 2.616 2.6581 2.6866 2.7341 2.7834 2.8272 2.8287 2.8594 

fS(RH) 1.66 1.68 1.71 1.73 1.76 1.78 1.81 1.83 1.86 1.89 1.92 1.95 1.99 2.02 2.06 

fL(RH) 1.52 1.54 1.55 1.57 1.59 1.61 1.63 1.65 1.67 1.69 1.71 1.73 1.75 1.78 1.8 

                

RH (%) 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

fSS(RH) 2.8943 2.9105 2.9451 3.0105 3.0485 3.1269 3.1729 3.2055 3.2459 3.2673 3.3478 3.4174 3.5202 3.5744 3.6329 

fS(RH) 2.09 2.13 2.17 2.22 2.26 2.31 2.36 2.41 2.47 2.54 2.6 2.67 2.75 2.84 2.93 

fL(RH) 1.83 1.86 1.89 1.92 1.95 1.98 2.01 2.05 2.09 2.13 2.18 2.22 2.27 2.33 2.39 

                

RH (%) 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 a 

fSS(RH) 3.6905 3.808 3.9505 4.0398 4.1127 4.2824 4.494 4.6078 4.8573 5.1165 5.3844 5.7457 6.1704 6.7178 7.3492 

fS(RH) 3.03 3.15 3.27 3.42 3.58 3.76 3.98 4.23 4.53 4.9 5.35 5.93 6.71 7.78 9.34 

fL(RH) 2.45 2.52 2.6 2.69 2.79 2.9 3.02 3.16 3.33 3.53 3.77 4.06 4.43 4.92 5.57 

Note: See fRHRevisedIMPROVE.csv file from http://vista.cira.colostate.edu/Improve/the-improve-algorithm/ (Pitchford et al., 
2007). 
a For our application, any relative humidity values greater than 95% were assigned the f(RH) value associated with 95%, the 
highest value available for the relative humidity function. 

 3 

and 4 

 [EC], [FS] and [CM] are defined as for Equation D-1. 5 

This equation is generally dividing PM components into small and large particle sizes11 with 6 

separate mass scattering efficiencies and hygroscopic growth functions for each size (included in 7 

the equation as fS(RH) for small particles, fL(RH) for large particles, and fSS(RH) for sea salt). 8 

 9 

 
11 The large mode for sulfate, nitrate, and OM represents aged and/or cloud processed particles, whereas the small 

mode represents freshly formed particles. These size modes are described by log-normal mass size distributions 

with geometric mean diameters and geometric standard deviations of 0.2 µm and 2.2 for small mode and 0.5 µm 

and 1.5 for the large mode, respectively. 

http://vista.cira.colostate.edu/Improve/the-improve-algorithm/
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Lowenthal and Kumar (2016) Equation: 1 

𝑏𝑒𝑥𝑡  ≅ 2.2𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 4.8𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 2.4𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑛𝑖𝑡𝑟𝑎𝑡𝑒]2 

+ 5.1𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑛𝑖𝑡𝑟𝑎𝑡𝑒] + 2.8𝑓𝑆(𝑅𝐻)𝑂𝑀[𝑠𝑚𝑎𝑙𝑙 𝑂𝑀]3 

+ 6.1𝑓𝐿(𝑅𝐻)𝑂𝑀[𝑙𝑎𝑟𝑔𝑒 𝑂𝑀] + 10[𝐸𝐶] + 1[𝐹𝑆] + 1.7𝑓𝑆𝑆(𝑅𝐻)[𝑆𝑆] + 0.6[𝐶𝑀]4 

+ 10 5 

Equation D-3 6 

where:  7 

fS(RH)OM and fL(RH)OM are the relative-humidity-dependent water growth function for small and 8 

large organic matter, respectively, as defined in Table D-5 below. 9 

Table D-5. Relatively-humidity-dependent water growth function for small organic matter 10 

and large organic matter for use in the original IMPROVE equation. 11 

RH (%) 0-29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

fS(RH)OM 1.000 1.321 1.325 1.329 1.333 1.337 1.340 1.343 1.346 1.349 1.352 1.354 1.356 1.358 1.360 1.362 1.364 

fL(RH)OM 1.000 1.267 1.271 1.274 1.278 1.280 1.283 1.286 1.288 1.290 1.292 1.294 1.296 1.297 1.299 1.300 1.302 

                  

RH (%) 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 

fS(RH)OM 1.366 1.368 1.369 1.371 1.373 1.75 1.377 1.379 1.382 1.384 1.387 1.390 1.393 1.397 1.400 1.404 1.409 

fS(RH)OM 1.303 1.305 1.306 1.308 1.309 1.311 1.306 1.308 1.309 1.311 1.313 1.314 1.316 1.318 1.320 1.323 1.325 

                  

RH (%) 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

fS(RH)OM 1.413 1.419 1.424 1.430 1.437 1.444 1.452 1.460 1.469 1.478 1.489 1.500 1.511 1.524 1.537 1.51 1.566 

fS(RH)OM 1.328 1.331 1.334 1.338 1.342 1.346 1.350 1.355 1.385 1.393 1.401 1.409 1.418 1.428 1.438 1.449 1.461 

                  

RH (%) 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 a  

fS(RH)OM 1.582 1.599 1.617 1.637 1.657 1.679 1.703 1.727 1.754 1.782 1.812 1.843 1.877 1.912 1.950 1.989  

fS(RH)OM 1.473 1.486 1.500 1.515 1.531 1.548 1.566 1.585 1.605 1.626 1.648 1.672 1.696 1.722 1.750 1.779  

Note: See Table 1 in Lowenthal and Kumar (2016). 
a For our application, any relative humidity values greater than 95% were assigned the f(RH) value associated with 95%, the highest 
value available for the relative humidity function. 

 12 

and  13 

[small sulfate], [large sulfate], [small nitrate], [large nitrate], [small OM], [large OM], [EC], 14 

[FS], [SS], [CM], fS(RH), fL(RH) and fSS(RH) are defined as above for Equation D-2. 15 

 16 

This equation updates the multiplier for estimating the concentration organic matter, [OM], from 17 

the concentration of organic carbon to 2.1 and incorporates fS(RH)OM and fL(RH)OM representing 18 

water absorption by soluble organic matter as a function of relative humidity for small and large 19 

organic matter, respectively. 20 

 21 
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Based on each equation, site-specific visibility metrics were derived for each site as 1 

follows. Daily light extinction values were derived for 2017, 2018, and 2019, the 90th percentile 2 

of daily values for each year was calculated, and the three years of values were averaged. The 3-3 

year averages of the 90th percentiles of daily light extinction values were paired with the 2017-4 

2019 PM2.5 24-hour design values for each site having valid data for both statistics. 5 

Table D-6. Derivation of equation variables from AQS PM2.5 component concentrations. 6 

Equation Variable How Calculated from AQS Parameter Values 

Ammonium Sulfate All three equations: 1.375×[Sulfate] A 

Ammonium Nitrate All three equations: 1.29×[Nitrate] B 

Organic Matter 
Original IMPROVE equation: 1.6×[OC] C 
Revised IMPROVE equation: 1.6×[OC] C 
Lowenthal and Kumar (2016) equation: 2.1×[OC] 

Elemental Carbon [EC] 

Fine Soil 
All three equations: D  
2.2×[Al]+2.49×[Si]+1.63×[Ca]+2.42×[Fe]+1.94×[Ti] 

Sea Salt 
Revised IMPROVE and Lowenthal and Kumar, 2016 equations:D 

1.8×[Chloride] 
1.8×[Chlorine] (if chloride is missing) 

A This formula is based on molar molecular weights of ammonium sulfate and sulfate (Malm et al., 1994).  
B This formula is based on molar molecular weights of ammonium nitrate and nitrate (Malm et al., 1994). 
C See footnote 4 earlier in this appendix. 
D This formula is documented in Malm et al. (1994). 

 7 

D.3 SUMMARY OF RESULTS  8 

Results for the visibility impairment analyses are discussed in section 5.2.1.2 of Chapter 9 

5. Table D-7 presents the 24-hour PM2.5 design values, 24-hour PM10 design values, annual 10 

PM2.5 design values, and 3-year visibility metrics based on light extinction calculations using the 11 

three versions of the IMPROVE equation with the coarse mass fraction included in the analyses. 12 

Figure 5-3 and 5-4 in Chapter 5 show a comparison of the 3-year visibility metric and the 24-13 

hour PM2.5 design values for the 60 monitoring sites in the analyses where light extinction was 14 

calculated using the original IMPROVE equation12 and the Lowenthal and Kumar IMPROVE 15 

equation. Figure D-2 below presents the 3-year visibility metric and the 24-hour PM2.5 design 16 

values for the 60 monitoring sites with light extinction calculated using the revised IMPROVE 17 

equation.13 18 

 
12 For this analysis, the original IMPROVE equation in Equation D-1 was modified to use a 1.6 multiplier to convert 

OC to OM from the light extinction calculation, consistent with the modifications in the 2012 and 2020t review. 

13 For this analysis, the revised IMPROVE equation in Equation D-2 was modified to use a 1.6 multiplier to convert 

OC to OM, consistent with the modifications in the 2012 and 2020 reviews. 
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Table D-7. Summary of 24-hour PM2.5, 24-hour PM10, and annual PM2.5 design values, and 3-year visibility metrics at 60 1 

monitoring sites (2017-2019). 2 

Monitor ID State Region 
24-hour PM2.5 
Design Value 

(µg/m3) A 

24-hour PM10 
Design Value 
(number of 

exceedances) B C 

Annual 
PM2.5 

Design 
Value 

(µg/m3) D 

3-year Visibility Metric (deciviews) E 

Original 
IMPROVE 
Equation F 

Revised 
IMPROVE 
Equation G 

Lowenthal & 
Kumar 

IMPROVE 
Equation 

010730023 Alabama Southeast 21 0 10.0 23 23 26 

020900034 Alaska Alaska 40 1.4 8.9 24 25 27 

040139997 Arizona Southwest 21 0.7 7.4 21 21 24 

051190007 Arkansas Southeast 19 0 9.3 21 21 24 

060270002 California Northwest 23 3 5.6 13 14 15 

060190011 California SoCal 56 1 14.1 29 27 32 

060371103 California SoCal 31  11.9 26 25 28 

060658001 California SoCal 31 0 12.1 26 25 28 

060670006 California Northwest 37 4.1 10.2 25 25 30 

060731022 California SoCal 19 0 9.3 21 21 24 

060850005 California Northwest 43 0 10.5 22 22 26 

090050005 Connecticut Northeast 12  4.1 15 16 18 

090090027 Connecticut Northeast 18 0 6.9 23 23 26 

110010043 
District Of 
Columbia Northeast 20 0 8.9 23 23 25 

120573002 Florida Southeast 18  7.9 18 19 21 

130890002 Georgia Southeast 19 0 8.4 20 20 24 

160010010 Idaho Northwest 29  7.4 23 22 26 

170191001 Illinois IndustrialMidwest 18  7.8 22 22 23 

180970078 Indiana IndustrialMidwest 20 0 9.0 24 24 26 

181630021 Indiana IndustrialMidwest 17 0 8.2 22 22 24 

191370002 Iowa UpperMidwest 16  6.6 21 22 22 
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191630015 Iowa IndustrialMidwest 20 0 8.0 23 23 25 

191770006 Iowa UpperMidwest 16 0 7.0 21 22 23 

201950001 Kansas UpperMidwest 14  5.0 16 17 18 

202090021 Kansas UpperMidwest 26  9.4 23 23 26 

220330009 Louisiana Southeast 21 0 8.8 22 23 25 

230090103 Maine Northeast 11 0 3.2 16 18 18 

240230002 Maryland IndustrialMidwest 13  5.7 16 17 18 

240330030 Maryland Northeast 15 0 6.7 19 20 23 

250250042 Massachusetts Northeast 18  7.4 19 20 21 

261630001 Michigan IndustrialMidwest 22  8.8 23 23 25 

270031002 Minnesota UpperMidwest 20 0 7.3 23 23 25 

270750005 Minnesota IndustrialMidwest 13  3.8 16 16 17 

280490020 Mississippi Southeast 17  9.1 20 20 24 

295100085 Missouri IndustrialMidwest 21  8.7 24 24 26 

300490004 Montana Northwest 23  3.9 19 18 22 

330115001 New Hampshire Northeast 10  3.0 13 14 15 

330150018 New Hampshire Northeast 12  4.9 17 17 19 

340010006 New Jersey Northeast 15  6.6 18 19 20 

340130003 New Jersey Northeast 20 0 8.4 23 23 25 

350010023 New Mexico Southwest 15 0 5.6 16 17 19 

360810124 New York Northeast 18 0 7.0 21 22 24 

371190041 North Carolina Southeast 16  8.1 19 20 23 

371830014 North Carolina Southeast 13 0 7.7 19 19 23 

380070002 North Dakota UpperMidwest 15  3.9 18 18 20 

380130004 North Dakota UpperMidwest 16 0 3.6 20 20 21 

390350060 Ohio IndustrialMidwest 24 0 9.9 25 25 27 

390610040 Ohio IndustrialMidwest 20 0 9.4 22 23 24 

391351001 Ohio IndustrialMidwest 18  8.1 22 22 23 

420030008 Pennsylvania IndustrialMidwest 20  9.1 23 23 25 

460330132 South Dakota UpperMidwest 14 0 3.8 13 14 15 

460710001 South Dakota UpperMidwest 14 0 4.1 14 15 17 
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490353006 Utah Northwest 30  7.5 26 26 28 

500070007 Vermont Northeast 12 0 4.3 15 16 17 

510870014 Virginia Northeast 15 0 7.1 19 20 23 

530330080 Washington Northwest 26  6.3 21 22 24 

540390020 West Virginia IndustrialMidwest 15  7.9 21 21 24 

550270001 Wisconsin IndustrialMidwest 21 0 7.0 24 24 26 

550410007 Wisconsin IndustrialMidwest 15  4.7 19 19 21 

560210100 Wyoming Northwest 11 0 3.2 13 14 15 
A The 24-hour PM2.5 design value is the 3-year average of the 98th percentile of daily PM2.5 mass concentrations. The current 24-hour PM2.5 NAAQS is set at a level of 35 
µg/m3. 
B The 24-hour PM10 design value is not to be exceeded more than once per year on average over three years. The current 24-hour PM10 NAAQS is set at a level of 150 
µg/m3. 
C For some monitoring locations, PM10 design values are not available because of a lack of collocated PM10 monitoring at the site or insufficient data after applying 
completeness criteria for calculating PM10 design values. 
D The annual PM2.5 design value is the annual mean, averaged over three years. The current secondary annual PM2.5 NAAQS is set at a level of 15.0 µg/m3. 
E The 3-year visibility metric is the 3-year average of the 90th percentile of daily light extinction. In the 2012 and 2020 reviews, the target level of protection identified for the 3-
year visibility metric was 30 deciviews. 
F The original IMPROVE equation in Equation D-1 was modified to use a 1.6 multiplier to convert OC to OM from the light extinction calculation, consistent with the 
modifications in the 2012 and 2020  reviews. 
G The revised IMPROVE equation in Equation D-2 was modified to use a 1.6 multiplier to convert OC to OM, consistent with the modifications in the 2012 and 2020 reviews. 

1 

2 
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 1 

Figure D-2. Comparison of 90th percentile of daily light extinction, averaged over three 2 

years, and 98th percentile of daily PM2.5 concentrations, averaged over three years, for 3 

2017-2019 using the revised IMPROVE equation. (Note: Dashed lines indicate the level of 4 

current 24-hour PM2.5 standard (35 µg/m3) and the target level of protection identified for the 5 

3-year visibility metric (30 dv).) 6 

 7 
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ATTACHMENT: SUMMARY OF VISIBILITY PREFERENCE 1 

STUDIES 2 

 3 

The preference studies available at the time of the 2012 and 2020 reviews were 4 

conducted in four urban areas. Three western preference studies were available, including one in 5 

Denver, Colorado (Ely et al., 1991), one in the lower Fraser River valley near Vancouver, British 6 

Columbia, Canada (Pryor, 1996), and one in Phoenix, Arizona (BBC Research & Consulting, 7 

2003). A pilot focus group study was also conducted for Washington, DC (Abt Associates, 8 

2001), and a replicate study with 26 participants was also conducted for Washington, DC (Smith 9 

and Howell, 2009).14 Study specific details for these preference studies are shown in Table D-8.  10 

 
14 The replicate study with 26 participants was one test group of three included in Smith and Howell (2009). This 

study also included two additional test groups to assess varying light extinction conditions using the same scene 

as was used in the first test group. Study details in Table D-8 reflect all three test groups included in the study. 

However, for reasons described in section 2.5.2 of U.S. EPA (2010), results from the other two test groups were 

not included in the EPA’s evaluation of levels of acceptable visibility impairment from the preference studies. 
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Table D-8. Summary of visibility preference studies. (Adapted from Table 9-2 in U.S. EPA, 1 

2009). 2 

 
Denver, CO Phoenix, AZ 

Vancouver, British 
Columbia 

Washington, DC Washington, DC 

Report Date 1991 2003 1996 2001 2009 

Duration of 
session 

 45 minutes 50 minutes 2 hours  

Compensation None $50 None $50 None 

# focus group 
sessions 

16 a 27 b 4 1 3 tests 

# participants 214 385 180 9 64 

Age range Adults 18-65+ University students 27-58 Adults 

Annual or 
seasonal 

Wintertime Annual Summertime Annual Annual 

# and type of 
scene 
presented 

Single scene of 
downtown 
Denver with the 
mountains in the 
south in the 
background 

Single scene of 
downtown 
Phoenix with the 
Estrella 
Mountains in the 
background, 42 
km max. distance 

Single scene from 
each of two suburbs in 
the lower Fraser River 
valley – Chilliwack and 
Abbotsford c 

Single scene of 
Potomac River, 
Washington Mall 
and downtown 
Washington, DC, 
8 km max. sight 

Single scene of 
DC Mall and 
downtown, 8 km 
maximum sight 

# total visibility 
conditions 
presented 

20 conditions (+ 
5 duplicates) 

21 conditions (+ 
4 duplicates) 

20 conditions (10 from 
each city) 

20 conditions (+ 
5 duplicates) 

22 conditions 

Source of 
slides 

Actual photos 
taken between 
9am and 3pm 

WinHaze Actual photos taken at 
1pm or 4pm 

WinHaze WinHaze 

Medium of 
presentation 

Slide projection Slide projection Slide projection Slide projection Slide projection 

Ranking scale 
used 

7 point scale 7 point scale 7 point scale 7 point scale 7 point scale 

Visibility range 
presented (dv) 

11-40 15-35 Chilliwack: 13-25 
Abbotsford: 13.5-31.5 

9-38 9-45 

Health issue 
directions 

Ignore potential 
health impacts; 
visibility only 

Judge solely on 
visibility, do not 
consider health 

Judge solely on 
visibility, do not 
consider health 

Health never 
mentioned, 
“Focus only on 
visibility” 

Health never 
mentioned, 
“Focus only on 
visibility” 

Key questions 
asked 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•“How much 
haze is too 
much?” 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•How many days 
a year would this 
picture be 
“acceptable” 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•If this hazy, how 
many hours 
would it be 
acceptable (3 
slides only) 

•Valuation 
question 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

Mean dv found 
“acceptable” 

20.3 23-25 Chilliwack: ~23 
Abbotsford: ~19 

~20 
(range 20-25) 

~30 

a No preference data were collected at a 17th focus group session due ot a slide projector malfunction. 
b The 27 focus groups were conducted in 6 neighborhood locations in Phoenix, with 3 focus groups held in Spanish. 
C Chilliwack scene includes downtown buildings in the foreground with mountains in the background up to 65 km away. Abbotsford scene 
has fewer manmade objects in the foreground and is primarily a more rural scene with mountains in the background up to 55 km away. 
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