Fertilizer use responsible for increase in nitrous oxide in atmosphere

University of California, Berkeley, chemists have found a smoking gun proving that increased fertilizer use over the past 50 years is responsible for a dramatic rise in atmospheric nitrous oxide, which is a major greenhouse gas contributing to global climate change.

Climate scientists have assumed that the cause of the increased nitrous oxide was nitrogen-based fertilizer, which stimulates microbes in the soil to convert nitrogen to nitrous oxide at a faster rate than normal.

The new study, reported in the April issue of the journal Nature Geoscience, uses nitrogen isotope data to identify the unmistakable fingerprint of fertilizer use in archived air samples from Antarctica and Tasmania.

“Our study is the first to show empirically from the data at hand alone that the nitrogen isotope ratio in the atmosphere and how it has changed over time is a fingerprint of fertilizer use,” said study leader Kristie Boering, a UC Berkeley professor of chemistry and of earth and planetary science.

“We are not vilifying fertilizer. We can’t just stop using fertilizer,” she added. “But we hope this study will contribute to changes in fertilizer use and agricultural practices that will help to mitigate the release of nitrous oxide into the atmosphere.”

Since the year 1750, nitrous oxide levels have risen 20 percent – from below 270 parts per billion (ppb) to more than 320 ppb. After carbon dioxide and methane, nitrous oxide (N2O) is the most potent greenhouse gas, trapping heat and contributing to global warming. It also destroys stratospheric ozone, which protects the planet from harmful ultraviolet rays.

Not surprisingly, a steep ramp-up in atmospheric nitrous oxide coincided with the green revolution that increased dramatically in the 1960s, when inexpensive, synthetic fertilizer and other developments boosted food production worldwide, feeding a burgeoning global population.

Tracking the origin of nitrous oxide in the atmosphere, however, is difficult because a molecule from a fertilized field looks identical to one from a natural forest or the ocean if you only measure total concentration. But a quirk of microbial metabolism affects the isotope ratio of the nitrogen the N2O microbes give off, producing a telltale fingerprint that can be detected with sensitive techniques

UC Berkeley

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s