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ABSTRACT 1 

Context  2 

Previous epidemiologic studies of per- and polyfluoroalkyl substances (PFAS) and menopausal 3 

timing conducted in cross-sectional settings were limited by reverse causation because PFAS 4 

serum concentrations increase after menopause. 5 

Objectives  6 

To investigate associations between perfluoroalkyl substances and incident natural menopause.  7 

Design and Setting 8 

A prospective cohort of midlife women, the Study of Women’s Health Across the Nation, 1999-9 

2017. 10 

Participants 11 

1120 multi-racial/ethnic premenopausal women aged 45-56 years. 12 

Methods 13 

Serum concentrations of perfluoroalkyls were quantified by high performance liquid 14 

chromatography-isotope dilution-tandem mass spectrometry. Natural menopause was defined as 15 

the bleeding episode prior to at least 12 months of amenorrhea not due to surgery or hormone 16 

use. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% 17 

confidence intervals (CIs).   18 

 19 
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Results 20 

Participants contributed 5466 person-years of follow-up, and 578 had incident natural 21 

menopause. Compared to the lowest tertile, women at the highest tertile of baseline serum 22 

concentrations had adjusted HR for natural menopause of 1.26 (95%CI: 1.02-1.57) for n-23 

perfluorooctane sulfonic acid (n-PFOS) (Ptrend=0.03), 1.27 (95%CI: 1.01-1.59) for branched-24 

PFOS (Ptrend=0.03), and 1.31 (95%CI: 1.04-1.65) for n-perfluorooctanoic acid (Ptrend=0.01). 25 

Women were classified into four clusters based on their overall PFAS concentrations as 26 

mixtures: low, low-medium, medium-high, and high. Compared to the low cluster, the high 27 

cluster had a HR of 1.63 (95% CI: 1.08-2.45), which is equivalent to 2.0 years earlier median 28 

time to natural menopause.  29 

Conclusion 30 

This study suggests that select PFAS serum concentrations are associated with earlier natural 31 

menopause, a risk factor for adverse health outcomes in later life.  32 

 33 

Keywords: per- and polyfluoroalkyl substances (PFAS), endocrine-disrupting chemicals, natural 

menopause, midlife women 

 34 

 35 

 36 
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INTRODUCTION 37 

Menopause marks the cessation of ovarian function, and its timing has physiologic 38 

impacts beyond the reproductive system, affecting the overall health of midlife women (1,2). 39 

Earlier age at the final menstrual period (FMP) has been associated with an increased risk of 40 

overall mortality (3–5), cardiovascular disease (6,7), cardiovascular death (3,8,9), low bone 41 

mineral density (10) and osteoporosis (11), and other chronic conditions (12). Ovarian aging 42 

reflects the combined effects of  genetic factors, socio-demographics, lifestyle and health 43 

characteristics (13–15). Although the etiology of premature menopause (before age 40 years) and 44 

early menopause (before age 45 years) is not fully understood, accumulating evidence has 45 

suggested that certain environmental exposures may play an important role in the acceleration of 46 

ovarian aging (16–18).  47 

Per- and polyfluoroalkyl substances (PFAS) are a family of anthropogenic 48 

environmentally persistent chemicals, some of which also persist in the human body, that have 49 

been widely used in many industrial and consumer products, such as non-stick cookware (19,20), 50 

food packaging (21–23), outdoor apparel (24,25), and aqueous film-forming foams (26–29). 51 

These compounds, especially the most studied perfluorooctanoic acid (PFOA) and 52 

perfluorooctane sulfonic acid (PFOS), have been identified as plausible endocrine disruptors 53 

with the potential to cause reproductive disturbances (30,31). The potential for reproductive 54 

impact is supported by findings from animal toxicology studies with effects on female 55 

reproduction, including altered ovarian function, histopathological changes in the reproductive 56 

tract and ovarian cell steroidogenesis (32–34), likely through the activation of various 57 

transcriptional factors, such as peroxisome proliferator-activated receptors (PPARs) (35,36). 58 

However, extrapolations of findings from animal studies to the potential effects of PFAS on 59 
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human ovarian health are clearly limited, given the species-specific toxicokinetics, metabolism 60 

and tissue distributions of PFAS (37).  61 

Although three human studies have examined the associations of natural menopause with 62 

PFOS, PFOA, perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS), the 63 

results have been inconsistent. A cross-sectional study of mid-Ohio Valley residents found that 64 

earlier age at natural menopause was associated with higher concentrations of PFOA and PFOS 65 

(38); whereas using data from the National Health and Nutrition Examination Survey 66 

(NHANES), Taylor et al. observed a significant relationship of earlier natural menopause with 67 

PFHxS but not with PFOA, PFOS, PFNA (39). These studies also raised concerns about reverse 68 

causation, in that it is unclear whether PFAS exposure contributed to earlier menopause, or 69 

cessation of PFAS excretion via cessation of menstruation led to increased serum concentrations 70 

of PFAS in women (39–42).  71 

A retrospective cohort study reported no association between PFOA exposure and natural 72 

menopause (43).  That study relied on recalled information on age at menopause that had 73 

occurred on average >10 years prior to the interview. It is difficult to ascertain the precise timing 74 

of FMP without longitudinal observations of menstrual cycles (44). Potential recall bias may 75 

have reduced the accuracy of reported age at natural menopause and presumably biased the study 76 

results toward the null (43). Annual interviews can determine relatively accurate estimates of 77 

FMP, and a prospective cohort design with a large, diverse population can provide insights 78 

regarding causality that can be more generalizable.  79 

We, therefore, examined the associations between perfluoroalkyl substances and 80 

incidence of natural menopause in the multi-racial/ethnic sample of women who were 81 
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premenopausal at baseline from a prospective cohort, i.e., the Study of Women’s Health Across 82 

the Nation (SWAN). Women were followed every year from 1999-2010 and every other year 83 

from 2011-2017. We also assessed whether the relationship differed by racial/ethnic groups and 84 

evaluated the combined effects of chemical mixtures on natural menopause.  85 

MATERIALS AND METHODS 86 

Study design 87 

The SWAN cohort, a multi-racial/ethnic, longitudinal study, was designed to characterize 88 

physiological and psychosocial changes that occur during the menopausal transition to observe 89 

their effects on subsequent risk factors for age-related chronic diseases, as previously described 90 

(45). A total of 3,302 premenopausal women aged 42-52 years at baseline were recruited from 91 

seven study sites, including Boston, MA; Chicago, IL; Detroit, MI; Los Angeles, CA; Newark, 92 

NJ; Oakland, CA; Pittsburgh, PA. Eligible articipants had to have an intact uterus, at least one 93 

menstrual period in the prior three months, and not have taken hormone medications within the 94 

prior three months. Participants self-identified as non-Hispanic White women or one designated 95 

minority group, including Black, Chinese, Hispanic and Japanese in a proportion for each site. 96 

Data and specimens were collected every year from 1999-2010 and every other year from 2011-97 

2017. The institutional review board at each participating site approved the study protocol, and 98 

all participants provided written, signed informed consent. 99 

The SWAN Multi-Pollutant Study (MPS) was initiated in 2016, using the SWAN follow-100 

up visit 03 (V03, 1999-2000) as the baseline to examine the potential health effects of multiple 101 

environmental chemicals, including PFAS, polychlorinated biphenyls, organochloride pesticides, 102 

polybrominated diphenyl ethers, metals, phenols, phthalates, and organophosphate pesticide 103 
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among midlife women. The study design of the SWAN MPS is shown in Supplemental 104 

Materials Figure S1 (46). We used repository serum and urine samples collected at SWAN 105 

V03, considered the MPS baseline for environmental exposure assessments. Of 2,694 women 106 

enrolled at SWAN V03, we did not include women from Chicago (n=368) and Newark (n=278), 107 

because urine samples were not available at these two sites. An additional 648 women were 108 

excluded due to insufficient volumes of serum or urine samples. Of the remaining1,400 109 

participants with serum samples available at the SWAN-MPS baseline, we excluded 232 women 110 

who had already reached natural menopause and 48 women who had had a hysterectomy and/or 111 

oophorectomy at the MPS baseline, resulting in a final analytic sample of 1120 women with 112 

6586 observations and 5466 person-years of follow-up through 2017. Additional details of the 113 

study design are described elsewhere (47).  114 

Ascertainment of natural menopause incidence 115 

The age at the natural FMP was determined from annual interviews indicating 12 months 116 

of amenorrhea since the last menstrual period for no other causes (including hysterectomy, 117 

bilateral oophorectomy or hormone therapy, HT). If a participant was reliably observed to have 118 

had a menstrual bleed followed by at least 12 consecutive months that were both HT-free and 119 

bleed-free, her FMP was ascertained. If a woman missed at least three consecutive visits prior to 120 

the first post-menopause visit, the FMP date was set to missing.  121 

  122 
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Measurements of PFAS serum concentrations 123 

Baseline MPS serum samples were sent to the Division of Laboratory Sciences, National 124 

Center for Environmental Health, Centers for Disease Control and Prevention (CDC). The CDC 125 

laboratory’s involvement did not constitute engagement in human-subjects research. Serum 126 

samples from subsequent SWAN visits were not analyzed because serum concentrations of the 127 

target analytes are relatively stable over time (48). We measured perfluorohexane sulfonic acid 128 

(PFHxS), n-PFOS, sum of branched isomers of PFOS (Sm-PFOS), n-PFOA, sum of branched 129 

PFOA (Sb-PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), 130 

perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoA) in 0.1 mL of 131 

serum, using an online solid phase extraction-high performance liquid chromatography-isotope 132 

dilution-tandem mass spectrometry method (49). The analytic methods and quality control 133 

procedures have been described elsewhere (48). The coefficient of variation of low- and high-134 

quality controls ranged from 6% to 12%. The limit of detection (LOD) was 0.1 ng/mL for all the 135 

analytes. Concentrations below the LODs were substituted with LOD/√ .  136 

Assessments of covariates 137 

Annual visits included an in-person interview, self-administered questionnaires, and 138 

measurements of weight and height. All questionnaires were translated into Spanish, Cantonese 139 

and Japanese and back-translated; translation discrepancies were resolved by two translators.  140 

Socio-demographic variables included race/ethnicity, study site, and educational 141 

attainment from the screening questionnaire. Race/ethnicity was classified into self-identified 142 

Black, Chinese, Japanese, or White. We categorized education as high school or less, some 143 

college, or college degree or higher. Baseline time-invariant health-related variables included 144 
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prior oral contraceptive and other exogenous hormone use, and body mass index (BMI) at 145 

baseline. We did not consider time-varying BMI in case of over-adjustment bias because PFAS 146 

might contribute to weight gain (50). 147 

Time-varying lifestyle variables included annual self-reported active smoke exposure and 148 

physical activity. Self-reported smoking status was defined based on the questions asking about 149 

ever smoking, amount smoked and quit date (51). Women were classified as never smoked, 150 

former smoked only, or current smoking. Physical activity was assessed using an adaptation of 151 

the Kaiser Physical Activity Survey (52), which consists of 38 questions with primarily Likert-152 

scale responses about physical activity in various domains, including sports/exercise, 153 

household/caregiving, and daily routine (defined as walking or biking for transportation and 154 

hours of television watching, which are reverse-coded). Domain-specific indices were derived by 155 

averaging the ordinal responses to questions in each domain, resulting in values from 1 to 5. 156 

Thus, the total physical activity score ranged from 3 to 15 with 15 indicating the highest level of 157 

activity.  158 

Statistical analyses 159 

Bivariate statistics were calculated for participant characteristics at baseline and PFAS 160 

serum concentrations stratified by racial/ethnic groups. Chi-square or Fisher’s exact statistics 161 

were computed for categorical variables; and analysis of variance (ANOVA) or Kruskal-Wallis 162 

tests were used for continuous variables. We censored a participant’s data when she reported 163 

initiating HT if no subsequent HT-free bleeding occurred, at the date of hysterectomy or bilateral 164 

oophorectomy, or at the last menstrual period at the end of data collection if it occurred before 12 165 

months of amenorrhea, on the date of death or on the date of the participants’ last follow-up 166 
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visits. Of the 1120 participants, 578 had an observed date at the natural FMP. The remaining 542 167 

were censored for one of the following reasons: hysterectomy and/or oophorectomy before 168 

having ≥12 months of amenorrhea (n=69); had an unknown FMP date because of HT use 169 

(n=451); or end of data collection before ≥12 months of amenorrhea (n=22). 170 

Hazard ratios (HRs) and 95% confidence intervals (CIs) of natural menopause incidence 171 

were estimated by Cox proportional hazards (PH) regression. We used time since baseline as the 172 

time scale. Serum PFAS concentrations were also categorized into tertiles. HRs and 95% CIs 173 

were calculated comparing the medium and the highest tertiles of PFAS concentrations to the 174 

lowest tertiles (the reference group). To assess the linear trend of the associations between PFAS 175 

exposures and incident natural menopause, tertiles of PFAS concentrations were used as 176 

continuous variables in the regression models. We also tested the log-linear relationships using 177 

log-transformed PFAS concentrations (log-transformed with base 2). In this case, HRs and 95% 178 

CIs were interpreted as effects of a two-fold increase in PFAS serum concentrations. Covariates 179 

considered in multivariate adjustments included baseline age (continuous), race/ethnicity (White, 180 

Black, Chinese, Japanese), educational attainment (high school or less, some college, college 181 

graduate, or post-college), time-varying parity status (nulliparous, or parous), time-varying 182 

smoking status (never, former, or current smoker), time-varying physical activity, prior HT use 183 

at baseline, and baseline BMI. We applied the Cox PH models to generate adjusted survival 184 

curves and estimate median age at natural menopause. We calculated predicted survival 185 

probability of natural menopause (i.e., probability of not having natural menopause). Median age 186 

at natural menopause was defined as the time at which 50 percent had reached their natural 187 

menopause. To examine effect modifications by race/ethnicity, we used statistical interaction 188 

terms between PFAS exposure and race/ethnicity. Chinese and Japanese were combined because 189 
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of the small sample sizes of these groups. 190 

People are exposed to multiple and often inter-correlated chemicals. Efforts to study 191 

chemical mixtures in isolation can thus result in underestimated environmental effects (53,54). 192 

To identify subgroups corresponding to distinct MPS baseline PFAS concentration profiles, a 193 

nonparametric portioning method, k-means clustering, was used to find an optimal number of 194 

clusters and assign membership to each cluster for each participant (55). The k-means clustering 195 

was conducted using PROC FASTCLUS procedures. All PFAS serum concentrations were log-196 

transformed and standardized to z scores to make the distributions normal and comparable before 197 

the k-means analysis. The number of clusters was chosen based on cubic clustering criterion, 198 

pseudo F statistic (i.e., the ratio of between-cluster variance to within-cluster variance), r-squared 199 

statistics, and interpretability. Participant characteristics differed significantly by k-means 200 

clusters (Supplemental Materials Table S1) (46). It is possible that there is uncertainty in 201 

classifying women based on their overall concentration patterns. Therefore, we utilized inverse 202 

probability treatment weighting method to account for confounding due to differences in 203 

distributions of these characteristics among clusters (96). HRs of natural menopause incidence 204 

were estimated for women with different clusters. We estimated conservative 95% CIs based on 205 

the robust variance estimator. All the analyses were performed using SAS, version 9.4 (SAS 206 

Institute, Inc., Cary, North Carolina). 207 

  208 
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Sensitivity analyses 209 

HT use or loss to follow up masked the actual FMP date. The SWAN Data Coordinating 210 

Center therefore conducted multiple imputations with chain equations for missing FMP age 211 

using a comprehensive list of covariates related to timing of menopause (see the list of covariates 212 

in the Supplemental Material Table S2) (46). Covariates were selected based on previous 213 

literature (14,15). The imputations were conducted using IVEware. Because we could not impute 214 

FMP age perfectly, we used ten sets of imputations to account for uncertainty, and the pooled 215 

results were computed using PROC MIANALYZE.    216 

Hysterectomy and/or oophorectomy was a competing risk in our analyses. Previous 217 

studies have suggested that exposures to PFOS, PFOA, and PFNA were associated with 218 

increased risk of endometriosis (56). Many women undergo a hysterectomy to help alleviate 219 

intolerable symptoms of endometriosis. Because such surgery would mask the age at which a 220 

woman would have become menopausal in the absence of surgery, the competing risk may 221 

preclude women from participation due to no longer being at risk of reaching the natural FMP. 222 

To examine the potential impact of this competing risk on our results, we excluded women who 223 

had hysterectomy in the sensitivity analyses. Furthermore, we excluded 29 women who reached 224 

their natural menopause since baseline to minimize the possibility of reverse causation bias. 225 

Lastly, it is possible that smokers enrolled in our study may be healthier than those who reached 226 

their natural menopause before baseline, especially those with premature menopause (before age 227 

40) or early menopause (before age 45). We have conducted sensitivity analyses by removing 228 

smokers from our study sample. 229 
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RESULTS 230 

Study participants 231 

The median (interquartile range, IQR) age of the 1120 premenopausal women was 48.9 232 

(47.0-50.8) years with a range of 45-56 years at baseline (1999-2000) (Table 1). Most women 233 

had at least some college education. Educational attainment differed significantly by 234 

race/ethnicity, with Black women more likely to receive a high school education or less 235 

(p<0.0001) compared to other racial/ethnic groups. Less than 40% of the women had ever 236 

smoked; a higher proportion of Black women were current smokers compared to the other 237 

racial/ethnic groups (p<0.0001). Physical activity also differed significantly by race/ethnicity, 238 

with White women having higher activity scores (p<0.0001). BMI at baseline was significantly 239 

higher among Black women and was the lowest in Chinese and Japanese women (p<0.0001). 240 

Chinese and Japanese women were more likely to be nulliparous (p<0.0001) and to report prior 241 

use of HT at baseline (p=0.0005).  242 

PFOS and PFOA were the PFAS detected at the highest concentrations (Supplemental 243 

Materials Table S3) (46). The median (interquartile range, IQR) serum concentration was 17.1 244 

(12.2-24.5) ng/mL for n-PFOS, 7.2 (4.6-10.8) ng/mL for Sm-PFOS, and 4.0 (2.8-5.7) ng/mL for 245 

n-PFOA, 1.5 (0.9-2.3) ng/mL for PFHxS, 0.6 (0.4-0.8) ng/mL for PFNA. PFUnDA, PFDoA, 246 

PFDA, and Sb-PFOA were detected in fewer than 40% of baseline samples, and thus they were 247 

not considered further in these analyses. Significant racial/ethnic differences were observed in 248 

serum PFAS concentrations: White women had the highest concentrations of n-PFOA; Black 249 

women had the highest concentrations of n-PFOS, and Sm-PFOS; Chinese and Japanese women 250 

had the lowest PFHxS concentrations; White, Chinese and Japanese women had a higher 251 
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detection rate of PFNA, and significantly higher median concentrations compared to Black 252 

women.  PFAS were positively correlated amongst each other with Spearman ρs ranging from 253 

0.35-0.82 (Supplemental Materials Figure S2) (46). 254 

Associations between PFAS and incident natural menopause  255 

n-PFOS, Sm-PFOS, n-PFOA and PFNA were associated with earlier age at natural FMP 256 

(Table 2). After multivariate adjustment for age at baseline, race/ethnicity, study site, education, 257 

parity, BMI at baseline, and time-varying physical activity and smoking status, and prior 258 

hormone use at baseline, comparing the highest to the lowest tertiles, the HR for natural 259 

menopause was 1.26 (95% CI: 1.02-1.57) for n-PFOS (ptrend =0.03), 1.27 (95% CI: 1.01-1.59) for 260 

Sm-PFOS (ptrend=0.03), and 1.31 (95% CI: 1.04-1.65) for n-PFOA (ptrend =0.01). The relationship 261 

between PFNA and incident natural menopause was not linear but log linear. The HR of natural 262 

menopause was 1.12 (95% CI: 1.01-1.24) per doubling increase in PFNA serum concentrations. 263 

No significant association with age of menopause was found for PFHxS in either trend 264 

(ptrend=0.24) or log-linear analyses (p=0.15). Adjusted survival curves by tertiles of PFAS 265 

concentrations are presented in Supplemental Material Figures S3-S7 (46). The predicted age 266 

at natural menopause in women with tertile 1, tertile 2, and tertile 3 of serum concentrations was: 267 

52.6 years, 52.3 years and 51.6 years for n-PFOS; 52.6 years, 51.9 years and 51.7 years for Sm-268 

PFOS; 52.7 years, 51.9 years and 51.6 years for n-PFOA; 52.7 years, 51.8 years and 51.8 years 269 

for PFNA; and 52.4 years, 51.9 years and 51.8 years for PFHxS.     270 

When we examined interaction terms between PFAS concentrations and race/ethnicity, 271 

significant associations with incidence of natural menopause were observed for PFNA and n-272 

PFOA among White women but not in other racial/ethnic groups (Figure 1). The HR for White 273 
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women was 1.23 (95% CI: 1.06-1.44) and 1.33 (95% CI: 1.13-1.56) per doubling increase in 274 

serum concentrations of n-PFOA and PFNA, respectively, after covariate adjustment. The 275 

associations in Black or Asian women did not reach statistical significance. Neither did the 276 

results for n-PFOS, Sm-PFOS and PFHxS (Supplemental Materials Figure S8) (46).  277 

In sensitivity analyses, the pooled effect estimates from 10 imputations of age at FMP 278 

were largely unchanged, while the 95% CIs became narrower (Table 3). However, the 279 

significant associations between PFNA concentration and natural menopause disappeared. In the 280 

competing risks analyses, 67 women (303 observations) who had hysterectomy and/or 281 

oophorectomy were excluded from the analyses, but effect estimates remained similar 282 

(Supplemental Material Table S4) (46). Exclusion of 29 women who reached natural 283 

menopause in the six months since baseline did not change results (Supplemental Material 284 

Table S5) (46), diminishing the likelihood that reverse causation bias drove the observed results. 285 

The results were robust when restricting the study sample to never smokers (Supplemental 286 

Material Tables S6-S8) (46). 287 

Mixture effects of PFAS on incident natural menopause 288 

Participants were classified into clusters based on their overall PFAS concentrations 289 

profiles using the k-means method (Supplemental Material Figure S9) (46). Women were 290 

classified into four clusters based on serum PFAS concentrations, including “low”, “low-291 

medium”, “medium-high”, and “high” overall concentration patterns. Women in the “low” 292 

concentration group had the lowest overall concentrations of PFAS, while those classified into 293 

the “high” group exhibited the highest concentrations. After adjusting for confounding, the HRs 294 

for natural menopause comparing the “high”, “medium-high”, “low-medium” concentration 295 
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groups with the low concentration group were 1.63 (95% CI: 1.08-2.45), 1.31 (95% CI: 0.94-296 

1.83), and 1.30 (95% CI: 0.97-1.74), respectively (Supplemental Material Table S9) (46). 297 

Participants in the high concentration group had an earlier onset of natural menopause compared 298 

to those in other groups (Figure 2). The predicted median age at natural menopause in the low 299 

concentration group was 52.8 years compared to 51.8 years, 52.0 years and 50.8 years for low-300 

medium, medium-high, and high concentration groups, respectively.  301 

DISCUSSION 302 

In this 17-year prospective cohort of 1120 women with 5466 person-years of observation 303 

in annual follow-up visits, we found that higher baseline serum concentrations of n-PFOS, Sm-304 

PFOS, n-PFOA, and PFNA were significantly associated with an earlier age at natural FMP. 305 

PFHxS concentrations were not associated with incidence of natural menopause. The analysis of 306 

mixtures also suggested that the combined PFAS mixtures were associated with earlier onset of 307 

natural menopause. These results suggest that PFAS may play an important role in ovarian aging, 308 

perhaps through its endocrine disruptive actions.  309 

Comparison with previous epidemiologic studies 310 

To date, evidence on the influence of PFAS exposure on the timing of menopause and 311 

ovarian aging has been limited and inconsistent, and has been primarily generated from cross-312 

sectional studies that could not establish causal relationships (38,39). Knox et al. found that 313 

higher concentrations of PFOA and PFOS were associated with earlier menopausal age in a 314 

cross-sectional study of women aged 18-65 years from the C8 Health Project (38). This study 315 

collected data from highly exposed communities and workers in six public water districts 316 

contaminated with PFOA from the DuPont Washington Works Plant near Parkersburg (57). 317 
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Taylor et al. reported significant relationships between higher PFHxS concentrations and earlier 318 

menopause, but not for PFOA, PFOS and PFNA among the U.S. general women aged 20-65 319 

years from NHANES (39). Using estimated retrospective year-specific serum concentrations for 320 

1951-2011 and PFOA concentrations measured in 2005-2006, no association was observed 321 

between earlier age at menopause with PFOA exposure in either retrospective or prospective 322 

cohort of C8 Science Panel (43). However,  reverse causation could not be ruled out as women 323 

appeared to have higher PFAS concentrations after menopause (39–42).  324 

Serum concentrations of PFAS appear to be higher in males than in females across all age 325 

groups (58). Wong et al. (59) found that menstruation could explain the PFOS elimination half-326 

life difference between men and women. The differences by sex narrows with age, suggesting 327 

that PFAS may reaccumulate after cessation of menstrual bleeding in postmenopausal women 328 

(47,60–62). Given that 90% to 99% of PFAS in the blood are bound to serum albumin (63,64), 329 

menstrual bleeding could be an important elimination pathway in women. It is still unclear 330 

whether PFAS exposure is the cause of earlier natural menopause or the cessation of 331 

menstruation leads to increased serum concentrations of PFAS. Therefore, previously observed 332 

associations identified in cross-sectional or retrospective designs (38,39,43) could result from the 333 

impact of reproductive aging on serum PFAS concentrations, rather than their adverse effects on 334 

ovarian reserve.  335 

To our knowledge, the current investigation is among the first of studies to evaluate the 336 

associations of exposures to various PFAS with the occurrence of natural menopause in a 337 

prospective cohort of multi-racial/ethnic midlife women. Our findings of PFOA and timing of 338 

natural menopause are not in concordance with Dhingra et al. (43), the only other published 339 

study to our knowledge that has explored the associations between PFOA exposure and incident 340 
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menopause. Dhingra et al. (43) included 8,759 women aged ≥40 years in 2005-2006 who were 341 

exposed to high levels of PFOA from a chemical facility in the Mid-Ohio Valley, West Virginia 342 

(the C8 Health Project). Women were recruited in 2005-2006 and interviewed in 2008-2011 to 343 

ascertain the timing of menopause. They found no significant association between PFOA 344 

exposure (using either estimated cumulative exposure during 1951 and 2011, or measured serum 345 

concentrations in 2005-2006) and incident natural menopause. They observed that women 346 

exhibited considerable digit preference and tended to round off their age at menopause to 40, 45 347 

or 55, suggesting that their results may suffer from the reduced accuracy of recalled ages and are 348 

presumably biased towards the null. The availability of a standardized questionnaire 349 

administered prospectively at regular, approximately annual, intervals to confirm menopausal 350 

status and ascertain age at the natural FMP is a major strength of SWAN and may account for the 351 

observed differences in the findings.  352 

No previous research of which we are aware has explored the mixture effects of PFAS on 353 

ovarian aging. PFAS are ubiquitous and environmentally persistent (65). People may be 354 

normally exposed to multiple PFAS through drinking water, food intake, or use of consumer 355 

products (66,67). Understanding concentration patterns of multiple PFAS is an important first 356 

step before examining the association between PFAS mixtures and incident natural menopause. 357 

Results of mixture analyses showed a larger joint effect on ovarian aging compared with single 358 

PFAS. Along with our recent study of profiles of  urinary concentrations of metal mixtures 359 

among midlife women (68), the results of this study suggested that k-means clustering is a useful 360 

tool to identify clusters in the population.  361 

This is also the first study of which we are aware to explore effect modification by 362 

race/ethnicity on the associations between PFAS exposure and natural menopause. Although 363 
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environmental exposure in general is sometimes expected to be higher in racial minority groups 364 

and socioeconomically disadvantaged neighborhoods, the concentration patterns tended to 365 

depend on the PFAS. Serum concentrations of n-PFOA were found to be higher in White women 366 

and PFNA concentrations were relatively higher in White and Chinese women, whereas serum 367 

concentrations of n-PFOS and Sm-PFOS were higher in Black women. This is consistent with 368 

previous findings (47,69–71). White women with higher n-PFOA and PFNA tended to have 369 

earlier natural menopause. 370 

PFOA is used as a surfactant and emulsifier in compounds used to coat a variety of food 371 

packaging materials, including microwave popcorn bags (37,72,73) and is essential in 372 

manufacture of the fluoropolymer polytetrafluoroethylene (PTFE) used in non-stick coatings and 373 

waterproof fabrics (74). Uses of PFOS included inks, varnishes, waxes, fire-fighting foams, and 374 

coating formulations (75). Use of consumer products may have contributed to more exposure to 375 

PFOA, while the most dominant source of PFOS exposure might have been intake of 376 

contaminated drinking water (76). Although production and use of some PFAS, including PFOA 377 

and PFOS, in the USA is on the decline, environmental exposures to many of these pervasive 378 

chemicals continue with associated potential hazards to human reproductive health.  379 

Our study results showed no difference in the effects of n-PFOS and Sm-PFOS by 380 

racial/ethnic groups, possibly because of the exclusion of women with premature (before the age 381 

of 40 years) or early menopause (before age 45 years), or greater censoring of Black women who 382 

had surgical menopause before age 45. However, caution should be taken in interpreting the 383 

findings because of the modest sample sizes in those racial/ethnic groups. Asian women with 384 

similar PFNA concentrations as White women did not reach their natural menopause earlier. 385 

Previous studies have shown increases in PFNA concentrations since 2000 (69,70,77–79). Future 386 
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studies with more recent PFNA measurements are needed to confirm our findings and better 387 

understand exposure trends. It is also important to explore the role of genetic background and 388 

changes in lifestyle factors (80–83). 389 

Biological evidence  390 

PFAS exposures have been associated with diminished ovarian reserve (i.e., the number 391 

of ovarian follicles and oocytes) (84–91). The mechanisms of PFAS-induced effects have widely 392 

been thought to occur through a peroxisome proliferator-activated receptor (PPAR) mechanism 393 

(35,36,92). PPARs are expressed in the female hypothalamic-pituitary-gonadal axis, and they act 394 

on critical processes for ovarian function. For example, PPARs may inhibit transactivation of the 395 

estrogen receptor (ER) through competition for estrogen response element (ERE) binding (93), 396 

down-regulate aromatase expression via nuclear factor-κB (NF-κB) pathway (94), and affect 397 

enzymatic activity in steroidogenesis (95,96).   398 

Accumulating evidence from experimental research suggests that PFAS can directly 399 

interfere with steroidogenic enzyme activities (97–99). Recently, it was also reported that PFNA 400 

and PFOA are weak xenoestrogens, inducing ERα-dependent transcriptional activation in vitro 401 

and in vivo (100). As potential endocrine disruptors, PFAS might also suppress the effects of 402 

17β-estradiol (E2) on estrogen-responsive gene expression (101,102), reduce E2 production and 403 

alter the expression of major steroidogenic genes and regulator steroidogenic factors 1 (SF-1) 404 

(103). Disruption of ER signaling pathways may contribute to adverse health effects, such as 405 

reproductive failure and acceleration of ovarian aging, thus supporting the notion that women 406 

may be particularly vulnerable to reproductive toxicity of PFAS. In addition, experimental 407 

studies suggest that PFOA may lead to minimal but significant histopathologic changes in the 408 
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uterus, vagina, and cervix (32).   409 

Strengths and limitations 410 

The primary strengths of this study included direct measurements of PFAS serum 411 

concentrations prior to menopause, prospectively determination of FMP date, and a large cohort 412 

of community-based midlife women from four racial/ethnic groups followed for up to 17 years. 413 

The reproductive toxicity of PFAS has not been previously characterized among Chinese and 414 

Japanese women, to our knowledge. The prospective design also minimized the possibility of 415 

reverse causation. Standard annual follow-up visits instead of one-time questionnaire provided 416 

reliable estimates of date of FMP. We also consider multiple factors simultaneously in the Cox 417 

PH model, censoring at initiation of HT use or at hysterectomy or oophorectomy, thus providing 418 

HRs for natural menopause for the independent relations of all exposure factors examined.  419 

Several limitations should be considered as well. First, enrollment at age 45-56 years was 420 

limited to menstruating women, thus women with earlier menopause were excluded. This left-421 

truncation resulted in an overestimation of median age at FMP (104). Women who experienced 422 

menopause before baseline, especially those with premature menopause (before age 40 years) or 423 

early menopause (before age 45 years), were not included in the cohort, which could bias our 424 

effect estimates towards the null. However, the effect estimates remained similar when 425 

restricting our study sample to never smokers. Second, more than 40% of the cohort was 426 

censored at the initiation of HT, before the participants were classified as post-menopausal. This 427 

could have resulted in an underestimation of the age at FMP because these women had higher 428 

education levels, which has been associated with later age at menopause. To minimize potential 429 

bias, we imputed their FMP age based on covariates related to the timing of menopause. 430 
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Imputing age at menopause increased sample size and broadened generalizability to women with 431 

HT use and thus might have reduced bias. Finally, hysterectomy could be a competing risk of 432 

natural menopause. Hysterectomy can be undertaken for medical conditions (such as 433 

endometriosis or uterine fibroids, cancer or menorrhagia). We did not have data on the date of 434 

onset of these conditions and hence were unable to examine directly the potential effects of 435 

PFAS on cause-specific subsets of menopause (either surgically or naturally occurring).  436 

CONCLUSIONS 437 

Our findings suggest that exposure to select PFAS was associated with earlier natural 438 

menopause. Women with highest tertiles of n-PFOS serum concentrations tended to have 1.0 439 

years earlier median time to natural menopause, and 0.9 years and 1.1 years earlier for Sm-PFOS 440 

and n-PFOA, respectively, compared to those in the lowest tertiles. High overall PFAS 441 

concentration patterns might contribute to 2.0 years earlier median time to natural menopause, 442 

compared to the low group. These estimates were roughly equivalent to or even larger than an 443 

effect estimate of 1.1 years comparing current smokers vs. never smokers in our sample. Due to 444 

PFAS widespread use and environmental persistence, their potential adverse effects remain a 445 

public health concern.  446 

  447 
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FIGURE LEGENDS 812 

Figure 1 Adjusted hazard ratios (HR) (95% confidence intervals, 95% CI) for incident natural 813 
menopause with per doubling increase in serum concentrations of n-PFOA and PFNA. a) 814 
Exposure to n-PFOA and incidence of natural menopause by racial/ethnic groups; b) Exposure to 815 

PFNA and incidence of natural menopause by racial/ethnic groups. Models were adjusted for age 816 
at baseline, study site, education, parity, BMI at baseline, physical activity, smoking status, and 817 
prior hormone use at baseline. P values for the interaction terms with race/ethnicity are 0.08 for 818 
n-PFOA and 0.01 for PFNA. 819 
 820 

Figure 2 Adjusted survival curves for natural menopause by participant clusters. The model was 821 
adjusted for age at baseline, race/ethnicity, study site, education, parity, BMI at baseline, 822 
physical activity, smoking status, and prior hormone use at baseline. The hazards ratio for low-823 

medium, medium-high, and high groups were 1.30 (95% CI: 0.97-1.74), 1.31 (95% CI: 0.94-824 
1.83), and 1.63 (95% CI: 1.08-2.45), respectively, compared to the low group. The predicted 825 
median age at natural menopause for women with low overall PFAS concentration profile was 826 
52.8 years, and 51.8 years, 52.0 years and 50.8 years for those with low-medium, medium-high, 827 

and high overall concentration patterns, respectively. 828 

 829 
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TABLES 830 

 831 

 832 
 833 
 834 

 835 
 836 

 837 
 838 
 839 

 840 
Table 1 Baseline (1999-2000) characteristics of multi-racial/ethnic midlife women by racial/ethnic groups in the Study of Women’s 841 
Health Across the Nation (n=1120). 842 

Baseline characteristic 

Total 

(n=1120) 

White 

(n=577) 

Black 

(n=235) 

Chinese 

(n=142) 

Japanese 

(n=166) 

p value
a
 

Median (IQR) 

or n (%) 

Median (IQR) 

or n (%) 

Median (IQR) 

or n (%) 

Median (IQR) 

or n (%) 

Median (IQR) 

or n (%) 

 

Age, years 48.9 (47.0-50.8) 48.7 (47.0-50.8) 48.7 (46.8-50.7) 49.3 (47.3-50.7) 49.2 (47.4-50.9) 0.23 

Study site      NA 

    Southeast MI 202 (18.0%) 90 (15.6%) 112 (47.7%) 0 0  

    Boston, MA 182 (16.3%) 118 (20.4%) 64 (27.2%) 0 0  

    Oakland, CA      242 (21.6%) 100 (17.3%) 0 142 (100%) 0  

    Los Angeles, CA 299 (26.7%) 133 (23.1%) 0 0 166 (100%)  

    Pittsburgh, PA 195 (23.4%) 136 (23.6%) 59 (25.1%) 0 0  

Educational attainment      <0.0001 

    ≤High school 197 (17.7%) 69 (12.0%) 65 (28.0%) 35 (24.7%) 28 (16.9%)  

    Some college 350 (31.4%) 174 (30.3%) 90 (38.8%) 28 (19.7%) 58 (34.9%)  

    College 271 (24.3%) 137 (23.9%) 41 (17.7%) 43 (30.3%) 50 (30.1%)  

    Post-college 296 (26.6%) 194 (33.8%) 36 (15.5%) 36 (25.3%) 30 (18.1%)  

Parity      <0.0001 

    Nulliparous 215 (19.2%) 146 (25.3%) 21 (8.9%) 21 (14.8%) 27 (16.3%)  
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    Parous 905 (80.8%) 431 (74.7%) 214 (91.1%) 121 (85.2%) 139 (83.7%)  

Prior hormone use  248 (22.1%) 151 (26.2%) 54 (23.0%) 21 (14.8%) 22 (13.3%) 0.0005 

Smoking status      <0.0001 

    Never smoker 720 (64.4%) 343 (59.5%) 134 (57.3%) 134 (94.4%) 109 (65.7%)  

    Former smoker 291 (26.0%) 187 (32.5%) 55 (23.5%) 7 (4.9%) 42 (25.3%)  

    Current smoker 107 (9.6%) 46 (8.0%) 45 (19.2%) 1 (0.7%) 15 (9.0%)  

Physical activity score 7.9 (6.6-9.0) 8.1 (6.9-9.3) 7.3 (6.4-8.6) 7.2 (6.0-8.5) 7.8 (6.7-8.9) <0.0001 

Body mass index, kg/m
2
 26.1 (22.7-31.5) 26.5 (22.9-31.7) 31.4 (26.5-37.9) 23.0 (20.9-25.0) 23.3 (21.5-26.2) <0.0001 

IQR, inter-quartile range. NA, not available. 843 
a
 Chi-square tests or Fisher’s exact tests were used for categorical variables; analysis of variance tests or Kruskal-Wallis tests were 844 

conducted for continuous variables. The significance level was set at 0.05.  845 
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Table 2 Hazard ratios (HR) (95% confidence intervals, 95% CI) for incident natural menopause with tertile changes and per doubling 846 
increase in serum concentrations of n-PFOS, Sm-PFOS, n-PFOA, PFNA, and PFHxS. 847 

PFAS 

Tertile of PFAS concentrations p value 

 for 

trend
c
 

Per doubling increase 

HR (95%CI) 

p 

value
c Tertile 1 

HR (95%CI) 

Tertile 2 

HR (95%CI)
 

Tertile 3 

HR (95%CI)
 

n-PFOS       

  Median (IQR), ng/mL 10.4 (8.1-12.2) 16.9 (15.6-18.7) 28.3 (24.2-37.8)    

  no. cases/person-years 183/1861 192/1883 203/1880    

  Model 1
a
 Ref 1.04 (0.85-1.27) 1.19 (0.97-1.47) 0.09 1.06 (0.96-1.18) 0.26 

  Model 2
b
 Ref 1.06 (0.86-1.31) 1.26 (1.02-1.57) 0.03 1.11 (0.99-1.23) 0.06 

Sm-PFOS       

  Median (IQR), ng/mL 3.8 (2.9-4.5) 7.1 (6.2-8.0) 13.0 (10.7-16.8)    

  no. cases/person-years 195/1842 194/1923 189/1858    

  Model 1
a 

Ref 1.03 (0.84-1.27) 1.12 (0.90-1.39) 0.30 1.04 (0.95-1.14) 0.37 

  Model 2
b
 Ref 1.11 (0.90-1.37) 1.27 (1.01-1.59) 0.03 1.08 (0.99-1.19) 0.09 

n-PFOA       

  Median (IQR), ng/mL 2.3 (1.8-2.8) 4.0 (3.5-4.5) 6.6 (5.6-8.6)    

  no. cases/person-years 183/1818 195/1936 200/1870    

  Model 1
a 

Ref 1.15 (0.92-1.42) 1.29 (1.03-1.61) 0.02 1.06 (0.95-1.19) 0.27 

  Model 2
b 

Ref 1.12 (0.90-1.40) 1.31 (1.04-1.65) 0.01 1.11 (0.99-1.24) 0.07 

PFNA       

  Median (IQR), ng/mL 0.3 (0.3-0.4) 0.5 (0.5-0.6) 0.9 (0.7-1.0)    

  no. cases/person-years 168/1930 181/1679 229/2015    

  Model 1
a 

Ref 1.18 (0.95-1.46) 1.21 (0.99-1.49) 0.07 1.13 (1.02-1.25) 0.02 

  Model 2
b 

Ref 1.18 (0.95-1.47) 1.20 (0.97-1.49) 0.10 1.12 (1.01-1.24) 0.04 

PFHxS       

  Median (IQR), ng/mL 0.8 (0.6-1.0) 1.5 (1.3-1.6) 3.0 (2.3-4.5)    

  no. cases/person-years 203/1957 168/1728 207/1939    

  Model 1
a 

Ref 0.92 (0.75-1.13) 1.15 (0.94-1.41) 0.19 1.04 (0.97-1.13) 0.27 

  Model 2
b
 Ref 1.05 (0.84-1.30) 1.11 (0.90-1.37) 0.33 1.03 (0.95-1.11) 0.50 

a
 Model 1 was adjusted for age at baseline, race/ethnicity, and study site. 848 

b
 Model 2 was additionally adjusted for education, parity, BMI at baseline, physical activity, smoking status, and prior hormone use at baseline.  849 

c The significance level was set at 0.05.  850 
851 
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Table 3 Pooled hazard ratios (HR) (95% confidence intervals, 95% CI) for incident natural menopause with tertile changes and per 852 
doubling increase in serum concentrations of n-PFOS, Sm-PFOS, n-PFOA, PFNA, and PFHxS with 10 imputations.  853 

PFAS 

Tertile of PFAS concentrations P value 

 for 

trend
c 

Per doubling 

increase 

HR (95%CI) 

P value
c
 Tertile 1 

HR (95%CI) 

Tertile 2 

HR (95%CI)
 

Tertile 3 

HR (95%CI)
 

n-PFOS       

  Median (IQR), ng/mL 10.4 (8.1-12.2) 16.9 (15.6-18.7) 28.3 (24.2-37.8)    

  no. cases/person-years
a 

315/1487 322/1499 344/1483    

  Model 1
b 

Ref 0.98 (0.84-1.16) 1.23 (1.05-1.46) 0.01 1.10 (1.01-1.20) 0.02 

  Model 2
c 

Ref 0.99 (0.84-1.17) 1.26 (1.06-1.49) 0.01 1.11 (1.02-1.21) 0.02 

Sm-PFOS       

  Median (IQR), ng/mL 3.8 (2.9-4.6) 7.2 (6.2-8.1) 13.1 (10.9-17.2)    

  no. cases/person-years
a 

320/1496 331/1510 330/1463    

  Model 1
b 

Ref 1.01 (0.86-1.19) 1.20 (1.01-1.43) 0.04 1.09 (1.01-1.17) 0.02 

  Model 2
c 

Ref 1.02 (0.86-1.20) 1.25 (1.04-1.50) 0.01 1.11 (1.03-1.20) 0.009 

n-PFOA       

  Median (IQR), ng/mL 2.3 (1.8-2.8) 4.0 (3.5-4.5) 6.6 (5.6-8.6)    

  no. cases/person-years
a 

313/1448 334/1553 334/1468    

  Model 1
b 

Ref 1.11 (0.94-1.30) 1.15 (0.98-1.35) 0.06 1.10 (1.01-1.20) 0.03 

  Model 2
c 

Ref 1.14 (0.96-1.35) 1.23 (1.03-1.47) 0.02 1.10 (1.01-1.21) 0.02 

PFNA       

  Median (IQR), ng/mL 0.3 (0.3-0.4) 0.5 (0.5-0.6) 0.9 (0.7-1.0)    

  no. cases/person-years
a 

331/1522 295/1362 374/1585    

  Model 1
b 

Ref 1.00 (0.85-1.19) 1.14 (0.96-1.34) 0.12 1.07 (0.99-1.16) 0.10 

  Model 2
c 

Ref 0.98 (0.82-1.18) 1.11 (0.94-1.33) 0.20 1.05 (0.97-1.14) 0.23 

PFHxS       

  Median (IQR), ng/mL 0.8 (0.6-1.0) 1.5 (1.3-1.6) 3.0 (2.3-4.5)    

  no. cases/person-years
a 

337/1592 299/1324 344/1553    

  Model 1
b 

Ref 1.08 (0.90-1.28) 1.13 (0.97-1.35) 0.10 1.05 (0.99-1.12) 0.09 

  Model 2
c 

Ref 1.02 (0.86-1.23) 1.11 (0.94-1.31) 0.24 1.05 (0.98-1.12) 0.15 
a
 Averaged no. cases and person-years from 10 imputations. 

b 
Model 1 was adjusted for age at baseline, race/ethnicity, and study site. 854 

b
 Model 2 was additionally adjusted for education, parity, BMI at baseline, physical activity, smoking status, and prior hormone use at baseline.  855 

c The significance level was set at 0.05. 856 
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Figure 1b 861 
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Figure 2 864 
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