People in Japan have the longest life expectancy at birth in the world. Here, we compile the best available evidence about population health in Japan to investigate what has made the Japanese people healthy in the past 50 years. The Japanese population achieved longevity in a fairly short time through a rapid reduction in mortality rates for communicable diseases from the 1950s to the early 1960s, followed by a large reduction in stroke mortality rates. Japan had moderate mortality rates for non-communicable diseases, with the exception of stroke, in the 1950s. The improvement in population health continued after the mid-1960s through the implementation of primary and secondary preventive community public health measures for adult mortality from non-communicable diseases and an increased use of advanced medical technologies through the universal insurance scheme. Reduction in health inequalities with improved average population health was partly attributable to equal educational opportunities and financial access to care. With the achievement of success during the health transition since World War 2, Japan now needs to tackle major health challenges that are emanating from a rapidly ageing population, causes that are not amenable to health technologies, and the effects of increasing social disparities to sustain the improvement in population health.

Introduction
Japan has caught the attention of the rest of the world because of the tremendous success it has achieved in improving the health status of its population in the 20th century. The improving health status of the Japanese population was noted as early as the 1920s when infant mortality rates started to fall. Increased child survival rates were partly possible then through the enhanced education and increasing literacy of mothers—in the early 20th century, with the provision of free compulsory education, almost all girls attended primary schools. However, after World War 2, Japan showed its strength in improving the health of its population. The country was devastated after its defeat. Per person gross domestic product was roughly international $3400 in 1950 (table), which is similar to that in India today (Gakidou E, Institute for Health Metrics and Evaluation, personal communication). The health status of the population was also poor—in 1947, male life expectancy in Japan at birth was only 50 years and female life expectancy was 54 years.

Rapid economic growth started in the late 1950s and life expectancy started to increase at an unprecedented rate. Within a few decades Japan had caught up with and eventually surpassed many other developed nations (figure 1; figure 2). Since 1986, Japan has ranked first in terms of female life expectancy at birth, with the highest ever recorded worldwide life expectancy of 86 years in 2009. The country had also maintained the best healthy life expectancy at birth in 2007 (73 years for men and 78 years for women). With a low rate of total fertility, the proportion of people aged 65 years and older has quadrupled during the past 60 years to 23% in 2010, making the Japanese people the oldest population in the world. Despite the ageing population, Japan’s health expenditure is only 8.5% of gross domestic product, which put it in 20th position in terms of expenditure among the countries of the Organisation for Economic Co-operation and Development in 2008.

What has made the population of Japan healthy? How has Japan achieved the longest life expectancy at birth worldwide? Will the Japanese population continue to be

Key messages
- The early establishment of free compulsory primary education and a social insurance system before World War 2 and universal health insurance coverage in 1961 enabled the provision of equal opportunities for health promotion.
- Disparities in health across regions and socioeconomic groups are fairly small in this homogeneous and egalitarian society and have narrowed over time with increased average population health. However, the downward trend in socioeconomic inequality in health has been less obvious since the 1990s, which has coincided with income inequality gradually increasing.
- Japanese life expectancy at birth increased rapidly in the 1950s and early 1960s as a result of decreased mortality rates for communicable diseases in children and young adults, which was largely attributable to the government’s strong stewardship in investing in key interventions for public health.
- Stroke mortality reduction was one of the major drivers of the sustained extension of Japanese longevity after the mid-1960s. The control of blood pressure improved through population-based interventions such as salt reduction campaigns and an increased use of cost-effective health technologies such as antihypertensive drugs under universal health insurance coverage.
- Further progress in Japan’s longevity primarily depends on prevention of major risk factors for non-communicable diseases such as tobacco smoking and high blood pressure and several cardiovascular risks. Prevention of premature mortality from suicide is also a major challenge for population health.
- A rapidly ageing population as a result of improved survival is challenging Japan’s health system in terms of its financing and quality of care. An effective link between medical and long-term care through both top-down and bottom-up approaches is necessary to enhance the welfare of the population throughout the country.
healthy in the future? Understanding what has contributed to making the Japanese population healthy in such a fairly short period is important for global health policy, particularly for countries struggling to improve health. Several aspects of the Japanese lifestyle provide appealing explanations for the first two questions. First, Japanese people give attention to hygiene in all aspects of their daily life. This attitude might partly be attributable to a short period is important for global health policy, and the diet of the Japanese population has improved in tandem with economic development over the five past decades.15,16 Japanese life. Japan is now struggling to deal with several major health challenges, which are partly attributable to the striking changes taking place in the demographic and social structures of its rapidly maturing society. The population is projected to shrink from 128 million in 2005 to 95 million in 2050, while the proportion of people aged 65 years or older is expected to rise to 40%. Since the early 1990s, prolonged political stagnation and economic recession have helped induce a feeling of increasing inequality among this ageing population. Moreover, overweight or obesity is an increasingly serious problem, emanating from a shift towards a western-style diet and sedentary lifestyle. About a third of men aged 30–59 years are overweight or obese, although the prevalence of adult obesity (4%) is well below that in other developed nations.
Figure 2: Trends in the probability of death at age younger than 5 years (A), 15–60 years (B), and 60–75 years (C) in Japan and selected countries during 1950–2008

Data from University of California at Berkeley and Max Planck Institute for Demographic Research.¹
Furthermore, the working life of typical salaried workers in Japan seems anything but healthy—often working from early in the morning until late in the evening, 6 days a week. To relieve daily stress, some of them resort to negative health behaviours such as smoking tobacco and getting drunk after work, or even suicide in extreme cases. Death from overwork is also a serious social problem. In the context of these demographic and social challenges, what are the best strategies for Japan to protect the health and wellbeing of its ageing population?

In this first report in the *Lancet* Series, we focus on the improvements in the health of the Japanese population after World War 2. We review and analyse the best available data and evidence for population health in Japan to explore what has made the Japanese people healthy (panel 2). We provide an overview of Japan’s population health in terms of the rates and distribution of mortality, and assess possible factors that might account for the longevity of the people in Japan. We also draw attention to the future challenges for Japan in controlling risk factors and social determinants to further enhance the health status of its population. We conclude with the global lessons that can be learned from Japan’s experience over the past 50 years.

Mortality rates in infants and young adults

Most of the increase in longevity in Japan in the past 60 years happened during 1950–65. Life expectancy at birth increased by 10·1 years in men and 11·9 years in women during this time, and these increases accounted for almost 40% of the total increase during 1950–2010 (table). Much of the increase in longevity during this early period was indicative of an enormous reduction in mortality rates in children younger than 5 years and young adults. In 1950, the probability of death before the age of 5 years was greater than 80 per 1000 livebirths and was very high compared with the probabilities of death in other developed countries, but fell to about 20 per 1000 livebirths by 1965 (figure 2). The probability of death in individuals aged 15–60 years was also much higher than in other developed countries, but fell and was on a par with probabilities of death in some developed countries by 1965. Consequently, in the 1950s and early 1960s, lower mortality rates in children younger than 5 years accounted for an increase in male life expectancy at birth of 4·1 years and female life expectancy at birth of 4·3 years, whereas reduced mortality rates in adults younger than 60 years accounted for increases in life expectancies of 3·1 years in men and 4·0 years in women (webappendix p 3).

The health of children younger than 5 years improved greatly in 1950–65 through the control of intestinal or respiratory infections and vaccine-preventable diseases that occurred with a drop in the number of neonatal deaths. The age-standardised mortality rate for communicable diseases, other than tuberculosis, decreased by 90% in children younger than 5 years (webappendix p 7); the age-standardised mortality rates for neonatal illnesses fell from 990 per 100 000 boys to 173 per 100 000 and from 772 per 100 000 girls to 133 per 100 000 during 1953–70 (webappendix p 7). Reduction in mortality rates for infectious diseases, other than tuberculosis, in children younger than 5 years accounted for increases of 2·2 years in male life expectancies at birth and 2·4 years in female life expectancies at birth. The reduction in the mortality rate for neonatal illnesses increased life expectancy by 1·0 year in both sexes (webappendix p 3).

The effect of a reduction in the mortality rate for tuberculosis on the extension of life expectancy at birth in young adults was equivalent to the reduction in mortality rate for other infectious diseases in children younger than 5 years. A 95% reduction in the number of deaths from tuberculosis in adults (aged 15–59 years) in 1950–65 (webappendix p 8) contributed to the increase in life expectancy of 2·4 years in men and 2·3 years in women (webappendix p 3).

These reductions in mortality rates in 1950–65 indicate increasing investment in the public health sector during
demilitarisation and democratisation in the early post-war years in Japan. 32 health laws were enacted during the first decade after the war.25 The Japanese Government collaborated with the American occupation forces in scaling up public health interventions at the community level.26 Water supply coverage and key interventions for maternal and child health rapidly improved after the war (webappendix p 10). The effective provision of essential interventions for child survival, such as access to safe drinking water and institutional delivery, was mediated through a high level of maternal education and health facility provision that had already been achieved before the war.25 Moreover, free treatment for tuberculosis started in 1952,28 and included systematic screening with chest radiography and the use of streptomycin. The incidence of tuberculosis decreased sharply at a yearly rate of 11% between 1961 and 1977.29 Additionally, as elaborated in the second report in this Lancet Series,30 health insurance coverage, which was applied to about 70% of the population before World War 2, ensured access to new interventions such as drugs and vaccines for tuberculosis.

Mortality rates for non-communicable diseases

Even after communicable diseases had been successfully tackled, life expectancy of Japanese people continued to increase steadily. Male and female life expectancies at birth, respectively, increased by 5.7 years and 5.9 years during 1965–80, 3.0 years and 4.0 years during 1980–95, and 3.3 years and 2.9 years during 1995–2008 (figure 1). The risks of people dying at the ages of 15–60 years and 60–75 years fell, becoming one of the lowest in the developed world by 1980 (figure 2).

In 1950, mortality rates for cancers and ischaemic heart disease were already quite low in Japan compared with those in other developed countries, whereas the stroke mortality rate was very high. The age-standardised mortality rates for men with cancers and other neoplasms, ischaemic heart disease, and stroke were 163.8 per 100 000, and 363.1 per 100 000, respectively, and for women 137.8 per 100 000, 124.8 per 100 000, and 326.5 per 100 000, respectively (webappendix pp 11–13). The low mortality rates for cancers and ischaemic heart disease in the early post-war years is one of the features of the health transition in the Japanese people. Although it is not known why the mortality rates for non-communicable diseases, other than stroke, were already low at this time, the reasons might be a favourable lipid profile and glucose metabolism, a generally low body-mass index, and other lifestyle factors relating to diet and low to moderate alcohol intake.31 Indeed, the results of the Ni-Hon-San study32,33 and the Honolulu Heart Program34 showed that Japanese Americans (first-generation immigrants) were more likely to develop ischaemic heart disease and less likely to develop stroke than were Japanese people living in Japan, drawing attention to the importance of lifestyle rather than genetic background in determining the risk of disease.32,33 The sustained increase in life expectancy at birth after the mid-1960s was largely attributable to reduced mortality rates for non-communicable diseases (webappendix p 4). From 1965 to 1980, reduced mortality rates in adults with these diseases had a substantial effect on increasing life expectancy. Reduction in the mortality rate for stroke in people aged 60–74 years increased male life expectancy at birth by 1.1 years and female life expectancy at birth by

Panel 2: Data sources and methods

Mortality trends

To assess trends in mortality rates in Japan since 1950, we used life tables and individual cause of death data that were obtained from different sources (Naghavi M, unpublished).35,36 Life tables were obtained from the human mortality database at the University of California, Berkeley, CA, USA, and the Max Planck Institute for Demographic Research, Rostock, Germany.37 We also obtained the individual cause-of-death data for 1950–2008 from the Ministry of Health, Labour and Welfare of Japan,38 and the Institute for Health Metrics and Evaluation at the University of Washington, Seattle, WA, USA (Naghavi M, unpublished).39 Japan has had a complete vital registration system since 1899. Although the gold standard is cause of death information from vital registration, a potential bias could be attributable to the inclusion of ill-defined codes (eg, cardiac arrest, heart failure, and senility) and unknown causes. With the algorithm developed by Naghavi and colleagues,32 ill-defined codes and unknown causes on death certificates were redistributed and the consistency across revisions of the International Classification of Diseases and Related Health Problems (ICD) was checked. We assessed the causes that are amenable to medical care, which was originally proposed by Nolte and McKee,39 extracting the major causes of death from the list (webappendix p 1), because the ICD avoidable causes of death were no longer applicable to our analysis after redistribution of ill-defined and unknown causes.

Health disparities

We assessed the trend in regional disparities in longevity with data for municipal life expectancy at birth at 5-year intervals during 1985–2005.24 Municipalities are the smallest administrative units for which life expectancy data at birth are available in Japan. Sample sizes were 3307–3354 in 1985–2000 and 1963 in 2005. The substantial drop in the sample size in 2005 was due to the municipal mergers that were undertaken after 2000. We assessed temporal trends in socioeconomic disparities in the age-standardised all-cause mortality rate in the working population (aged 30–59 years), using vital records from 1980 to 2005. We used occupational status as a measure of the socioeconomic status of individuals. We standardised death rates per 100 000 at 5-year intervals using the Japanese population in 1985 as a standard population.40 We obtained population data according to occupational status from tables reported in the national census that is undertaken every 5 years.41,42
A population-wide approach with easy access to primary care as a result of universal health coverage has proved to be especially successful in reducing the incidence and prevalence of stroke. The national government launched a strategy for the prevention and control of hypertension and stroke in 1969 and applied the strategy nationwide in 1982. This strategy included the measurement of blood pressure for screening high-risk populations, provision of national health insurance coverage for the clinical treatment of hypertension, and population-wide health education for reduction of dietary salt intake and improvement of other lifestyle-related factors. On the basis of this strategy, occupational health acts were enacted in 1972 and community health acts in 1982 to mandate the provision of programmes for primary and secondary prevention, including annual health check-ups. More than 70% of Japanese men aged 45–54 years have some form of health check-up at least once a year.

A reduction in dietary salt intake has been very important for the health improvement of the Japanese population. Average salt intake among middle-aged men decreased from 30 g/day in the 1950s to 14 g/day in the 1980s. Some aspects of a westernised Japanese diet, such as the improved preservation of food might have contributed to the reduction in dietary sodium consumption. These results partly support the claim that both a population-based approach and subsequent advances in modern medical technologies with the scale-up of their access have made a substantial contribution to the improved life expectancy of the Japanese population.

Cultural background
Japan’s success in terms of the increased life expectancy of its population is unlikely to have resulted solely from the achievement of good access to health care. Instead, other cultural background factors might be involved. Marmot and Smith hypothesised that the way Japanese people relate to each other and groups might partly account for the longevity of the Japanese population. Results of previous studies have lent support to this hypothesis because strong ties in Japanese communities seem to be associated with improved outcomes in mental health, dental health, and physical functioning, while buffering against the adverse effects of income inequality. More than 50 years of peace and political stability might also have contributed indirectly to Japan’s success in population health.

Health inequality
The homogeneous and egalitarian nature of Japanese society is shown in terms of strong educational policies, formal and informal regulations that ensure employment security, and universal access to health care. Disparities in life expectancy at birth between prefectures had started to decrease before World War 2 and continued to decline steadily until they were very low in the 1970s. Indirect evidence suggests that people living in prefectures in the northeast of Japan might have shorter life expectancies than do those living in the prefectures in the southwest. This geographical gradient might be attributable to differences in risk profiles such as a higher prevalence of hypertension and diabetes in the northeastern prefectures that are related to lifestyles, health-care resources, and socioeconomic status. Our additional analysis showed that the variability in life expectancy at birth across municipalities remained low from 1985 to 2005—standard deviations of longevity changed by about 1·0 for male life expectancy and 0·8 for female life expectancy, and were small compared with 2·0–2·5 and 1·5–2·0, respectively, for counties in the USA.

Gaps in all-cause mortality rates for men in different occupational groups were reduced from the early 1960s to the late 1980s, except for workers in the service industry and those working in the agriculture, fishery, and forestry industries. An additional analysis we undertook showed that the downward trend in socioeconomic disparities in mortality rates continued in the early 1990s, and the mortality rates for managers and professionals rose in the late 1990s, which coincided with the Asian financial crisis in 1997 (webappendix p 14).

The rapid reduction in mortality rates in Japan might have been partly attributable to the narrowing gap in income during the period of high economic growth in the 1960s and 1970s. By the 1990s, more than 90% of
people believed that they were middle class. However, this belief might no longer be applicable. During the past two decades, Japan has had economic recession. Income inequality has increased to match the average for the member countries of the Organisation for Economic Co-operation and Development, which accords with reports suggesting widening health disparities in recent years, despite the decreasing trend and fairly small health disparities until the 1990s.

Challenges for Japanese population health
Increase life expectancy
Cancer, heart disease, and cerebrovascular disease are the three leading causes of death in Japan, accounting for more than 50% of the risk that a person at age zero will die in the course of their lifetime. To strengthen the extension of Japanese life expectancy, mortality from these non-communicable diseases must be prevented. Although the use of advanced medical technology is a promising strategy for improving survival, modifying the profile of the underlying population risk factors is also important to ensure a long-term increase in population health.

A comparative assessment of preventable risk factors in Japan showed that tobacco smoking and high blood pressure were the two distinctive determinants of adult mortality from non-communicable diseases in 2007 (figure 3). Of 834 000 deaths from non-communicable diseases and injuries, the exposure to tobacco smoking in terms of smoking impact ratios accounted for 129 000 deaths, whereas high blood pressure accounted for 104 000 deaths. A similar estimate of the number of avoidable deaths from tobacco use was reported in a pooled cohort study of the current smoking status. The comparative risk assessment also showed that male life expectancy at birth would have been extended by 1·8 years and female life expectancy at birth by 0·6 years if all adults abstained from smoking; and by 0·9 years for both sexes if the systolic blood pressure was reduced to a pressure that resulted in minimum harmful effects in the population.

Tobacco smoking has a striking effect on population health in Japan. Despite its well known harmful effects, smoking is still commonplace—about 50% of young men smoke—and the rate has been gradually increasing among young women. The Health Promotion Law was enacted in 2003 to support the prevention of smoking and passive smoking in public places. Although compliance with this national tobacco control legislation has improved, disparities still exist in the progress of tobacco control policy across local governments, and no mandatory clean air law has been passed nationally. The retail price of the most popular brand of cigarettes was only US$3·3 in 2008, much lower than the average price in high-income countries ($5–0). These circumstances, favouring smokers, show to some extent that tobacco tax was one of the most important sources of revenue for the government in the past. Further, the rate of mortality attributable to

![Figure 3: Deaths from non-communicable diseases and injuries that were attributable to risk factors in Japan in 2007](https://www.thelancet.com)

(A) Both sexes. (B) Men. (C) Women. Data from Shibuya. PUFA=polyunsaturated fatty acids. SFA=saturated fatty acids. HTLV-1 =human T-lymphotropic virus type 1. TFA=trans fatty acids.
this risk factor has increased in recent decades because of the accumulation of negative health effects in the older population.24 Without effective policy interventions, the rate of mortality from tobacco smoking will continue to rise in the coming decades. A renewed emphasis on tobacco control, especially through its pricing mechanism, is necessary to discourage the consumption of tobacco products and promote smoking cessation.

Despite the decline in population blood pressure in the past four decades, the management of blood pressure is still not satisfactory in Japan. Blood pressure is effectively controlled with drugs in less than a fifth of the population with hypertension.3 Additional efforts in the community and clinical practice in terms of early detection, lifestyle modification, and the effective treatment coverage of high blood pressure have the potential to extend life expectancy through a reduction in the mortality rates for cardiovascular diseases. In relation to this, strengthening adherence to standard clinical guideline recommendations5 in general practice through continued medical education could be the key to increasing the effective coverage of outpatient services and to ensure the compliance of patients, as discussed in the third report in this Series.14

A large improvement in population health is still possible through the reduction of several risk factors for non-communicable diseases, such as high concentrations of blood glucose, physical inactivity, alcohol use, overweight and obesity, and high dietary salt intake. The control of several cardiovascular risks could also increase longevity for both sexes by reducing the risk of death.15 A comprehensive prevention package is needed to lower the combined effects of several risk factors or metabolic syndrome, including the improvement of lifestyles and diet, and to increase the coverage of antihypertensive drugs. This package would be particularly relevant in the current obesity-friendly environment in Japan because, although lifestyle changes generally seem to matter more than do genetic factors, evidence suggests that the Japanese might be genetically more susceptible to being overweight or to developing diabetes mellitus.15,21,22 Since 2008, in response to soaring health costs, the government has made it obligatory for people aged 40–74 years to have an annual check-up and a health education intervention that is focused on the prevention of metabolic syndrome,23 although the effectiveness of health check-ups is not known in Japan.

Japan, similar to other east Asian countries, has many cancer-associated deaths from infectious causes.3 Infections with hepatitis C virus and Helicobacter pylori account for many of the deaths from cancer.2 In 2007, \textit{H pylori} infection was the cause of 31 000 deaths from gastric cancer. Infection with hepatitis C virus was associated with 23 000 deaths from liver cancer, with clustering in people aged 70–79 years—ie, individuals born in the 1930s. Chronic infection with hepatitis C virus plays a major part in the cause of hepatic carcinoma in Japan.2 A decreasing prevalence of infections with hepatitis C virus after the birth cohort of about 1935 suggests that the disease burden of this virus will decrease in the future. The fairly high prevalence of \textit{H pylori} is similar to that of stomach cancer.13 However, a fall in the prevalence of \textit{H pylori} infection has been noted in people born after 1955,40 which indicates a future reduction in the burden of gastric carcinoma attributable to this risk factor in Japan.

Prevention of suicide

Suicide prevention is another challenge for population health in Japan. Suicide rates contribute to premature mortality rates and profoundly affect society—by 2006, an estimated 3 million people had lost a loved one to suicide in Japan.41 The number of suicides has been greater than 30 000 every year since 1998, when a sharp rise was recorded from the previous year (figure 4).42 Roughly 70% of people who commit suicide are men and 50% are unemployed, and 40% of suicides in men are in individuals aged 45–64 years.63 Major motives for suicide among working age men include psychiatric disorders such as depression, business failure, unemployment, and debts.64

The trends in suicide mortality rates might be associated with the increasing economic and social insecurity resulting from a stagnating Japanese economy since the beginning of the 1990s, especially in response to the Asian financial crisis in 1997.65 The unemployment rate in the working age male population rose from 2·0% in 1991 to 3·4% in 1997 and then up to 5·5% in 2003.66 Additionally, the work environment has greatly changed because of the easing in employment contract regulations in the late 1990s.67 The employment pattern has shifted from the permanent employment that underpinned high economic growth in the past. The percentage of non-regular workers among male employees has increased from 9% in 1991 to about 19% in the late 2000s.68 The government has responded to the suicide epidemic with a comprehensive strategy (ie, the Comprehensive Suicide Prevention Initiative69) that follows on from the Basic Act for Suicide Prevention, which was enacted in 2006, although its effect is not yet notable.

Reduction in morbidity and disability

Do Japanese people not only live longer but better in terms of their physical and psychological functioning? Globally, evidence suggests an increasing prevalence of morbidity in accord with the ageing population, while disability has been falling.70 In Japan, research suggests that trends in disability prevalence differ between the young elderly (65–74 years) and the oldest old (≥85 years). For example, falling disability rates for those aged 65 years and older were recorded during the 1990s in a nationally representative sample of the Japanese elderly
Figure 4: Deaths from suicide by age in Japan, 1947–2009

(A) Men. (B) Women. Data from the Ministry of Health, Labour and Welfare.¹²
population, whereas increasing rates were reported for centenarians in other studies. National health interview survey data have been used in studies to show that the functional health status of the Japanese population deteriorated during 1995–2004 and morbidity rates decreased from 1984 until 1995, but the trend reversed in the late 1990s until 2004. However, self-reported data were used for a few of the health domains in these studies. The survey questions and response categories are not detailed enough to obtain a reliable measure of the non-fatal health status of the population. Therefore, the national information infrastructure needs to be urgently improved to gather valid, reliable, and comparable data for the rates of disability and morbidity in the Japanese population.

Medical and long-term care

An unprecedented and unexpectedly steep reduction in mortality rates in older age groups is contributing to the rapid increase in remaining life expectancy in Japan. The country has shown the most rapid increase in remaining life expectancy over the past six decades. For Japanese women, life expectancy at age 60 years increased from 16.4 years in 1950 to 28.1 years in 2007 (webappendix p 2), while life expectancy at age 80 years also increased substantially from 5.5 years to 11.4 years (webappendix p 2). The stagnating rate of increase in remaining life expectancy in other developed countries during the past two decades draws attention to Japan’s exceptional improvement in life expectancy at older ages.

The nature of health care is also changing in this ageing society. The proportion of deaths resulting from illnesses that are no longer amenable to medical care, and Japanese society’s concern about health have been increasing. A close link between medical care and long-term care should be further promoted to enhance population wellbeing and will be elaborated further in the fourth report in this Series.

Global lessons

The experience of post-war Japan suggests that countries with low socioeconomic development can achieve progress in terms of their population health. Japan’s national income was low in the beginning of the 1950s, when a tremendous increase in life expectancy at birth started largely as a result of the scale-up of the coverage of essential child survival interventions and provision of free treatment for tuberculosis. The main driving force for improved population health during this period was undoubtedly the strong stewardship of the new Japanese Government in implementing major structural reforms in the health sector and placing priority on investment in key interventions for public health in the early phase of economic growth.

The path towards universal coverage should be encouraged globally. Stroke mortality reduction was a major determinant of the sustained extension of the longevity of the Japanese population after the mid-1960s. The control of blood pressure improved with population-based interventions such as salt reduction campaigns and an increased availability of anti-hypertensive drugs through universal health insurance coverage. A reduction in mortality rates can be brought about by the interplay of improvements in both medical care and other societal factors (eg, income, education, nutrition, and sanitation). In turn, this reduction can vary by individual, place, and disease type. A recent assessment of worldwide adult mortality rates identified three important factors—socioeconomic development, increased access to health care and the progress in health technologies, and the diseases of affluence. Universal coverage is one of the most important factors and is essential in enhancing access to cost-effective health care at affordable prices that has indirectly contributed to the longevity through reduced cardiovascular care and other societal factors.

Health disparities across regions and socioeconomic groups are quite small in this egalitarian society and have narrowed over time with increasing average population health. The establishment of free compulsory primary education early in the 20th century, a social insurance system before the war, and universal health insurance coverage in 1961 enabled the provision of equal opportunities for health promotion. These experiences confirm that working on population averages is not enough. Countries that have the least regional or socioeconomic disparity in longevity tend to be those in which the populations enjoy the longest life expectancies in the world. Globalisation and rising economic disparity contribute to health inequalities and are increasingly causes for concern in many countries, and Japan is no exception. The goals of a health system include not only improvement of the averages but also reduction of health inequalities to a minimum. By doing so, countries could accomplish what Japan has achieved.

Japan now has challenges for population health that many other countries will have soon. Further progress in terms of longevity in Japan is dependent on the prevention of major risk factors for non-communicable diseases such as tobacco smoking, high blood pressure, and metabolic syndrome. Prevention of premature mortality from suicide is another major issue requiring a comprehensive societal response that involves, for example, stabilisation of the labour market, and improvement of the promotion and provision of mental health services. The rapidly ageing population as a result of improved survival also challenges financing and quality of care in Japan’s health system.
magnitude 9.0 Great East Japan Earthquake on March 11, 2011, might also affect future population health, which will need to be monitored and assessed. How should Japan respond to these challenges? Policy options to tackle the challenges are addressed in the other five reports in this Lancet Series on Japan, which we hope will serve as a guide that will help other countries to develop policies that fit their specific circumstances. Indeed, this Series will draw attention to how Japan is unique in overcoming different and changing population health challenges in the past 50 years to achieve population longevity, and how the country’s experience can be an important resource for the global health community and could transcend geographical, social, cultural, and political boundaries for understanding and helping enhance population health worldwide.

Contributors
All authors contributed to the study concept, design of the report, data analysis, and interpretation of the results. NI, ES, NK, and KS wrote the first draft. MI, HI, and ME did a systematic review. NI, ES, NK, HI, SI, TS, A5, and KS contributed to drafting and critical revision. All authors contributed to the discussion and have seen and approved the final version of the report.

Conflicts of interest
We declare that we have no conflicts of interest.

Acknowledgment
This work is in partly funded by the generous support from the Bill & Melinda Gates Foundation and the China Medical Board, a Grant-in-Aid for Scientific Research from the Ministry of Health, Labour and Welfare (H22-sesaku-shitet-013), and a Grant-in-Aid for Scientific Research (grant category B) from the Japan Society for the Promotion of Science (number 22•9010). The views and opinions expressed by the authors are provided in their personal capacity and are their sole responsibility. We thank Hironori Imano and Zenaro Yamagata for their valuable contributions; Amarjargal Dagvadorji, Jinghua Li, Hatoko Sasaki, Mengru Wang, and Wendy Marzane Virenia Wurks for their technical support; and Tomoko Suzuki and Tadashi Yamamoto for their administrative support.

References

