Oh darn! Even cold-water corals grow better with more CO2

Those poor dioxycarbophobic fear merchants just can’t take a trick, can they?

Can Cold-Water Corals Adapt to Climate Change?

ScienceDaily (Feb. 16, 2012) — By absorbing about a third of human-made carbon dioxide (CO2), the ocean decelerates global warming. However, when dissolved in seawater, CO2 reacts to produce carbonic acid, causing seawater pH to decrease. It also diminishes the concentration of carbonate ions, thereby putting organisms forming their shells and skeletons from calcium carbonate at risk. Apart from plankton, algae, mussels and snails, stony corals are among those particularly endangered: Their skeletons consist of aragonite, the most soluble form of calcium carbonate.

“Model calculations indicate that if CO2-emissions continue at current rates, more than 70 percent of cold-water coral reefs known today will be exposed to conditions corrosive for calcium carbonate by the end of this century. It seemed obvious, therefore, that these corals will be among the first to suffer from the effects of ocean acidification,” explains Ulf Riebesell, Professor of Biological Oceanography at GEOMAR. “But our results do not support this,” adds the Kiel marine biologist Dr. Armin Form. “For the first time ever, we showed that the globally widespread species Lophelia pertusa keeps growing even in corrosive waters if given the time to adjust to the new conditions.” Armin Form and Ulf Riebesell now presented their results in the journal Global Change Biology.

In a first experiment, the scientists kept selected coral branches in bioreactors for a week at a range of CO2-levels as projected to occur during the next decades and centuries. The temperature was held constant and the corals were fed properly. A second experiment under similar conditions took six months. “The short-term experiment suggests that even a pH decrease of only 0.1 units results in a decline of growth by about one third compared to control conditions,” Dr. Form summarises. “But the long-term experiment did not support this trend — to our own surprise and that of the marine science community. The corals seem to get used to the new conditions. Maybe the acidified water even provoked a counter-reaction, because on average the corals under high CO2 conditions even grew faster compared to those in the controls.

2 responses to “Oh darn! Even cold-water corals grow better with more CO2

  1. Another brick removed from the wall of nonsense we call Anthropogenic Global Warming!

  2. “But our results do not support this,” said the empiricist.
    The term “corrosive waters ” is undefined, relative, prejudicial, and irrelevant. The growing coral *removes* bicarbonate ion from the sea, raising the pH (erasing the presumed ‘corrosivity’).
    The pH of the ocean is alkaline, not acidic.
    The dissolved CO2 immediately reacts to make bicarbonate ion, which is a nutrient for corals, mulloscs, and fishes.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s